Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определения по току при контролируемом потенциале

    При проведении обычных электрогравиметрических определений ячейку для электролиза подключают к источнику напряжения (аккумулятору и потенциометру) и поддерживают определенное напряжение или силу тока. Падение напряжения в электролите и анодное перенапряжение, величина которого зависит от плотности тока, действуют таким образом, что напряжение электролиза не однозначно определяет потенциал рабочего электрода, от которого, собственно, зависит протекание желаемой электрохимической реакции. Поэтому при процессах разделения полезно контролировать потенциал рабочего электрода и устанавливать его, регулируя приложенное [c.148]


    В предыдущем разделе этой главы мы пришли к выводу, что электролиз при постоянном внешнем напряжении или при постоянной силе тока не является селективным аналитическим методом. Это связано с тем, что при изменении потенциала катода или анода, на котором происходит необходимая реакция, могут протекать побочные процессы. Однако контролируя потенциал анода или катода так, чтобы происходила только нужная реакция, и зная как влияет состав раствора на стандартные или реальные потенциалы полуреакций, можно достичь высокой специфичности в электрохимических определениях и отделениях. В этом и заключается принцип кулонометрии при контролируемом потенциале. [c.420]

    Для определения значений фкр используют принципиально ту же аппаратуру, что и для определения электродных потенциалов, но вместо измерения плотности тока контролируют скорость осаждения радиоактивного изотона на электроде. На основании результатов, полученных за одни и те же промежутки времени, но при разных потенциалах, строят график зависимости скорости осаждения от потенциала электрода, и по нему находят фкр (рис. 58). [c.153]

    Для улучшения методики можно использовать потенциостат. Этот прибор позволяет контролировать потенциал катода в электролитической ячейке относительно электрода сравнения. На рис. 17-1 дана схема потенциостата на операционных усилителях. Как показывает сравнение этого рисунка с рис. 16-11, потенциостат имеет много общего с полярографом. Поскольку в данном случае нужно обеспечить постоянство потенциала, генератор линейно нарастающего потенциала заменяют регулируемым источником напряжения. Если необходим более высокий ток, чем тот, который может давать обычный операционный усилитель, в цепь обратной связи усилителя 1 (управляющего усилителя) вводят дополнительный усилитель мощности. Преобразователь ток — напряжение (усилитель 2) должен быть способен вырабатывать тот же самый ток, и поэтому он также должен иметь усилитель мощности. Если прибор используют для гравиметрического определения выделенного металла, то рабочий электрод можно заземлить, убрав усилитель 2 и самописец. [c.365]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    Предельный ток волны восстановления ионов водорода является функцией концентрации катализатора. Поэтому такие волны используются для определения ультрамалых количеств (до МО моль/л) неорганических и органических соединений. Однако необходимо тщательно контролировать условия эксперимента, поскольку зависит от потенциала и в большинстве случаев волна имеет вид полярограммы с максимумом. С увеличением концентрации катализатора iy стремится к предельному значению. Кроме того, /кат зависит от pH, проходя через максимум, положение которого совпадает с рК органического соединения, и от буферной емкости раствора. [c.450]

    В кулонометрическом титровании, которое проводится при постоянной силе тока, не удается строго контролировать величину потенциала электрода, при котором протекает электрохимическая реакция. В результате происходит смещение этой величины, вследствие чего возникает возможность параллельного протекания побочных электродных процессов. Это приводит к уменьшению выхода по току изучаемой реакции и несколько снижает точность кулонометрического определения. [c.155]

    Было предложено много способов использования поляризационных кривых для определения скорости коррозии. Наиболее простой из них — метод экстраполяции поляризационной кривой до стационарного потенциала. Если скорость электродного процесса контролируется скоростью электрохимической реакции, например скоростью разряда ионов водорода или ионизации металла, то в полулогарифмических координатах зависимость потенциала от логарифма плотности тока выражается прямой линией. Экстраполируя эти прямые до значения стационарного потенциала, т. е. потенциала металла при отсутствии внешнего тока, получают значение тока коррозии. Так, например, получив поляризационные кривые для одного и того же металла в двух разных электролитах (/ и 2), можно с достаточным основанием утвер- [c.145]

    Определение стационарного потенциала образца после активирования. По катодному вольтметру определяют после трехминутной выдержки стационарный потенциал образца после активирования. Правильность полученного значения стационарного потенциала образца контролируют следующим образом на лимбах /2 блока 5 устанавливают значение стационарного потенциала после активирования, а переключатель установка нуля — потенциал — ячейка откл. — ток ставят в [c.127]

    Для электрохимических методов анализа применяют кондукто-метрические, потенциометрические, полярографические, кулонометрические установки. Они устанавливаются в специальной хорошо вентилируемой комнате с постоянной температурой. Большинство данных приборов чувствительны к сотрясениям и поэтому их следует по возможности устанавливать на капитальных стенах или на антивибрационных подставках. Для потенциометрических титрований, определения pH используют потенциометры, питаемые от аккумуляторов, или потенциометры, питающиеся непосредственно от сети. Такие же потенциометры используются для электротехнических измерений калибровки вольтметров, градуировки и проверки термопар и т. п. Для кондуктометрического анализа и высокочастотных титрований отечественная приборостроительная промышленность выпускает специальные установки. Для определения ионов металлов электролизом или амперметрическим титрованием используется универсальная установка, схема которой приведена на рис. 38. От источника постоянного напряжения 1 ток поступает на делитель напряжения 2, откуда необходимое напряжение подается на ячейку 5. Ток в цепи регулируется реостатом 3 и контролируется миллиамперметром 4. Напряжение на электродах замеряется вольтметром 6. Потенциалы катода и анода определяются при помощи дополнительного каломельного электрода и потенциометра. Для исследования измерений потенциала и силы тока в системе используются потенциостаты, которые позволяют непрерывно измерять ток в зависимости от изменяющегося потенциала и измерять ток во времени при постоянном потенциале. Для амперометрического титрования приборостроительная промышленность выпускает портативные и простые установки. [c.110]

    Ранее было показано, что при определенном значении налагаемого напряжения на электроды можно практически занершить выделение металла в процессе электролиза. Различные значения потенциалов разложения у разных ионов металлов позволяют при соответствующем выборе налагаемого напряжения определять их в смеси. Однако в процессе электролиза, как было показано ранее, э. д. с. образуемой системы постепенно возрастает, и по мере уменьшения потенциала катода может наступить момент, когда потенциал катода станет настолько низким, что начнется выделение второго компонента смеси. Для того чтобы избежать этого явления, необходимо строго контролировать потенциал катода и поддерживать его значение, отвечающим количественному выделеннк более электроположительного катиона. При этом в конце процесса электролиза ток падает практически до нуля, что и является критерием завершения электролиза данного катиона. Далее, изменяя потенциал электрода до значения, необ.ко-димого для количественного выделения второго, более электроотрицательного компонента, можно осуществить и это определение и т. д. Для проведения электролиза с контролируемым потенциалом служат так называемые потенцио-статы — приборы, поддерживающие строго заданные потенциалы катода или анода. Электролиз с контролируемым потенциалом обеспечивает большую селективность электрогравиметрического метода анализа, позволяет проводить разделение и последовательное определение ионов с близкими потенциалами разло жеиия Метод этот пригоден и для определения весьма малых количеств веществ. [c.439]


    Кулонометрический анализ при постоянной силе тока. В большинстве сл5Д1аев при кулонометрическом определении можно менять (контролировать) ток или потенциал электрода один независимо от другого. Выбор независимого параметра определяется характером аналитической методики или имеющимся оборудованием. [c.737]

    Кулонометрические методы могут быть прямыми — когда определяемое вещество электролитически осаждается на электроде (снимается с него) или же окисляется (восстанавливается) непосредственно па электроде и затем удаляется с него в массу анализируемого раствора. Они могут быть косвенными — когда на рабочем электроде генерируется какой-либо промежуточный компонент, количественно реагирующий с определяемым веществом. В первом из указанных вариантов обычно контролируют потенциал рабочего (генераторного) электрода, во втором — силу тока, проходящего через электролитическую ячейку. По этой причине методы кулонометрического анализа разделяют на две большие группы — кулонометрию при контролируемом потенциале и куло-нометрию при постоянной силе тока (кулонометрические титрования). Оба варианта, имеющие одну и ту же принципиальную основу, различаются по аппаратурному оформлению, технике определений и в некоторых случаях но достигаемой точности. В обзоре (главы II—IV) результатов работ по кулонометрическому методу анализа, опубликованных в зарубежной и отечественной литературе, все описанные методы группируются по указанным выше признакам. [c.4]

    Допустим, требуется определить количество иона Сс1(ЫНз)Г в 1 Р растворе аммиака по выделению кадмия на платиновом катоде при потенциале Ек равном —0,88 В относительно НВЭ (см. кривую А на рис. 12-6). В процессе восстановления Сс1(ЫНз) омическое падение потенциала уменьшается почти до нуля, так как при контролируемом потенциале ток электролиза убывает по экспоненциальному закону. Более того, уменьшение тока вызывает уменьшение активационного сверхпотенциала выделения кислорода на аноде, таким образом а становится менее положительным. Поэтому, чтобы потенциал катода оставался постоянным, общее наложенное напряжение должно постоянно уменьшаться в процессе электролиза. Для кулонометричеких определений при контролируемом потенциале в настоящее время пригоден любой из выпускаемых промышленностью потенциостатов, которые автоматически контролируют потенциал рабочего электрода и регулируют наложенное напряжение таким образом, чтобы поддержать потенциал при предварительно выбранном значении. Поскольку потен-циостаты — довольно сложные приборы, то большинство коммерческих моделей стоят от одной до двух тысяч долларов. [c.427]

    Однако полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии может в результате поляризации или других факторов произойти изменение знака потенциала покрытия. Например, алюминиевое покрытие, которое вначале было анодным, может запассивироваться и стать катодным. Поэтому представляет большой интерес для оценки эффективности защитных свойств покрытий определение контактных токов, возникающих между металлом основы и покрытием. Для этого И. Л. Розенфельд и Л. В. Фролова предложили метод, по которому, сравнивая потенциалы отдельных электродов и потенциал системы, который будет находиться в промежутке между ними, можно судить о характере поляризации электродов, контролирующем факторе коррозии, а также пористости системы. [c.74]

    После детального изучения этого вопроса Коци и сотр. [19] описали несколько методов очистки данного растворителя. Для общих целей ими рекомендована следующая процедура растворитель в течение 2 дней перемешивается в контакте с гидридом кальция (10 г/л), после чего декантируется и подвергается фракционной перегонке с Р2О5 (5 г/л). Образующийся продукт в течение нескольких часов нагревается с обратным холодильником над гидридом кальция (5 г/л), а затем подвергается медленной фракционной перегонке. Качество получающегося продукта контролируется в первую очередь при помощи постоянноточной полярографии (для определения ненасыщенных нитрилов), а затем титрованием по методу Фишера на содержание воды. При полярографии этого продукта на капельном ртутном электроде (КРЭ) с использованием фонового электролита ПТЭА возникают очень низкие остаточные токи вплоть до потенциала -2,8 В по НКЭ, что сравнимо с лучшими данными, найденными другими авторами (табл. 2). [c.9]

    Следует заметить, что при выполнении электрогравиметриче-ских определений падение напряжения в электролите и анодное перенапряжение, величина которого зависит от плотности тока, действуют таким образом, что напряжение электролиза не однозначно определяет потенциал рабочего электрода. Поэтому при электрохимическом разделении металлов потенциал рабочего электрода необходимо контролировать. Это можно осуществить, применяя в качестве третьего электрода электрод сравнения. [c.547]

    Для электролитического разделения никеля и кобальта с одновременным определением обоих металлов применяют [994] ртутный катод. Электролитом служит 1 ЬЛ раствор пиридина в смеси с 0,5 М раствором хлорида калия, содержащий 0,2 М сз льфат гидразина. При электролизе контролируют величину катодного потенциала никель выделяется при —0,95 в (по отношению к насыщенному каломельному электроду), а кобальт— при —1,2 в. Количество обоих металлов определяют кулонометрически, применяя водородно-кислородный или весовой серебряный кулонометры или электромеханический интегратор тока. [c.92]

    Как уже отмечалось, в кулонометрии при контролируемом потенциале определяемое вещество, как правило, претерпевает электрохимическую реакцию непосредственно на поверхности рабочего электрода, потенциал которого сохраняется постоянным. Одпако кулонометрические определения можно вести иначе, — контролируя не потенциал рабочего электрода, а силу тока, протекающего через электролитическую ячейку. При этом в электролит добавляют вещество, из которого электрохимически получается некоторый промежуточный компонент, способный сравнительно быстро и стехиометрически реагировать с определяемым веществом или ионом. Например, если в электролит введены бромистый кэлий и 8-оксихинолин (или какое-нибудь другое соединение, вступающее в реакцию с бромом), то при пропускании через ячейку постоянного тока па аноде будут окисляться бромид-ионы с образованием элементарного брома. Последний, естественно, вступит во взаимодействие с 8-оксихинолином и в результате в ячейке свободный бром не будет накопляться до тех пор, пока весь 8-оксихинолин не прореагирует с бромом. Таким образом, получается картина, сходная с обычным титри-метрическим определением, с той разницей, что титрующее вещество (титрант) получают в ходе самого титрования. По этой нри-чипе такой вариант кулонометрического анализа обычно называют кулонометрическим титрованием. Электрод, на котором получают (генерируют) титрант, называют рабочим генераторным электродом, а ток, служащий непосредственно для генерирования титранта, называют генераторным током. Титрант, получаемый в ходе титрования, называют электрогенерированным, а реагент, из которого этот титрант получают, иногда называют генерируемым реагентом. [c.30]

    Электролитическое восстановление можно проводить на катодах, потенциалы которых поддерживаются постоянными. В такой системе количество тока и, следовательно, пJютнo ть тока зависят от скорости диффузии органического соединения в направлении катода и от скорости принятия им электронов на катоде при условии, что подвергаемое восстановлению соединение служит деполяризатором (см. стр. 316). При проведении частичного восстановления (см. конец табл. 89, стр. 412) имеет смысл контролировать восстановительный потенциал, особенно в том случае, когда потенциалы восстановления достаточно близки между собой. Если проводить электролитическое восстановление деполяризатора при определенном потенциале или осуществлять электролиз просто без регулировки тока, то по мере расходования деполяризатора ток, проходящий через раствор, и, следовательно, плотность тока гюстепепно уменьшаются, в результате чего повышается эффективность восстановления (см. табл. 78, стр. 391 и табл. 95, стр. 417) [328—330, 332, 445]. [c.329]

    Определение электродного потенциала металла необходимо для изучения механизма электрохимической коррозии. По значению потенциала металла можно установить контролирующий фактор коррозионного процесса, что позволяет найти наиболее рациональные пути борьбы с разрушением металла. Контролирующим фактором называется наиболее заторможенная ступень коррозиоииого процесса, слагающегося из анодной реакции ионизации металла (61), катодной реакции ассимиляции электрона (74) и процесса протекания тока в металле и электролите. В нейтральных средах наиболее распространенной катодной реакцией является ионизация кислорода воздуха, растворенного в электролите (66). [c.54]

    В определенный момент времени, приблизительно через 2 сек после начала образования каждой капли, капельный ртутный электрод поляризуется прямоугольным импульсом напряжения длительностью -/25 сек, который накладывается на постоянный потенциал. Контролируя период капания ударным устройством, добиваются того, что эта поляризация всегда приходится на одну и ту же величину поверхности. Амплитуда импульса медленно возрастает от капли к капле, и в этом смысле импульсная полярограм-ма подобна по размеру и форме классической полярограмме, полученной на постоянном токе (рис. 1). Компонент тока, связанный с постоянным потенциалом, не измеряется, так как он отсекается фильтром. Регистрируется только среднее значение тока, вызванное импульсом напряжения. Поляризующий импульс вызывает соответствующий компонент емкостного тока 1с, но, к счастью, с экспоненциально затухает во времени. Это открывает возмож- [c.97]

    Кристаллы никеля были вырезаны из монокристаллических стержней, выращенных из карбонила никеля или никеля Niva методом Бриджмена. Кристаллы сначала были вырезаны в виде шаров с выступом с одной стороны для их крепления, а затем были подвергнуты электролитическому травлению, так что местоположение определенных граней могло быть установлено по симметрии протравленного образца. Далее грани были обработаны параллельно плоскостям (100) и (110) на одном кристалле и параллельно плоскостям (111) и (321)—на другом кристалле. Для уменьшения разрушений кристаллической решетки делали неглубокие срезы при помощи токарного станка. Затем поверхность вновь протравливали и ее ориентацию контролировали по дифракции рентгеновских лучей. Окончательные отклонения в ориентации граней не превышали 2°. Плоские поверхности были затем механически отполированы металлографической наждачной бумагой и притерты с применением отмученной окиси алюминия. Далее кристалл подвергался электролитической полировке в 70%-ной серной кислоте. Так как во избежание питтинга было необходимо быстрое -перемешивание содержимого гальванической ванны, оказалось желательны.м медленное вращение кристалла (8 об/мин), которое предотвращало неодинаковые электролитические эффекты на разных частях кристалла. Полированный кристалл промывали дистиллированной водой и затем очищали при помощи тлеющего разряда в водороде. При этой операции кристалл помещали в камеру с водородом при давлении 0,5 мм рт. ст., к которой был приложен отрицательный потенциал 400—800 в относительно никелевого электрода на расстоянии около 5 см. При таких условиях между кристаллом и электродом проходил ток 4—6 ма и вещество разбрызгивалось от поверхности кристалла. После этого кристаллу давали охладиться и переносили его в реакционный сосуд. Хотя указанная обработка в разряде не приводила к изменениям поверхности, которые могли бы быть обнаружены оптическим микроскопом, все же при исследовании этой поверхности электронографическим методом обнаружена ее значительная шероховатость. Затем кристалл был нагрет в атмосфере водорода при 500°. Несмотря на то, что эта температура лежит намного ниже температуры, указанной для быстрого отжига никеля, дифракция электронов показала, что после такого на- [c.38]

    Как уже отмечалось, в кулонометрическом анализе при контролируемом потенциале определяемое вещество, как правило, претерпевает электрохимическую реакцию непосредственно на поверхности рабочего электрода, потенциал которого сохраняется постоянным. Однако кулонометрические определения можно вести иначе, — контролируя не потенциал рабочего электрода, а силу тока, протекающего через электролитическую ячейку. При этом в электролит добавляют вещество, из которого электрохимически получается некоторый промежуточный компонент, способный сравнительно быстро и стехиометрически реагировать с определяемым веществом или ионом. Например, если в электролит введены бромид калия и 8-оксихинолин (или какое-нибудь другое соединение, вступающее в реакцию с бромом), то при пропускании через ячейку постоянного тока на аноде будут окисляться бромид-ионы с образованием элементарного брома. Последний, естественно, вступит во взаимодействие с 8-оксихинолином и в результате в ячейке свободный бром не будет накопляться до тех пор, пока весь 8-оксихинолин не прореагирует с бромом. [c.35]

    Ниже приводится методика кулонометрического титрования /г-хинондиоксима, пригодная также для определения других диоксимов и органических соединений, восстанавливающихся трехвалентным титаном. Определение проводят на установке, схема которой показана на рис. 9, с использованием описанной выше ячейки (рис. 11). В качестве генераторного катода служит поверхность ртути площадью 7 см , налитой в чашечку диаметром - -3 см генераторный анод — платиновая спираль. Ход кулонометрического титрования контролируют биамперометрически, налагая на индикаторные электроды потенциал порядка 67 мв. В качестве электролита для катодной камеры используют раствор, приготовленный разбавлением 100 жл Ti U до 250 мл дистиллированной водой. Электролитом в анодной камере служит 0,1 н. раствор НС1. В титрационную ячейку вносят 15,0 мл приготовленного указанным образом раствора ( 3,6 М по Ti 4 и 7,4 М по НС1), добавляют туда же 40—50 мл 2,8 н. раствора H2SO4, а затем дистиллированную воду до общего объема 120 мл. После этого продувают раствор током очищенного азота (10— ХЪмин), размешивая электролит с помощью магнитной мешалки, приливают аликвотную порцию спиртового раствора пробы, содержащую 1—3 мг л-хинондиоксима, и титруют электрогенерированным титаном также при энергичном размешивании раствора. Титрование проводят при силе генераторного тока 25—40 или 10 ма. В первом случае титрование ведут с перерывами генерирования через каждые 50—60 сек (вблизи конечной точки чаще), после каждого прекращения генерирования раствор размешивают 1—2 мин, замеряют силу индикаторного тока и продолжают титрование. Во втором случае (малая скорость генерирования титана) титрование ведут непрерывно, контролируя силу индикаторного тока через равные промежутки времени (30 сек). Титрования проводят при комнатной температуре и непрерывном продувании электролита током азота. [c.82]

    Затем производят подготовку рабочей поверхности микродискового электрода. Оиа состоит в последовательном шлифовании его торца на все более тонких абразивных шкурках. Заключительную стадию, полировку микроэлектрода, целесообразно проводить на фетре с использованием порошка плазменной двуокиси циркония. Качество подготовки рабочей поверхности контролируется при помощи микроскопа. Видимая поверхность микродискового электрода должна иметь форму круглого диска без каверн и пустот по его периметру. По окончании полировки микроэлектрод тщательно промывается в четыреххлористом углероде и спирте. Эта операция производится для удаления с рабочей поверхности электрода загрязнений, могущих привести к изменению перенапряжения восстановления кислорода и снижению величины предельного тока. Поэтому на первом этапе работы необходимо проверить микродис-ковый электрод и выбрать потенциал, при котором в дальнейшем будет проводиться определение фотоиндуциро-ванного выделения кислорода. [c.213]

    Ацетилзависимый канал имеет несколько дискретных альтернативных конформаций и в присутствии лиганда переходит из одного состояния в другой, внезапно открываясь или закрываясь. Связав ацетилхолин и перейдя в открытое состояние, канал остается в течение некоторого времени открытым это время варьирует и составляет в среднем 1 мс. Ток через канал создают в основном ионы Ка и а также некоторое количество ионов Са " . При этом мембранный потенциал резко снижается. Когда деполяризация достигает определенного уровня, возникает ПД, вызывающий открывание потенциалзависимых ионных каналов. ПД распространяется в виде электрического импульса по мембране. Ионы Ка" , К" ", и Mg Б качестве регуляторов и вторичных посредников оказывают решающее влияние на эффективность процессов обмена. Превращение энергии, образование АТФ и потребление АТФ контролируется соответствующими ионами. [c.55]


Смотреть страницы где упоминается термин Определения по току при контролируемом потенциале: [c.110]    [c.59]    [c.18]    [c.63]    [c.110]    [c.320]    [c.281]    [c.385]   
Смотреть главы в:

Электрохимические методы анализа неорганических веществ в водных растворах -> Определения по току при контролируемом потенциале




ПОИСК





Смотрите так же термины и статьи:

Потенциал определение



© 2025 chem21.info Реклама на сайте