Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основность и сольватациям

    Есть, однако, еще один важный фактор, от которого зависит основность — сольватация алкиламмониевого иона молекулами воды  [c.689]

    Главный вывод, который можно сделать на основе подобного разделения эффектов состоит в том, что в области составов с большим содержанием воды кинетика процесса определяется, в основном, сольватацией неполярного субстрата. Поведение функций на рис. VI. 6, а очень напоминает зависимости, рассмотренные ранее (см. рис. VI. , VI. 3, VI. 4). Существенно также, что в отличие от водной области, где механизм сольватации исходного состояния энтропийный, при значительных концентрациях спирта доминирует энтальпия. Последняя однако определяет сольватацию ПС во всей области составов. [c.183]


    Для стабилизации эмульсий растворимых масел широко применяют мыла органических аминов, соли сульфоновых и нафтеновых кислот [33]. Стабилизирующее действие этих веществ связано по крайней мере с двумя факторами наведением электрического заряда и образованием адсорбционного защитного слоя на частицах дисперсной фазы. При диспергировании твердых частиц поверхностно-активными веществами оба эти фактора проявляются далеко не всегда. В дисперсных системах, содержащих поверхностно-активные вещества, образование защитной пленки определяется в основном сольватацией поверхности частиц. [c.30]

    Если в ходе активации или реакции имеет место усиление нуклеофильной (основной) сольватации, константа Ь имеет положительный, а в обратном случае— отрицательный знак. [c.148]

    Наиболее часто встречаются отклонения, связанные с протеканием различных процессов в исследуемых растворах. Как уже упоминалось ранее, поглощение прямо пропорционально числу поглощающих частиц. Однако в результате различных процессов, таких, как гидролиз и сольватация, ионная сила раствора при сохранении постоянства общей массы веществ, число поглощающих частиц данного вида и их энергетическое состояние могут изменяться, что является основной причиной, вызывающей отклонение от закона Бугера — Ламберта — Бера. Известно, например, что многие химические процессы, протекающие в растворах, связаны с концентрацией Н+-ионов. Кроме того, изменение pH раствора приводит к различной степени связанности иона металла в комплексное соединение, к изменению его состава или даже к его разрушению. [c.467]

    А. В. Писаржевский показал (1912), что для ионных реакций обмена в Смешанных растворителях (смеси воды со спиртами, глицерином, гликолем) величины изобарных потенциалов реакции меняются с изменением растворителя вплоть до перемены знака. Ни внутреннее трение, ни электролитическая диссоциация, ни растворимость не объясняют полностью влияния растворителя на положение равновесия. Основную роль для ионных равновесий в различных растворителях играет взаимодействие с растворителем растворенных веществ, диссоциирующих ва ионы (сольватация ионов). [c.287]

    Это изменение числа переноса в основном объясняется различной степенью сольватации катионов и анионов в зависимости от растворителя. [c.450]

    Очевидно, основным звеном, затрудняющим расчеты коэффициентов активности ионов, является расчет величин ДОс, i и ДОс, 2 для сольватации ионов. [c.594]


    Другой важной характеристикой растворителя по теории Брен-стеда является сродство к протону, которое определяется энергией, выделяющейся при сольватации протона в данном растворителе. Чем больше сродство к протону, тем сильнее выражены основные свойства растворителя. [c.280]

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Следует учитывать и другие факторы, особенно влияние сольватации. Внутримолекулярный нуклеофил в основном состоянии меньше сольватирован, чем отдельная нуклеофильная частица в [c.210]

    Соединения с экваториальными карбоксилами или аминогруппами обладают большей кислотностью или, соответственно, основностью, чем аксиальные изомеры. Отрицательные и положительные заряды стабилизуются благодаря сольватации в случае же аксиальных заместителей большие стерические препятствия уменьшают эту возможность, что приводит к смещению равновесия в сторону незаряженных молекул, т. е. к уменьшению силы кислоты или основания. [c.807]

    В соответствии с законом Ламберта - Бера увеличение оптической плотности нефти после растворения в ней оптически менее плотных ПАВ происходит из-за увеличения дисперсности частиц основного красящего вещества нефти - асфальтенов. Молекулы введенных в нефть ПАВ адсорбируются на поверхности частиц асфальтенов, образуя сильно развитые сольватные оболочки. Адсорбция ПАВ частицами асфальтенов сопровождается разрушением агрегатов частиц, т.е. пептизацией асфальтенов. Увеличение сольватации асфальтеновых частиц, как известно, обусловливает ослабление взаимодействия между ними, т.е. уменьшение структурообразования в нефти. [c.19]

    Совершенно другие процессы будут проходить при повышении температуры до уровня, когда в смеси углеводородов будут протекать химические реакции уплотнения углеводородов. При пониженных температурах в изменениях свойств и состава смеси углеводородов основную роль играют слабые межмолекулярные взаимодействия. При повышенных температурах слабые межмолекулярные взаимодействия играют важную роль в создании благоприятной ситуации для химического превращения веществ. При этом слабые межмолекулярные взаимодействия способствуют ориентации молекул друг относительно друга, снижают или повышают степень сольватации, определяют полиэдрическое строение флуктуаций молекул и т.п. [c.62]

    В отличие от мономеров, теплота растворения полимеров в основном обязана энтальпии сольватации АЯс, которая происходит в начальный период растворения, во время контракции. Последующее протекает уже почти без изменения энтальпии системы. А энтальпия сольватации, как правило, отрицательна (АЯс < 0). поэтому растворение полимеров, в основном, экзотермический процесс. Лишь некоторые случаи растворения неполярных полимеров в неполярных растворителях эндотермичны. Например, при растворении каучука в толуоле АЯр > 0. [c.297]

    Сольватация вносит значительный вклад в свободную энтальпию процесса растворения. Наблюдаются существенные различия в специфическом взаимодействии растворителя и растворенной частицы. Электрофильные частицы, например катионы, сольватируются преимущественно ДПЭ-растворителями. Вследствие присоединения молекул растворителя значительно увеличивается эффективный ионный радиус. Так, например, в диметилсульфоксиде размеры сольватированного иона лития. достигают размеров иона тетрабутиламмония. Основные центры молекул растворителя (атомы О, N или 5) в сольватной оболочке ориентированы к иону металла. Связь имеет характер [c.448]


    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    Как правило, при смене растворителя, в котором проводится реакция, ее равновесие смещается. Причина этого в основном состоит в том, что сольватация исходных веществ и продуктов реакции в различных растворителях происходит по-разному. Для проведения реакции наиболее удобно использовать такой растворитель, в котором равновесный выход продуктов реакции будет наибольшим. Это особенно выгодно, если изменение свободной энтальпий сольватации Л2< 0 достаточно велико по абсолютному значению, т. е. сольватация обеспечивает устойчивость продуктов реакции. [c.452]

    Для решения некоторых задач неорганического синтеза большое значение имеют среды с сильноосновными свойствами. В водной среде невозможно создать основность большую, чем та, которую имеют гидратированные ионы 0Н , —/Сь = 55,3 (разд. 33.4.1.5). Гидратированные ионы 0Н сильно отличаются по степени основности от свободных ионов ОН . Стабилизированная водородными мостиками гидратная оболочка экранирует свободную пару электронов гидроксид-иона, в то же время для свободного иона ОН" (/Сь 10 ) способность к присоединению протона возрастает на несколько порядков. Применение в качестве среды дипольных апротонных растворителей, в которых невозможна сольватация анионов, позволяет проявиться сильноосновным свойствам свободного иона 0Н . [c.458]

    Сам процесс пептизации в основном обусловливается адсорбционными явлениями, в результате которых происходит не только повышение дзета-потенциала дисперсных частиц, но и увеличение степени их сольватации (гидратации). Сообщение скоагулированным частицам дисперсной фазы золя заряда способствует, с одной стороны, общему разрыхлению осадка, с другой — переводу этих частиц во взвешенное состояние благодаря броуновскому движению. При этом происходит образование вокруг диспергируемых частиц сольватных (гидратных) оболочек, производящих свое расклинивающее действие. Ниже сопоставлены процессы пептизации и коагуляции. [c.376]

    Реакционный комплекс иногда называют комплексом столкновения, однако совершенно очевидно, что простого столкновения далеко недостаточно для образования структуры, в которой возможен перенос протона. Работа W , которую необходимо затратить для образования реакционного комплекса, представляет собой по существу ту часть А на, которая не зависит от изменений р/СанА. Величина Ц/ , необходимая для переноса протона с членов гомологического ряда кислородных кислот на один и тот же субстрат, согласно предположению, определяется потерями энтропии при фиксации молекулы кислоты и свободной энергией ее десольватации. Свободная энергия десольватации третичных аминов практически не коррелирует с их основностью. Сольватация аминов обусловлена главным образом ван-дерваальсовскими взаимодействиями, которые играют заметную роль и при сольватации ионов, поэтому разумно предположить, что свободная энергия десольватации аммониевых солей также никак не связана с их кислотными свойствами. Было показано, что даже прочность водородных связей лишь слабо коррелирует с силой кислот. Таким образом, в ряду родственных кислот [c.133]

    Наряду с основностью, сольватацией и, возможно, поляризуемостью к объяснению нуклеофильных свойств следует привлечь некоторые дополнительные факторы. В реакциях нуклеофильного замещения у положительных центров (т. е. в реакциях с участием сложных эфиров, нитрилов, тетраэдрического фосфора и активированных двойных связей), для которых основность играет важную роль на лимитирующей стадии, определяющей скорость процесса, некоторые нуклеофилы, такие, как гидроксиламнн, гидразин, гидроксамовые кислоты, Ы-оксифтал-имид, изонитрозоацетон, анионы перекисей и перекись водорода, гипохлорит-ион и анионы оксимов, обнаруживают повышенную реакционную способность. Из рис. 1-8 видно, что для некоторых из этих оснований наблюдаются завышенные значения констант скоростей каталитического гидролиза п-нитрофенилацетата. Эти нуклеофилы принадлежат к группе соединений, имеющих непо-деленные пары электронов у атома, находящегося в -положении по отношению к нуклеофилу [c.54]

    В результате изучения кинетики структурообразования в низкоконцентрированных суспензиях бентонитовых глин Дерягин и Яшин [291] пришли к выводу о возможности фиксации дисперсных частиц на дальних расстояниях. Джонсон, Гольдфарб и Пефика [292] при исследовании агрегации (фло-куляции) золей арахиновой кислоты и октадеканола получили значение А, намного отличающееся в некоторых случаях от теоретического. Это расхождение авторы объясняют, в основном, сольватацией, а также возможным действием неучитываемых теорией сил изображения. При этом из результатов некоторых опытов был сделан вывод о фиксации частиц во вторичном минимуме, в то время как его расчетная величина ( 1 кТ) считалась для этого недостаточной. Однако авторы этой и некоторых других работ [169, 182, 183, 233] не учитывают того, что в агрегатах (флокулах) происходит коллективное взаимодействие частиц, при котором глубина вторичного минимума должна быть значительно больше, чем в случае парного взаимодействия (см. Приложение X). [c.61]

    Очевидно, что и другие факторы, например основность, сольватация ионов, присутствие кислот Льюиса в случае гидридов и т. д., могут играть роль в некоторых или во всех этих случаях (см. также работу [254]). Однако на значение пространственных факторов указывает то, что такие двувторичные эпокиси, как 1,2-эпокситетралин (6) [255] и различные замещенные в кольце окиси р-метилстиролов (7) [256] , атакуются исключительно в бензильное положение. [c.112]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Электрохимия является разделом физической химии, в котором изучаются законы взаимодействия и взаимосвязи химических и электрических явлений. Основным предметом электрохимии являются процессы, протекающие на электродах при прохождении тока через растворы (так называемые электродные процессы). Можно выделить два основных раздела электрохимии термодинамику электродных процессов, охватывающую равновесные состояния систем электрод — раствор, и кинетику электродных процессов, изучающую законы протекания этих процессов во времени. Однако электрохимия изучает не только электродные процессы. В этот раздел физической химии нередко включанэт также теорию электролитов, при этом изучаются не только свойства электролитов, связанные с прохождением тока (электропроводность и др.), но и другие свойства электролитов (вязкость, сольватация, химические равновесия и др.). Теорию электролитов можно также рассматривать как часть общего учелия о растворах, однако в настоящем курсе она включена в раздел электрохимии. [c.383]

    В предыдущих главах были рассмотрены равнове ные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры — обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равнопесие характеризуется отсутствием электрического тока. [c.605]

    Другой важной характеристикой растворителя в теории Бремстеда является сродство к протону. Сродство к протону определяется энергией, которая выделяется при сольватации протона в данном растворителе. Чем больше протонное сродство, тем сильнее В1з1ражены основные свойства растворителя. [c.246]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Сольватация частиц лиофобных золей в основном обусловлена наличием у них заряда подобно тому, как в растворах электролитов заряд ионов является одной из основных причин их сольватации. При этом ббльша величина заряда частиц приводит к более сильной поляризации связываемых молекул и соответствующему изменению других свойств их. В водных растворах такие дополнительно поляризованные молекулы воды способны сильнее связывать другие молекулы воды, в некоторой степени усиливая и их поляризацию. Конечно, сольватация зависит не только от зарядов частицы, но и от их химического состава.  [c.518]

    Различие в теплотах сольватации (или адсорбции) карбоний-ионов при использовании различных катализаторов должно приводить к существенному изменению соотношения тепловых эффектов реакций данного карбоний-иона и разных карбоний-ионов в данной реакции. Свойства карбоний-иона, находящегося в паре с про-тивоионом, могут, по-видимому, сильно зависеть от свойств аниона. В системе М---Н---А в зависимости от соотношения основностей (сродства к протону) М и А" локализация протона может быть различной, что должно отражаться на свойствах карбоний-иона. [c.171]

    Теплота растворения твердого соединения с ионной кристаллической решеткой определяется в основном суммой двух величин теплоты Разрушения кристаллической решетки и теплоты сольватации ионов молекулами растворителя. В связи с тем, что на разрушение кристалла теплота затрачивается, а процесс сольватации сопровождается выделением 7еплоты, знак теплоты растворения может оказаться как положительным, так и отрицательным в зависимости от того, какое из двух слагаемых больше по абсолютной величине. Например, при растворении 1 моль u l -SHaO в 8 моль [c.93]

    При переходе от 5%-ной концентрации к 100%-пой, т. е. при увеличении молярности в 36 раз, протонирующая сила серной кислоты изменяется на И порядков. Наибольшее изменение происходит в интервале от 90%-ной концентрации до 100%-ной (на три порядка). Сравнительно низкая сульфирующая способность 86%-ной серной кислоты по отношению к сульфидам и кислородным соединениям нефтепродуктов позволяет использовать эту кислоту для их извлечения без изменения структуры. Это объясняется следующим. В водном растворе серной кислоты вода играет роль достаточно сильного основания. Ее эквимо.тьная смесь с серной кислотой образует бисульфат гидроксония. Для такой смеси функция кислотности — Яо равна примерно 7,5. Однако истинную основность воды установить трудно, поскольку с изменением концентрации растворов серной кислоты относительное содержание различных агрегатов свободной воды также изменяется — образуются ионы гидроксония от Н9О4 (в разбавленных растворах) до НдО" (в наиболее концентрированных растворах, в которых количество свободной воды для сольватации мало). [c.229]


Смотреть страницы где упоминается термин Основность и сольватациям: [c.132]    [c.132]    [c.132]    [c.238]    [c.254]    [c.57]    [c.498]    [c.446]    [c.307]    [c.71]    [c.142]    [c.161]    [c.137]    [c.208]    [c.208]    [c.91]   
Смотреть главы в:

Общая органическая химия Том 2 -> Основность и сольватациям




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2024 chem21.info Реклама на сайте