Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность в состоянии равновесия

    Прилипшую к минеральной поверхности каплю нефти в водной среде можно получить, опустив в воду смоченную нефтью минеральную поверхность или же подведя под минеральную поверхность в водной среде каплю нефти. Первый случай соответствует вытеснению нефти водой из породы при отсутствии и наличии в ней погребенной воды, а также при капиллярной пропитке воды в полностью или частично нефтенасыщенную породу, при этом в поровом пространстве вода является дисперсионной средой. Во время опускания в воду минерала со смоченной нефтью поверхностью пленка нефти разрывается водой и образует на этой поверхности капли нефти, часть которых отрывается от нее, часть прилипает к ней. Капли нефти здесь непосредственно соприкасаются с твердой поверхностью. Состояние равновесия фаз в этом случае определяется равенством [c.118]


    Закрытые (адсорбционные) хроматографические колонки необходимо кондиционировать для стабилизации адсорбционной активности поверхности. Состояние равновесия требуется и для тонкослойной хроматографической системы. Когда течение подвижной жидкой фазы прекращается хотя бы на короткое время, возникает резкое изменение химического состояния слоя сорбента, находящегося в равновесии с окружающей газовой средой. Подвижная фаза состоит из растворителей различной летучести и полярности. Именно поэтому даже в момент нанесения пробы в ТСХ очень важно, чтобы объемная скорость потока элюента была постоянной. В ТСХ это условие необходимо выполнять более строго по сравнению с колоночной жидкостной хроматографией, где поток через кондиционированную колонку может быть приостановлен на несколько минут без существенного влияния на результаты разделения. Соответствующий экспериментальный подход описан ниже. [c.19]

    Приведенные выше кинетические зависимости были выведены при предположении, что сопротивление химической реакции лимитирует скорость поверхностной реакции. Однако можно допустить, что сопротивление одного из сорбционных процессов оказывает решающее влияние на эту скорость, например сопротивление адсорбции одного из исходных веществ. Тогда скорость поверхностной реакции можно представить с помощью кинетического уравнения адсорбции указанного реагента. Концентрация этого исходного вещества, используемая в уравнении, будет соответствовать концентрации, обусловленной состоянием равновесия химической реакции на поверхности, а концентрации других реагентов — состоянием равновесия сорбционных процессов. [c.280]

    Необходимость применения принципа технологической соразмерности может быть показана на примере процесса абсорбции газа жидкостью с одновременной сильно экзотермической реакцией. В этом случае развитие поверхности соприкосновения фаз, к которому обычно стремятся при проведении процессов такого типа, целесообразно только в определенных пределах. При возрастании скорости абсорбции увеличивается количество теплоты, выделяемой в единице объема аппарата, а следовательно, повышается температура системы (рис. 1Х-73,а). Вследствие увеличения температуры возрастает равновесное давление газа над жидкостью ро (рис. 1Х-73, б) и уменьшается движущая сила процесса р — ро-Таким образом, процесс будет протекать вдали от состояния равновесия. Изменение величины движущей силы с повышением температуры представлено на рис. 1Х-73, в. Скорость абсорбции возрастает с развитием поверхности соприкосновения фаз и увеличением температуры в соответствии с зависимостями, рассмотренными в разделе УИ1. Резюмируя, можно утверждать, что существует оптимальная величина поверхности соприкосновения фаз для определенных условий отвода теплоты Из системы при данном тепловом эффекте реакции, обеспечивающая максимальную скорость процесса (рис, 1Х-73,г). [c.422]


    Переход чонов в раствор и обратный процесс — внедрение ионов в кристаллическую структуру твердого вещества — происходят лишь на его поверхности, которая при данной степени измельчения является постоянной величиной. В таком случае на основании закона действия масс состояние равновесия зависит только от произведения концентраций ионов, которое для данного малорастворимого электролита является величиной постоянной. [c.119]

    Выведем теперь систему из состояния равновесия, создавая малую разность температуры АТ=Т2—Т[ или малую разность давления Др=рг—Р( между прослойками, либо то и другое одновременно (рис. 6.5, б). При этом начнется тепло- и мас-сообмен между прослойками, сопровождающийся плавлением льда на одной поверхности и кристаллизацией воды на другой. [c.106]

    При пропускании диоксида углерода над поверхностью графита при 1050 С поток газообразного продукта (предполагается, что реакция находится в состоянии равновесия) содержит 0,74 мол. % СО 2 и 99,26 мол. % СО. [c.202]

    Падение концентраций имеет место только в пограничных пленках для диффундирующего вещества В в слое рафината—от с до в слое экстракта—от Се1 до Се-. Согласно принятому допущению теории, концентрации на поверхности связаны состоянием равновесия  [c.63]

    На поверхности контакта существует состояние равновесия У1=т сХ . Разность между наличной и равновесной концентрациями, выраженная в мольных долях, служит мерой движущей силы  [c.240]

    Как указывалось ранее, лиофобные эмульсии принадлежат к агрегативно неустойчивым системам, которые стремятся достигнуть состояния равновесия, что обусловлено избытком свободной энергии на межфазной поверхности. [c.17]

    Для нанесенных катализаторов при окислительной регенерации может наблюдаться уменьшение дисперсности активного компонента. Основной причиной изменения дисперсности активного компонента в нанесенных катализаторах, как и в случае других пористых катализаторов, является удаленность системы от состояния равновесия [1]. После периода разработки дисперсная структура катализатора находится в некотором стационарном состоянии, когда дисперсность в данных температурных условиях не изменяется. Однако в процессе окислительной регенерации перегревы и действие паров воды ускоряют рост частиц. Например [130-132], под действием высоких температур происходит укрупнение частиц платины на поверхности носителя. При нагревании до 500 °С наблюдается рост частиц платины и соответствующее уменьшение поверхности платины и степени превращения в реакции гидрирования бензола [132]. При нагревании до 600-800 °С платиновый катализатор практически полностью теряет активность, что видно из приведенных ниже данных . [c.61]

    Скорость переноса вещества из одной фазы в другую <1М пропорциональна движущей силе процесса А, характеризующей степень отклонения системы от состояния равновесия, и поверхности контакта фаз с1Р. Следовательно [c.222]

    При взаимодействии фаз системы происходит обмен веществом и энергией (масса- и теплообмен) через поверхность раздела фаз. При этом система стремится к состоянию равновесия, при котором скорости перехода из одной фазы в другую выравниваются. [c.50]

    Другим важным условием состояния равновесия является сосуществование фаз, определяющее наличие поверхности раздела фаз. Только в результате контакта фаз, осуществляемого на поверхности их раздела, система может прийти к состоянию равновесия. [c.51]

    Поскольку в системе, стремящейся к состоянию равновесия, мас-со- и теплообмен осуществляется через поверхность раздела фаз, чем больше поверхность контакта фаз и чем более активно обновляется эта поверхность, тем быстрее завершается переход системы в состояние равновесия. Чем в большей степени состояние сосуществующих фаз отклоняется от условий равновесия, тем больше скорость массо- и теплообменных процессов в системе. В связи с этим по мере приближения системы к состоянию равновесия при неизменной поверхности контакта фаз скорость массо- и теплообменных процессов будет уменьшаться вследствие уменьшения движущей силы, обусловливающей этот обмен. [c.51]

    При продвижении исходной смеси через определенный слой адсорбента рассмотренный выше процесс протекает послойно в направлении движения исходной разделяемой смеси. Абсорбционное разделение в данном слое адсорбента будет завершено, когда в потоке, выходящем из слоя адсорбента, появится компонент, подлежащий извлечению из исходной смеси, т.е. когда в соответствии с состоянием равновесия активная поверхность адсорбента заполнится извлекаемым компонентом и произойдет проскок этого компонента с уходящим потоком. [c.275]


    Исчерпание адсорбционной способности — проскок определяет время защитного действия адсорбента по отношению к данному компоненту. Количество вещества, адсорбируемого поверхностью, определяется состоянием равновесия и зависит от природы адсорбента и адсорбируемого вещества, концентрации последнего в исходной смеси, температуры процесса, а при адсорбции газовой фазы и от давления. [c.275]

    При действительном ходе процесса система не достигает состояния равновесия и степень приближения к равновесному состоянию зависит от ряда факторов скорости протекания процесса адсорбции, продолжительности контакта фаз, поверхности контакта, активности (емкости) адсорбента. [c.283]

    Количество вещества, адсорбируемого поверхностью, определяется состоянием равновесия и зависит от природы адсорбента и адсорбируемого вещества, концентрации последнего в исходной смеси, температуры процесса и при адсорбции в газовой фазе от давления. [c.248]

    Скорость процесса диссоциации и состояние равновесия в системе зависят от температуры, парциального давления оксида углерода (IV), интенсивности передачи тепла к поверхности обжигаемого материала и скорости диффузии газообразных продуктов из зоны реакции. Парциальное давление оксида углерода (IV) становится равным атмосферному при 900°С. На практике, для ускорения процесса, обжиг ведут при температуре около 1200°С. [c.314]

    Таким образом, при испарении над раствором, где в состоянии равновесия с жидкостью над ее поверхностью компоненты имеют парциальные давления р1 и р2, отнощение чисел молей компонентов в потоке инертного газа будет равно [c.589]

    На межфазной поверхности наблюдается состояние равновесия, или же воздух насыщен и его температура /г равна температуре поверхности воды Т . Энтальпия воздуха, имеющего температуру ti и влагосодержание Хг, которое определяется по кривой насыщения (ф=100%) на диаграмме (— X, будет равна [c.610]

    Понятие теоретической тарелки. Под теоретической тарелкой понимается часть массообменного аппарата, в которой контакт массообменивающихся фаз приводит их к состоянию равновесия. Для достижения равновесия требуется слишком больщая поверхность и продолжительность контакта, которые в реальных условиях практически недостижимы. [c.77]

    Результаты многих исследовательских работ подтвердили справедливость предположений Лангмюра. На них основывается вывод некоторых кинетических зависимостей, описывающих ход процесса термической диссоциации твердых тел, при допущении, что зародыши твердой фазы продукта образуются в небольшом количестве. Согласно Завадскому и Бретшнайдеру, такое допущение верно, когда реакция проходит при небольшой удаленности от состояния равновесия. Если же отдаление от состояния равновесия значительное, т. е. при большом перенасыщении в системе (которое определяется как отношение текущего значения парциального давления компонента А к давлению при равновесии, Рл/) лрав ). то одновременно с реакцией на границе фаз происходит образование зародышей новой твердой фазы. Вследствие этого величина поверхности соприкосновения фаз возрастает, что приводит к ускоре- [c.260]

    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]

    В состоянии равновесия расклинивающее давление пленки равно перепаду капиллярного давления на мениске П = Р, , что и позволяет определить зависимость толщины пленок от состояния заполнения пористого тела и кривизны поверхности менисков IRrn. Как известно, Рк = с1Ят, где а — поверхностное натяжение мениска. [c.17]

    Мениск смачивающей жидкости контактирует при этом со смачивающей пленкой, равновесная толщина которой Ло определяется уравнением изотермы П(/г). Значение ко отвечает расклинивающему давлению, равному капиллярному давлению равновесного мениска По =. Ра . Между объемной частью мениска с постоянной (в пренебрежении силой тяжести) кривизной поверхности Ко = Рк1а (где о —поверхностное натяжение) и плоской смачивающей пленкой образуется переходная зона 2 (см. рис. 13.1), где действуют одновременно капиллярные силы, вызванные кривизной поверхности слоя жидкости, и поверхностные силы, связанные с дальнодействующпм полем подложки. В состоянии равновесия из условия постоянства давления во всех частях системы получим  [c.211]

    Отклонение реакции, протекающей на поверхности, от состояния равновесия вызывается слишком малым временем контакта с катализатором. Увеличение времени контакта, т. е, уменьшение скорости потока исходных веществ, могло бы приблизить реакцию к равновесию и уменьшить величину ВЕС. При этом возросли бы значения ВЕП1 и ВЕПг. [c.260]

    При хорошем хранении потери жидких углеводородов минимальны. Некоторые потери неизбежны, например потери при заполнении и опорон нении резервуаров. Паровая и жидкая фазы в хранилище находятся в состоянии равновесия. При опорожнении хранилища освобождающееся пространство заполняется внешним газом для повышения давления до равновесного. При применении небольшой сферы, плавающей на поверхности продукта, использовании переменного объема хранилища, оборудовании резервуаров системой улавливания паров потери сводятся к минимуму. Было подсчитано, что потери из резервуаров на американских газоперерабатывающих заводах составляют около 3,8 млн. л ежегодно. Примерно столько же углеводородных жидкостей теряется в сыром виде, т. е. до поступления их на переработку или в хранилища. Приблизительно потери П ъ %) при хранении в зависимости от объема хранящихся углеводородов можно оценить с помощью следующего соотношения [c.80]

    Если жидкость находится в закрытом сосуде (см. рис. 63,6), то испарившимся молекулам, некуда вылететь из него, и они постепенно накапливаются в газовом слое. Для большей простоты обратимся к случаю, когда в сосуде отсутствует воздух или. другие посторонние вещества, т. е. когда испарение происходит в вакуум. Молекулы пара, передвигаясь в объеме парообразного слоя, ударяются о стенки сосуда или о поверхность жидкости. В последнем случае они могут поглотиться жидкостью, т. е. произойдет процесс, обратный испарению,— процесс конденсации пара в жидкость. Число молекул, поглощенных жидкостью за данный поо-межуток времени, будет, при прочих равных условиях, тем большим, чем больше молекул содержится в единице объема пара. В начальный период испарения, когда концентрация пара мала, процесс конденсации происходит в слабой степени. Но по мере возрастания концентрации пара увеличивается и число конденсирующихся молекул. В результате скорость процесса конденсации постепенно увеличивается и, наконец, становится равной скорости испарения. После этого оба эти процесса протекают уже с одинаковой скоростью и устанавливается состояние равновесия. [c.170]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и- предельное значение адсорбции (Гоо), константа скорости химического акта (йуд), а также константы, характеризующие процессы массопе-реноса (D, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость Кап и йуд от строения и свойств катализатора и реагирующих молекул. Проб лема эта очень сложная и далеко еще не решенная. [c.654]

    В данной книге не проводится детального анализа пламен, но ряд упрощающих предположений позволит дать оценку скорости горения или скорости распространения пламени и пользоваться этим понятием в дальнейшем. Например, можно считать, чтв устойчивое пламя, имеющее форму хорошо выраженной поверхности, является результатом равпомерного потока реагентов в зону пламени, где состояние равновесия достигается за счет равной и противоположно направленной скорости горения. Далее можно предположить, что единственно важное с точки зрения стабильности пламени направление горения расположено под прямым углом к фронту пламени и что для [c.48]

    При взаимодействии фаз системы происходит обмен веществом и энергией такой массо- и теилообмеи идет через поверхность раздела фаз, стремясь достигнуть состояния равновесия, при котором скорость перехода из одной фазы в другую уравновесится скоростью перехода в противоположном направлении. [c.46]

    Поскольку массо- и теплообмеп при стремлении системы прийти к состоянию равновесия осуществляется через поверхность раздела фаз, то чем больше поверхность контакта между фазами, тем быстрее система приблизится к состоянию равновесия. Чем больше состояние сосуществующих фаз отличается от условий равновесия, тем с большей скоростью происходит массо- и теплообмен. В связи с этим в процессе приближения системы к состоянию равновесия скорость массо- и теплообмена при неизменной поверхности раздела фаз будет уменьшаться, так как уменьшается движущая сила, обусловливающая этот обмен. [c.47]

    В тех случаях, когда в газовом потоке или в растворе, проходящем через слой адсорбента, концентрация (парциальное давление) адсорбируемого компонента нпяге равновесной, то данные комнопенты десорбируются с поверхности и переходят в газовый ноток или в раствор до тех пор, пока пе установится новое состояние равновесия. [c.252]

    При расчете адсорбера количество исходной смеси Со и начальная концентрация извлекаемого компонента Хп обычно бывают известны. Величины а и Хц могут Q быть найдены при помощи изотермы адсорбции концентрация а-в. опре- а р деляется полнотой десорбции (регенерации). При достижении состояния равновесия в адсорберах с движущимся слоем адсорбента адсорбат с коггцентрацией извлекаемого компонента а,( в отходящем адсорбенте будет находиться в равновесии с исходным сырьем, т. е. в этом случае Як = Яцр, а поток, отходящий из адсорбера, будет в равновесии с исходным адсорбентом, т. е. Хк = а ,ф (рис. 9. 9). В действительности система не достигает состояния равновесия, и степень приближения к равновесному состоянию зависит от таких факторов, как скорость протекания процесса (кинетика адсорбции), продолжительность и поверхность контакта. [c.265]

    Так как в радикально-цепном крекинге происходит обрыв цепей на стенках вообще, то вопрос о гетерогенном зарождении цепей в термическом крекинге приобретает принципиальное значение. Опираясь на положение о том, что некаталитические стенки не могут изменять состояние равновесия системы (так как в противном сл д1ае можно было бы осуществить вечный двигатель второго рода), было показано (98] что с процессом обрыва цепей на стенках непременно сопряжен процесс гетерогенного зарождения цепей на поверхности одновременно с рекомбинацией радикалов проис ходит и обратная реакция гетерогенной диссоциации продукта рекомбинации на радикалы. Таким образом, гетерогенное зарождение цепей и гетерогенный обрыв цепей тесно связаны, вопреки прежним представлениям о независимости этих процессов. Гетерогенное зарождение цепей было экспериментально доказано в ряде работ [99—102]. [c.47]

    В металловедении широко используются понятия система , фаза , структура . Совокутшость фаз, находящихся в состоянии равновесия, на-зьтаюгг системой. Фазой называют однородные (гомогенные) сосгавньзе части системы, имеющие одинаковый состав, кристаллическое строение и свойства, одно и тоже агрегатное состояние и отделенные от составных частей поверхностями раздела. Под структурой понимают форму, размеры и характер взаимного расположения соответствующих фаз в металлах и сплавах. [c.17]

    Лаплас вывел уравнение (4.16) в 1806 г. несколько иным способом. Его вывод позволяет интерпретировать капиллярное давление как изменение молекулярного давления в жидкости, что приводит к противоположному знаку АР. Относительно недавно, в 1958 г., Щербаков окончательно разъяснил этот остававшийся долгое время неясным момент в теории капиллярности. Он показал, что Б выводе Лапласа неправильно отождествляются молекулярное и внешнее (например, гидростатическое) давления. В действительности при новом состоянии равновесия, которое возникает в результате искривления поверхности, изменяется как внешнее, так и молекулярное давление. Эти изменения описываются двумя уравнениями того же типа, что и уравнение Лапласа. Капиллярное давление связано только с изменением внешнего давления, а чтобы можно было судить о соответствующем изменении молекулярного давления, нужно располагать методами его измерения. Следовательно, молекулярное давление, определяемое межмолекулярными силами и имеющее очень важное значение для молекулярнокинетической теории жидкости, не может быть лзучено путем исследования капиллярных явлений в макрогетерогенных системах. Далее мы покажем, что это оказывается возможным только при исследовании свойств микрогетерогенных систем, например очень тонких слоев жидкости. [c.85]


Смотреть страницы где упоминается термин Поверхность в состоянии равновесия: [c.276]    [c.261]    [c.221]    [c.105]    [c.86]    [c.341]    [c.5]    [c.280]    [c.288]    [c.79]   
Смотреть главы в:

Физика и химия твердого состояния органических соединений -> Поверхность в состоянии равновесия




ПОИСК





Смотрите так же термины и статьи:

Поверхность состояния



© 2025 chem21.info Реклама на сайте