Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение нуклеиновых кислот и нуклеотидов

    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]


    Настоящая книга, издаваемая в серии научных трудов ВИР, освещает методы и методики по определению содержания нуклеиновых кислот в растительных тканях и препаратах. В ней также изложены — идентификация и количественный учет свободных нуклеотидов выделение нативных РНК и ДНК из растений фракционирование их на колонках определение нуклеотидного состава РНК и ДНК методами колоночной и бумажной хроматографии изучение свойств макромолекул нуклеиновых кислот, обнаружение их в клетке, цитофотометрия, определение состояния ДНК и РНК в клетке. [c.2]

    Несмотря на применение защищенных производных нуклеотидов и нуклеозидов, некоторые побочные реакции (например, образование пирофосфатов при синтезе исходя из моноэфиров фосфорной кислоты) все же имеют место вследствие этого требуется тщательная хроматографическая очистка продуктов реакции. Одним из приемов, позволяющих существенно упростить очистку продуктов реакции, является фиксация одного из компонентов реакционной смеси на полимерном носителе Такой полимер может быть легко отделен от других компонентов реакционной смеси. Продукт реакции, фиксированный на полимере, можно подвергать дальнейшим превращениям, что значительно упрощает многостадийные синтезы. Наконец, после выполнения всех стадий продукт может быть отщеплен от полимера и выделен в чистом состоянии. Такой подход к синтезу олигонуклеотидов привлекает сейчас большое внимание . Неспецифичность химических методов создания межнуклеотидной связи, являющаяся недостатком химического подхода к синтезу олигонуклеотидов (получение защищенных производных нуклеозидов и нуклеотидов требует многостадийных синтезов), в данном случае дает ряд преимуществ, поскольку в синтез олигонуклеотидов могут быть введены самые разнообразные производные нуклеозидов, в том числе и синтетические аналоги компонентов нуклеиновых кислот. Это открывает широкие возможности исследования связи структуры и функции природных полинуклеотидов. [c.86]

    ВЫДЕЛЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ И НУКЛЕОТИДОВ [c.130]

    Методы разделения смесей веществ представляют ценность не только как начальная ступень практически любого эксперимента в области исследования биополимеров, так как выделенный и очищенный белок или нуклеиновая кислота претерпевают с течением времени изменения как в растворе, так и в кристаллическом виде или в виде осадка, но и как методы непосредственного изучения свойств биополимеров. Изучение электрохимических свойств белков, нуклеиновых кислот, нуклеотидов, полипептидов методами электрофореза и сорбции, изучение их морфологии методами сорбции и хроматографии представляет собой столь же важную область применения этих методов, как и наиболее до настоящего времени распространенное их приложение для фракционирования и анализа смеси веществ. [c.9]


    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Основные изменения, внесенные нами, учитывают последние работы в области химии нуклеиновых кислот [2, 3]. Все операции проведены с помощью отечественных ионитов—КУ-1, КУ-2 и АВ-17. Для ускорения процесса выделения и очистки нуклеотидов применена двойная хроматография — предварительное разделение и окончательная очистка. [c.94]

    Выделение индивидуальных нуклеотидов из гидролизатов нуклеиновых кислот до недавнего прошлого представляло очень сложную задачу и требовало длительной кропотливой работы. Однако в настоящее время этот вопрос относительно просто решается применением хроматографии на ионообменных смолах, которая позволяет получать чистые индивидуальные нуклеотиды. [c.216]

    Что касается строения нуклеиновых кислот, то, по имеющимся представлениям, отдельные мононуклеотиды в молекуле нуклеиновой кислоты соединены между собой посредством кислородных мостиков, образующихся за счет гидроксильных групп пентозы одного мононуклеотида и фосфорной кислоты другого, соседнего нуклеотида с выделением молекулы воды. [c.59]

    При облучении водных растворов оснований нуклеиновых кислот видимым светом в присутствии ионов двух- и трехвалентного железа в нейтральной или слабокислой среде гетероциклические основания полностью или частично расщепляются, о чем свидетельствуют изменения УФ-сиектров растворов. Пиримидины расщепляются при этом быстрее пуринов В аналогичных условиях нуклеозиды и нуклеотиды наряду с частичной деградацией составляющих оснований претерпевают расщепление N-гликозидной связи с выделением свободного основания. При облучении полинуклеотидов наблюдаются те же процессы, сопровождающиеся, кроме того, частичным гидролизом фосфодиэфирных связей и потерей биологической активности [c.685]

    Объединение различных мономерных единиц — нуклеотидов — с образованием нуклеиновой кислоты показано на фиг. 124. Образование нуклеиновых кислот, так же как и образование нуклеотидов, сопровождается лишь выделением воды. Остаток фосфорной кислоты одного нуклеотида соединяется со спиртовой группой соседнего нуклеотида, образуя фосфоэфирную связь или мостик между двумя нуклеотидами. При этом отщепляется молекула воды. Этот процесс повторяется до тех пор, пока не образуется полимер, состоящий из сотен нуклеотидов. [c.420]

    Как было показано выше, целлюлоза была первым носителем в аффинной хроматографии. Обзор данных по применению целлюлозы для выделения антител и антигенов приведен в работе [81]. Данные о ковалентном связывании нуклеотидов, полинуклеотидов и нуклеиновых кислот обобщены в статье [33]. Хотя в настоящее время в аффинной хроматографии применяются и другие твердые носители, целлюлоза не потеряла своего значения. Трипсин, связанный с целлюлозой, по-прежнему ис- [c.40]

    Мы являемся свидетелями исключительно важного по ожидаемым результатам прогресса в молекулярной биологии. Предпосылкой этого служит выпуск биологических препаратов небывало высокой чистоты. Одну из сторон этого процесса познания академик Н. П, Дубинин охарактеризовал так Использование... методов выделения из клетки химически чистых веществ, совместно с генетическим экспериментом, позволило понять, в каких группировках атомов внутри молекул нуклеиновых кислот реализуется явление наследственности . Теперь в распоряжении исследователей имеется внушительный ассортимент чистых аминокислот, нуклеотидов, в том числе меченных радиоактивными изотопами, ферментов, витаминов, гормонов, антибиотиков, ускорителей и угнетателей роста. [c.44]

    Основные научные работы посвящены биохимии нуклеиновых кислот, ферментативным превращениям углеводов и жиров, механизму фотосинтеза. Используя фермент полинуклеотидфосфорилазу, выделенную из бактерий, синтезировал (1955) РНК (в отличие от природной она не обладала стереоспецифичностью и в ее молекулу входили не четыре типа нуклеотидов, а лишь один). Участвовал в работах по расшифровке генетического кода. [c.378]


    Нуклеиновые кислоты соложеного ячменя растворяются и гидролизуются, превращаясь в нуклеотиды, которые, в свою очередь, преобразуются в пуриновые и пиримидиновые нуклеозиды, а затем — в свободные основания и сахара. Данный процесс способствует также выделению фосфора, необходимого для формирования биомассы дрожжей. [c.34]

    Первым выделенным мононуклеотидом была инозиновая кислота (IMP, 9), которая была получена из гидролизата мяса Либихом в 1847 г. примерно за 20 лет до выделения нуклеиновых кислот из гнойных клеток Мишером. Взаимосвязь между мононуклеотидами и нуклеиновыми кислотами стала понятна в первой половине двадцатого столетия главным образом в результате работ Левина и др. [6]. Инозиновая кислота не является широкораспространенным в природе нуклеотидом она образовалась в процессе выделения по Либиху за счет дезаминирования АМР, который сам по себе был выделен из мышц лишь в 1927 г. Были выделены все обычные нуклеотиды аденина, цитозина, гуанина, тимина н урацила, так же как и многие минорные нуклеотиды, например, образуюш,иеся из псевдоуридина, дигидроуридина и метилированных производных аденозина и гуанозина. [c.134]

    Очевидно, что многие нуклеозиды являются интермедиатами в биосинтезе н расщеплении нуклеотидов и полинуклеотидов. В дополнение к так называемым спонгонуклеозидам (термин, применяемый к модифицированным пуриновым нуклеозидам, полученным из карибской губки ryptotethya rypta), которые являются производными арабинозы, многие антибиотики являются производными нуклеозидов, часто имеющих модифицированные углеводные остатки они будут детально обсуждаться позднее. Нуклеозиды сравнительно легко выделить из химических или ферментативных гидролизатов природных полинуклеотидов условия и практические детали этого процесса можно найти в общих учебниках по нуклеиновым кислотам [2, 7, 24]. Все коммерчески доступные образцы основных нуклеозидов получены этим путем. Для выделения больщих количеств таких нуклеозидов наиболее целесообразно применение относительно грубого фракционирования, основанного на различной растворимости, и методов ионного обмена. Для выделения малых количеств модифицированных нуклеозидов либо из природного источника, либо полученных в результате химического синтеза, пригодны многочисленные более эффективные методы, и они будут обсуждаться отдельно. Наконец, следует помнить, что выделение нуклеозидов часто осуществляют дефосфорилированием нуклеотидов [25], выделение и разделение которых не будет рассматриваться в настоящей главе. [c.72]

    Обзор аффинных лигандов, используемых для выделения ферментов, ингибиторов, кофакторов, антител, антигенов, агглютининов, гликопротеинов и гликополисахаридов, нуклеиновых кислот, нуклеотидов, транспортных и рецепторных белков, гормонов и их рецепторов, липидов, клеток, вирусов и других веществ дан в гл. 11 (табл. 11.1). [c.104]

    Специфические сорбенты, использующие исключительные свойства биологически активных веществ образовывать специфические и обратимые комплексы, в огромной степени облегчают выделение ряда ферментов, их ингибиторов и кофакторов, антител и антигенов, лектинов, гликопротеинов, гликополисахаридов, нуклеиновых кислот, нуклеотидов, жиров, транспортных и рецепторных белков, гормонов и их рецепторов, клеток и многих других соединений, как это представлено в обзорной табл. 11.1. Наряду с названием выделяемого вещества в таблице приведены также используемые аффинные лиганды, нерастворимые носители и пространственные группы, причем указано, аффинный лиганд или нерастворимая матрица модифицированы данной пространственной группой. Обзорная таблица включает выделения веществ как с помощью типичной биоаффинной хроматографии, так и с помощью гидрофобной или ковалентной хроматографии. [c.367]

    Нуклеотиды, выделенные при гидролизе нуклеиновых кислот, содержат только один моносахарид, которым в РНК является D-рибоза-(XLVI), а в ДНК — D-2-дезоксирибоза (XLVII). [c.185]

    Для разделения сложных смесей, содержащих вещества разных классов (основания, нуклеозиды, нуклеотиды и их поли-фосфаты, олигонуклеотиды, включая олигонуклеотиды, различающиеся порядком основании, и т. п.), с которыми имеют дело, например, при выделении кислоторастворнмой части клеток или тканей или при анализе ферментативных гидролизатов нуклеиновых кислот, применяют исключительно ионообменную хроматографию. В случае необходимости дальнейшее фракционирование проводят по многостадийной схеме, с использованием указанных выше методик. При этом наблюдаются те же закономерности, что и при анализе нуклеотидов (см. предыдущий раздел), поэтому в дальнейшем будет приведено лишь несколько примеров. [c.58]

    Выделение и идентификацию компонентов нуклеиновых кислот производят с помощью физико-химических методов. Очень важную роль в разделении сложных смесей играют хроматографические методы ( см. 15.1). Пиримидииовые и пуриновые основания, обладающие заметным поглощением около 260 нм, обычно идентифицируют с помощью УФ-спектроскопии (см. 15.3.1). Поскольку нуклеотиды имеют кислотный характер и способны находиться в ионизированном сосюя НИИ, то для идентификации их используют также электрофорез (см. 15.1). [c.444]

    Если принять во внимание способ образования нуклеиновых кислот при биосинтезе (т.е. синтезе в живых организмах или с помощью ферментных систем, выделенных из живых организмов), то их следует рассматривать как полимеры, образованные нуклеозид-5 -фосфатами. При этом каждый остаток фосфорной кислоты мономера, кроме концевого, связан фосфоэфирной связью с 3 -ОН-груп-пой соседнего мономерного звена. На рис. 7 приведена структура примыкающих к концам фрагментов нуклеиновой кислоты с некоторой произвольной последовательностью нуклеотидов. Видно, что все остатки фосфорной кислоты, кроме одного, образуют фосфодиэфирные группы и все 3 -гидроксигруппы, кроме одной, участвуют в образовании фосфоэфирных связей. Остаток, содержащий 5 -фосфомоноэфирную группу, называют 5 -концевым, а остаток, содержащий не-этерифицированную 3 -гидроксигруппу, — 3 -концевым. [c.51]

    По своей сути аффинная хроматография — идеальный метод для изучения взаимодействий в биохимических процессах. Иммобилизованная лейцил-тРНК-синтетаза использована как для выделения изолейцил-тРНК, так и для изучения взаимодействия белка с нуклеиновой кислотой [10]. Взаимодействия пептидов с белками [12] и нуклеотидов с аминокислотами и пептидами [20] [c.17]

    Области применения аффинной хроматографии расширяются, поокольку метод основан на специфических взаимодействиях биологически активных веществ. Как видно из табл. 11.1, этот метод успешно используется при выделении самых разных соединений. Наряду с этим он полезен при изучении различных систем на аффинных сорбентах можно разделять низкомолекулярные энан-тиомеры и удалять нежелательные вещества из живых организмов. -Например, аффинной хроматографией можно разделить на оптические антиподы 0,Ь-триптофан. Используя специфическое выделение меченых пептидов, можно определить пептиды активного центра фермента, связывающего участка антител или участка пептидных цепей на поверхности молекулы. Аффинная хроматография может быть использована для изучения возможности замены природных пептидных цепей ферментов различными модифицированными синтетическими пептидами. Активные центры ферментов или антител, связывающие свойства субъединиц, специфичность ферментов по отношению к различным ингибиторам, комплементарность нуклеиновых кислот, взаимодействие нуклеотидов с пептидами, влияние присутствия различных соединений на образование специфических комплексов и т. д. могут быть исследованы с помощью аффинной хроматографии. [c.282]

    Однако значение углеводов далеко не исчерпывается их ролью как главных веществ при создании органических соединений в процессе фотосинтеза, как важных пищевых веществ и сырья для многих видов промышленности. Как было показано в последние годы, передача наследственных признаков, а также биосинтез белка — химической основы г изни — происходят при участии так называемых нуклеиновых кислот (см. том II). Структурными компонентами последних являются мононуклеотиды — производные углеводов. Лабильность углеводных компонентов как раз и создает большие трудности при выделении и синтезе нуклеотидов. [c.622]

    Многие гликозиды содержат азот. Таковы цианофорные гликозиды, гидролизующиеся с выделением синильной кислоты (например, амигдалин и пруна-зин, см. ниже), индиканы, дающие при гидролизе индоксил, из которого получался природный краситель индиго нуклеозиды, являющиеся Ы-гликозидами и имеющие в качестве агликонов пуриновые и пиримидиновые основания (см. том II). Нуклеозиды являются компонентами исключительно важных в биологическом отношении веществ—нуклеотидов (например, адениловая кислота), нуклеиновых кислот и нуклеопротеидов (белков клеточных ядер). [c.696]

    Первые работы в СССР в области химии РНК и ДНК выполнены в Московском университете А. П. Белозерским, определившим нуклеотидный состав ДПК различных организмов. В лаборатории А. А. Баева в Институте молекулярной биологии АН СССР разработаны методы выделения индивидуальных т-РНК, расщепления их молекул и разделения полученных олигонуклеотидов установлено их строение. Дальнейшие ра боты но химии РНК, главным образом по онределеиию структуры РНК, модификации нуклеиновых кислот и выяснению зависимости функций РНК от структуры, проводились наряду с этим институтом также в Институте органической химии АН СССР в Новосибирске (Д. Г. Кнорре). В Институте биоорганических соединений АН СССР М. Н. Колосов с сотр. ведет исследования но изучению структуры и функций ДНК, синтезу функционально активных участков ДНК и химико-ферментативному синтезу нуклеотидов [90, с. 43]. [c.107]

    Второй этап — с начала нашего века по тридцатые годы. Здесь проводилось изучение главным образом продуктов расщепления нуклеиновых кислот. В ходе исследований были выделены и изучены мономерные компоненты нуклеиновых кислот. Левин и отчасти Гулланд установили структуру углеводных остатков, нуклеозидов и нуклеотидов. На основании полученных данных Левин выдвинул так называемую тетрануклеотидную гипотезу строения нуклеиновых кислот, не подтвердившуюся впоследствии. Отсутствие подходящих методов выделения, физико-химической и биологической характеризации нуклеиновых кислот и данных об их роли в процессах жизнедеятельности сдерживало развитие исследований в этой области. [c.14]

    В последнее время определены молекулярные веса РНК и ДНК, выделенных в высоконолимерном состоянии с сохранением соответствующих биологических свойств из клеток различных микроорганизмов и тканей животных и растений, а также вирусов. Оказалось, что обе нуклеиновые кислоты обладают очень высоким молекулярным весом. Так, для РНК были найдены величины до 1,5—2 млн. Такие молекулы слагаются из 4—6 тыс. отдельных нуклеотидов. Для ДНК клеточного ядра определен еще больший молекулярный вес. Так, в нативных препаратах ДНК, где она в какой-то мере сохранила состояние, присущее ей в клетке, величины молекулярного веса составили [c.46]

    Название нуклеотид было введено в 1908 г. Левиным и Ман-делем 11] для соединений, выделенных из кислотных гидролизатов нуклеиновой кислоты зобной железы теленка. Еще до недавнего времени фосфаты нуклеозидов часто характеризовали по названию сырья так, например, для описания двух различных изомеров аденинового нуклеотида употребляли выражения дрожжевая адениловая кислота и мышечная адениловая кислота . В настоящее время эта терминология утратила в какой-то мере свое значение, и если известно положение фосфорного остатка, то его обозначают обычно, как в данном примере аденозин-2 -фосфат. Для Аюнофосфатов природных рибонуклеозидов вoз южнo существование трех изомеров (2 -, 3 - или 5 -фосфаты), а в ряду дезоксирибонуклеозидов вoз южны как З -фосфаты, так и 5 -фосфаты. Все они были выделены. [c.123]

    Первый нуклеотид, инозиновая кислота (по-гречески — мышечная ткань), был выделен Либихом [2] в 1847 г. из мясного экстракта отчасти как результат полелп1ки, поднятой Берцелиусом по поводу наличия креатина в сыром и вареном мясе). С тех пор было выделено большое число мононуклеотидов, как правило, 5 -фосфаты, хотя в яде тигровых змей и родственных видов был найден также аденозин-З -фосфат 13]. Эти соединения выделяют прямой экстракцией тканей или организмов 14—9], в которых они обычно присутствуют в небольших количествах в качестве промежуточных соеди-нени1 обмена. Однако основным источником мононуклеотидов являются их полимерные производные, нуклеиновые кислоты. При щелочном гидролизе в мягких условиях [10, 11] рибонуклеиновой кислоты образуется смесь 2 - и З -фосфатов нуклеозидов, которую можно легко разделить с помощью ионообменной хроматографии 112], Для выделения аналогичных 5 -эфиров требуется применение ферментативного гидролиза, как правило, с использованием фосфо-диэстеразы змеиного яда 113, 14]. Подобная ферментативная обработка дезоксирибонуклеиновой кислоты после предварительной обработки дезоксирибонуклеазой приводит к дезоксинуклеозид-5 -фосфатаы [15—17]. Очищенная диэстераза змеиного яда значи- [c.123]

    Значительную ценность представляют собой рибонуклеазы высокой специфичности, так как они не только расщепляют нуклеиновую кислоту на олигонуклеотиды, которые во многих случаях можно разделить и определить их структуру, но и указывают также в общем распределение нуклеотидов. Так, обнаружено, что пропорция пиримидиновых нуклеозид-З -фосфатов (по отношению к общему содержанию пиримидинов в нуклеиновой кислоте), выде ляющихся под действием панкреатической рибонуклеазы, в значительной степени варьирует. Нри известной специфичности фермента высокий процент выделения свободных пиримидиновых нуклеотидов по отношению к общему содержанию пиримидинов указывает на наличие участков цепи, в которых два или более пиримидинов следуют подряд друг за другом, в то время как выделение мононуклеотидов в относительно малом количестве указывает на то, что пиримидиновые нуклеотиды в основном соединены (через 5 -гидро-ксильную группу) с З -фосфатами пуриновых нуклеотидных звеньев. В этой связи представляет интерес факт, что из растворимых в солевом растворе дрожжевых нуклеиновых кислот выделяется около 50% цитидиловой, уридиловой и псевдоуридиловой кислот в расчете на общее содержание каждой из них и только 10—20% тиминовых нуклеотидов [161]. Из рибонуклеиновой кислоты вируса табачной мозаики штамма М после исчерпывающего переваривания панкреатической рибонуклеазой выделено значительно большее количество пиримидиновых нуклеотидов, чем в случае штаммов ТМУ, НК и УА следовательно, распределение пиримидиновых нуклеотидов в РНК из штамма М отличается от распределения нуклеотидов в РНК штаммов ТМУ, НР или УА [162] (ср. с приведенными ниже данными). [c.392]

    При обработке РНК вируса табачной мозаики РНК-азой Т1 освобождается в виде мононуклеотида около 26,9% общего содержания гуанина таким образом, такое количество гуаниловых нуклеотидов содержится (как полагают) в нуклеиновой кислоте в виде участков из двух или более гуаниловых остатков [173]. Образуются также ДИ-, три- и тетрануклеотиды с гуанозин-3 -фосфатом на конце. Однако независимое определение гуанозин-З -фосфата и гуанозин-2, З -циклофосфата, выделяющихся при действии очищенной РНК-азы Т1 на РНК вируса табачной мозаики, показало, что освобождается около 55,7% общего содержания гуанина (по сравнению с теоретическим значением 24,0% при расчете на беспорядочное распределение оснований) [174]. При подобной обработке дрожжевой РНК выделяется 48,7% общего содержания гуанина при беспорядочном распределении оснований надо ожидать только 27,5%. Однако приводится также значительно более низкая величина процента выделения [559]. Фракционирование на ЭКТЕОЛА-целлюлозе пуриновых олигонуклеотидов (содержащих на конце пиримидиновый нуклеотид) из гидролизатов РНК панкреатической рибонуклеазой показало, что продукты более высокого молекулярного веса особенно богаты остатками гуаниловой кислоты, т. е. действительно имеются цепочки из остатков гуаниловой кислоты [175]. [c.394]

    Нуклеиновые кислоты — это продукты поликонденсации нуклеотидов, соединяющихся друг с другом в результате выделения воды и образования полиэфирных связей за счет гидроксилов из остатков фосфорной кислоты и спиртовых гидроксилов при 5-х атомах углерода рибофуранозных группировок. Таким образом, по структуре макромолекул нуклеиновые кислоты являются полинуклеотидами. Участок цепи молекулы, например РНК, можно представить следующим образом  [c.476]


Смотреть страницы где упоминается термин Выделение нуклеиновых кислот и нуклеотидов: [c.166]    [c.140]    [c.178]    [c.186]    [c.929]    [c.229]    [c.218]    [c.28]    [c.221]    [c.9]    [c.70]    [c.410]    [c.442]    [c.143]   
Смотреть главы в:

Аффинная хроматография -> Выделение нуклеиновых кислот и нуклеотидов




ПОИСК





Смотрите так же термины и статьи:

Выделение кислотами

Нуклеиновые кислоты

Нуклеотиды



© 2025 chem21.info Реклама на сайте