Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика и макрокинетика реакции

    Следовательно, при переходе от лабораторных исследований, начало которым было положено Фростом [16— 19], к крупнотоннажному производству необходимо изучение процесса на пилотных установках при искусственном наложении отдельных осложнений или их комплекса. Углубленное изучение характера протекания реакций при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследования прикладной макрокинетики [14]. В лабораториях обычно исследуют истинную кинетику или микрокинетику. Существуют другие названия макрокинетики химико-технологическая кинетика [20], промышленная кинетика [21, 22], динамика промышленных процессов [4], кинетика каталитических реакций с массо- и теплопередачей [23, 24], инженерная химия [22] и просто макрокинетика [25]. [c.139]


    Химические (реакционные) процессы, которые протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций подчиняется законам макрокинетики и определяется наиболее медленным из последовательно протекающих химического взаимодействия и диффузии. Общие закономерности протекания химических процессов и принципы устройства реакторов рассматриваются в специальной литературе .  [c.13]

    Кинетический анализ должен включать не только анализ закономерностей химических реакций, но и анализ процессов переноса вещества и теплоты в изучаемой системе. Исследования такого рода составляют предмет макроскопической кинетики — макрокинетики. [c.157]

    Макрокинетика процессов в пористых электродах. Кинетика электрохимических реакций в пористых электродах [c.39]

    Если процессы катализа рассматриваются применительно к производственной практике, то используют термин промышленный катализ . В теории катализа описывается механизм и кинетика каталитических реакций на молекулярном и ионном уровне (микроуровне), в промышленном же катализе, который здесь излагается, изучается макрокинетика, т. е. кинетика каталитических процессов, включаюш,их собственно химическую реакцию -И стадии подвода реагентов в зону реакции и отвода продуктов (диффузионные процессы). [c.19]

    Развитие кинетики гетерогенно-каталитических реакций неразрывно связано с именами А. А. Баландина, С. 3. Рогинского, М. И. Темкина, Г. К. Борескова, А. В. Фроста, Н. И. Кобозева и многих других. Новые идеи этих ученых разрабатывались не только их учениками и сотрудниками в нашей стране, но и рядом зарубежных ученых. Следует отметить, что поворотным пунктом на пути создания современной кинетики гетерогенных реакций послужили первые работы А. А. Баландина (1928—1929) по кинетике таких реакций в потоке. Теория процессов на неоднородных поверхностях разработана С. 3. Рогинским. Кинетика реакций в твердой фазе разрабатывалась у нас в связи с проблемами катализа С. 3. Рогинским, Б. В. Ерофеевым и их сотрудниками. Проблемы макрокинетики в катализе широко представлены в работах [c.8]

    Таким образом, сочетание диффузии внутри зерна катализатора с химической реакцией па его внутренней поверхности приводит к возникновению градиента давления внутри катализатора и, как следствие этого, к появлению конвективного переноса реагентов. Насколько значительным является вклад конвективного потока по сравнению с диффузионным, можно выяснить, решая уравнения (1Х.42) и (IX.44) совместно с уравнением, описывающим кинетику химической реакции на поверхности катализатора. Эффективный коэффициент диффузии является сложной величиной, зависящей от состава реакционной смеси в каждом сечении зерна и от параметров, характеризующих строение структуры. При изучении макрокинетики конкретных каталитических решений возможные упрощения функциональной структуры эффективного коэффициента диффузии (IX.46) можно сделать на основе анализа исследуемой задачи. [c.170]


    Рассмотрение особенностей макрокинетики реакции окисления железа водой показало, что реакция протекает в кинетической области. В следующих главах мы встретимся с более сложной макрокинетической обстановкой , при которой наблюдаемая кинетика топохимической реакции осложняется влиянием стадий переноса вещества как в газовой, так и в твердой фазе. [c.131]

    Книга содержит подробный анализ кинетики и макрокинетики химических реакций, протекающих с участием твердых веществ. В монографии рассмотрены кинетические особенности эти реакций, дан анализ существующих методов расчета их кинетики и предложены оригинальные методы определения кинетических параметров. Рассмотрена роль процессов переноса и способы их учета при описании кинетики топохимических реакций. Приведены расчеты теоретических моделей и экспериментальных данных по кинетике окисления и карбидирования железа и других химических реакций. [c.2]

    Материал книги делится на две части. Первая из них (главы 1—4) посвящена теории кинетики и макрокинетики топохимических реакций. Во второй части на конкретных примерах рассматривается применение теоретических положений к исследованию кинетики топохимических реакций. Специфика рассматриваемых конкретных процессов позволила обсудить как [c.7]

    При исследовании кинетики реакций термического разложения получил распространение так называемый весовой метод, при котором навеска твердого реагента изотермически разлагается (при непрерывном или систематическом взвешивании) в замкнутом объеме или при откачке. Недостатки этого метода обусловлены переменным составом газа (реакция в замкнутом объеме) и большим градиентом концентрации газообразных продуктов реакции (особенно реакция в вакууме). В связи с этим, если скорость реакции зависит от концентрации газообразных компонентов реакционной смеси, весовой метод обычно не дает надежных результатов. Если можно обеспечить постоянство (во времени) концентраций газообразных участников реакции в реакционной зоне, то весовой метод можно применять как один из интегральных методов в соответствующей системе (открытой, замкнутой). Во всех случаях должна быть тщательно изучена макрокинетика реакции. [c.36]

    Гетерогенные реакции обычно локализуются в некоторых областях реакционного пространства. В связи с этим в реакционном пространстве возникают градиенты концентраций и температуры и, соответственно, потоки вещества и тепла. Изучением процессов переноса вещества и тепла в химическом процессе занимается макроскопическая кинетика (макрокинетика). Количественная характеристика этих процессов чрезвычайно существенна, так как наряду с химической реакцией именно они определяют концентрации компонентов реакционной смеси и температуру в реакционной зоне. [c.74]

    Кинетика и макрокинетика реакции [c.138]

    При осуществлении химических процессов в нефтепереработке, таких, как пиролиз, каталитический крекинг, каталитический риформинг, алкилирование и другие, необходимо располагать данными о протекании химического процесса во времени, чтобы иметь возможность рассчитать требуемые параметры процесса и размеры аппаратуры для его проведения. Эти вопросы рассматривает так называемая макрокинетика (изучение химических реакций в больших объемах). Проведение реакции в аппарате значительного объема требует учета ряда факторов, которые обычно химическую кинетику не интересуют. [c.371]

    Решение обратной задачи обычно включает две ступени. Первой из них является выяснение макрокинетики реакции и получение кинетических данных, относящихся к собственно химической стадии вторая заключается в построении различных возможных схем механизма реакции, составлении кинетического описания процесса для каждого из возможных вариантов механизма и сопоставлении этого описания с экспериментальными данными. Неоднозначность результатов обычно бывает обусловлена тем, что различные схемы механизмов приводят к одинаковым уравнениям наблюдаемой кинетики процесса. Другая причина неоднозначности связана с тем, что экспериментальные кинетические данные обычно включают ошибку. Поэтому они могут одновременно удовлетворять кинетическим уравнениям, отражающим близкие (но не одинаковые) функциональные зависимости. [c.202]

    Для дальнейшего анализа кинетики реакции в первую очередь целесообразно охарактеризовать особенности макрокинетики реакции. Цель этого этапа (и соответствующего экспериментального исследования)— найти совокупность условий эксперимента, при которых реакция протекает в кинетической (или внешнекинетической) области. Для этого можно использовать зависимость максимальных скоростей реакции от линейной скорости газового потока, размера зерен твердого реагента, толщины слоя твердого реагента и другие. [c.218]


    Согласно вышеизложенному, макрокинетический подход к исследованию кинетики сложных реакций можно было бы назвать чисто эмпирической наукой, обвинить его в формализме и отрыве от реальных физико-химических основ процесса. Однако конструктивность и практичность макрокинетического подхода вполне компенсируют этот недостаток, поскольку он использует непосредственно экспериментальную информацию, а корректная математическая обработка данных позволяет не только выявить адекватную макрокинетическую модель сложного процесса, но в некоторых случаях может стать отправной точкой к раскрытию сложного механизма реакции. Поставленная макрокинетиками задача решается с использованием достижений в области математической статистики, качественного анализа дифференциальных уравнений, линейной алгебры, термодинамики неидеальных смесей, с привлечением современных достижений в области вычислительной техники. [c.71]

    Проточные реакторы. Большинство современных промышленных процессов проводится в непрерывно действующих проточных реакторах. Такой реактор представляет собой открытую систему, взаимодействующую с внешней средой в аппарат непрерывно подаются исходные вещества и отводятся продукты реакции и выделяющееся тепло. На показатели работы реактора влияют, наряду с химической кинетикой и макрокинетикой процесса, новые, специфические факторы конвективный поток реагентов и теплообмен с внешней средой. Расчет и теоретический анализ работы реактора с учетом взаимодействия и взаимного влияния всех этих факторов — далеко не простое дело. Число параметров и переменных, необходимых для точного расчета, в практически важных случаях может быть чрезвычайно большим и превосходить возможности даже самых быстродействующих вычислительных машин. Дополнительную сложность вносят типичные для крупномасштабных систем явления статистической неупорядоченности и случайного разброса характеристик процесса. Эти явления нельзя рассматривать как внешнюю, досадную помеху они связаны с самой природой процесса и должны обязательно приниматься во внимание при анализе его работы. Непременным залогом успеха при расчете промышленных химических реакторов является предварительный анализ основных факторов, влияющих на процесс в данных условиях. Только таким путем можно выделить основные связи из сложной и запутанной картины взаимодействия различных процессов переноса и химической реакции, не отягощая расчет излишними и зачастую обманчивыми уточнениями и в то же время не упуская из виду существенных, хотя, может быть, и трудных для анализа, действующих факторов. [c.203]

    Изучая кинетику сложной реакции на медном активированном катализаторе, мы поставили себе цель — установить характер каталитического процесса, выяснить, являлась ли определяющей стадиен химическая реакция, протекающая на поверхности катализатора, т. е. в адсорбционном слое, или же скорость этой реакции определяют диффузионные процессы подвода и отвода вещества у поверхности катализатора, т. е. вопросы, которые ставит себе и решает макрокинетика. Вопрос этот оставался нерешенным как у различных авторов, работавших над кинетикой данной реакции, так и в нашей предыдущей работе Р . [c.1288]

    I этан — исследование макрокинетики реакции. Выясняется влияние макрокинетических факторов на наблюдаемую кинетику реакции и условия, обеспечивающие протекание реакции в кинетической области, либо проводится количественная оценка влияния внешнедиффузионного торможения и т. п. [c.193]

    Заканчивая краткое рассмотрение общих сведений по прикладной макрокинетике сложных гидрогенизационных процессов в нефтепереработке, нужно еще раз подчеркнуть особые трудности макрокинетического анализа сложных модификаций жидкофазного гидрокрекинга с плавающими порошкообразными катализаторами. Вследствие исключительной трудности четкого математического описания и расчета жидкофазных гидрогенизационных процессов на основе результатов лабораторных (или пилотных) исследований ранее использовали эмпирические переходные коэффициенты от лабораторных (пилотных) масштабов работ к заводским [4, 90]. В последнее время [22, 24, 91—93] кинетику химических процессов, осложненных в заводских реакторах наличием диффузии и теплопередачи, начали изучать с применением математических методов [33, 91—93], Такое математическое моделирование пока, к сожалению, практически применимо лишь для простейших процессов типа сернокислотного катализа. Исследования кинетики необходимо проводить в строго определенных условиях, полностью исключающих влияние гидродинамических факторов и гарантирующих изотермичность процесса. Такие условия обеспечиваются, наприме >, при применении проточно-циркуляционного метода [94]. Довольно точные данные о кинетике в некоторых случаях можно получить и по более простой методике при частичном разбавлении исходного сырья продуктами реакции [61, 71] однако полная изотермичность зоны катализа при этом не гарантируется. [c.163]

    Специфические особенности жидкостных гетерогенно-каталитических реакторов особенно сильно проявляются в реакторах с двухфазным потоком, из которых почти исключительно применяются реакторы для систем жидкость — газ. Вследствие этого рассмотрим только указанный вариант. Для сравнительно немногочисленных случаев реакторов с гетерогенным катализатором и однофазным жидкостным потоком вполне можно воспользоваться общими методами, изложенными в монографиях [1] и [2] с учетом соображений, изложенных в гл. 6, и специфики кинетики и макрокинетики жидкофазных реакций на твердых катализаторах, описанных в гл. 3, а также особенностей процессов переноса и гидродинамики жидкости, изложенных, например, в монографиях [3] и [4]. [c.184]

    В связи с этим проблемы исследования и математического моделирования реакций с участием твердых веществ выходят в настоящее время на одно из ведущих мест среди других проблем химической кинетики. Трудности в решении указанных проблем обусловливаются сложным характером макрокинетики процессов химического превращения сополимеров [Ц. К таким усложняющим факторам можно отнести локализацию реакционной зоны на поверхности раздела фаз твердого реагента и твердого продукта реакции, перемещение этой реакционной зоны вглубь твердого тела, возможность перехода реакции из одной макрокинетической области в другую даже при постоянных значениях температуры системы и концентраций компонентов, участвующих в реакции и т. п. Типичными процессами, обладающими данной спецификой, являются реакции сульфирования и фосфорилирования сополимеров на основе стирола и дивинилбензола. [c.333]

    Процессы нефтепереработки и нефтехимии, намечаемые к крупнотоннажному осуществлению, должны изучаться предварительно на пилотных установках при искусственном наложении на основные реакции отдельных осложнений или их комплекса. Углубленное изучение характера протекания химико-технологических процессов нефтепереработки при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследований прикладной макрокинетики, в отличие от истинной неосложненной микрокинетики, исследуемой в лабораториях. Существуют и другие названия прикладной. макрокинетики химико-технологическая кинетика [20], кинетика промышленная [21, 22], динамика промышленных процессов [7], кинетика каталитических реакций с массопередачей и теплопередачей [23, 24], просто макрокинетика [25, 26] и, наконец, математическое описание [12, 27]. Основам теоретической [c.33]

    Раздел электрохимической кинетики, задачей которого является изучение стадий подвода реагирующих частиц к поверхности электрода и отвода продуктов реакции, называют электрохимической макрокинетикой или диффузионной кинетикой. [c.143]

    Одним из основных объектов исследования в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда-ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъемлемыми их стадиями служат подвод реагирующих частиц к границе раздела фаз и отвод продуктов реакции. Поэтому изучение закономерностей этих стадий также составляет предмет электрохимической кинетики. Соответствующий раздел кинетики электродных процессов называют диффузионной кинетикой или электрохимической макрокинетикой. Электродные процессы часто включают химические стадии, протекающие в объеме раствора или на поверхности электрода, стадии образования новой фазы, поверхностной диффузии и др. В общем случае закономерности электрохимической реакции [c.6]

    Теоретические основы многих современных процессов переработки угля — его газификации, гидрирования, реакции конверсии с водяным паром и др. — даны в статье Уокера, Русинко и Остина. В ней освещены термодинамика, кинетика, макрокинетика и общие вопросы механизма реакций углерода с газами — водородом, кислородом, окисью и двуокисью углерода. [c.5]

    В книге можно найти сиедения по всем основным разделам современной химической кинетики гомогенных реакций формальной кинетике, элементарным реакциям в газовой, жидкой и твердой фа 1ах, механизмам различных органических и неорганических реакций, гомогенному катализу, фото- и радиационной химии, макромолекулярной химии и макрокинетике. [c.2]

    Реакции в гетерогенных системах на поверхности раздела фаз могут существенно осложняться, поскольку дополнительно накладывается ряд таких факторов, как площадь поверхности фазы (ад-сорбет а, носителя), ее структура и свойства, величина пор, скорость дифс1)узии и другие макроскопические явления, рассматриваемые в макроскопической кинетике (макрокинетике). При определении скорости гетерогенной реакции в специальных исследованиях все это учитывается. Скорость гетерогенной реакции в первом приближении, например, может быть оценена по количеству вещества, вступившего в реакцию (или образовавшегося при реакции) за единицу времени на единице поверхности фазы  [c.168]

    О преимуществах в решении всех главнейших проблем химии и, в частности, проблем управления реакциями синтеза вещества с заданными свойствами, которые появляются в связи с подъемом с уровня структурной химии на уровень учения о химических процессах, убедительно рассказал Н. Н. Семенов [12, с. 64]. Но в настоящее время этот уровень представляет собой еще во многом неосвоенную область. Пока не решены очень многие вопросы, относящиеся к выяснению природы промежуточных частиц (карбо-ний-ионы, ион-радикалы). Недостаточно ясными остаются вопросы о механизмах циклического переноса электронов, об их распространенности, о совмещенности с другими механизмами. Трудно осваивается в практике управления процессами теория абсолютных скоростей реакций. Масса белых пятен остается в области катализа. А главное, еще далеко не достаточно разработаны вопросы кинетики, макрокинетики и гидродинамики больших реакторных систем, лимитирующие решение сложнейшей проблемы масштабного перехода от лабораторных исследований к промышленным агрегатам. Все это пока целинные земли третьего уровня химии. О них подробнее см, гл, IV, [c.30]

    Кинетика. Сложность реакций Фишера — Тропша и большое число факторов, влияющих на них (давление, температура, состав исходного газа, время контактирования, условия транспортирования вещества и тепла), затрудняют описаиие макрокинетики процесса. [c.272]

    Гетерогенные каталитические реакции относятся к числу сложных многостадийных процессов. Мы рассмотрим здесь химическую кинетику этих реакций, предполагая, что физические процессы переноса вещества и тепла в системе осуществляются значительно быстрее собственно каталитического процесса, т. е. наблюдаются закономерности, не искаженные влиянием этих макрокинетических факторов (вопросам макрокинетики посвящена глава VIII). Предполагается также, что каталитическая реакция протекает стационарно. [c.117]

    Большое внимание в последнее десятилетие уделялось взаимосвязи между скоростями химической реакции и диффузии. Дамкел-лер и особенно Франк-Каменецкий широко развили эту область. Последний различает микрокинетику (т. е. химическую кинетику) и макрокинетику (т. е. физический транспорт — перенос реаги-руюш их веществ). Следуя ван Кревелену мы должны учитывать при макрокинетическом анализе величины среднего моле1 улярного пробега, распределения вещества в гетерогенных системах (диффузия) и в реакторе в целом (перенос конвекцией). Укажем, что для получения сведений о химической кинетике мы все еще должны полностью полагаться на экспериментальные данные по каждой отдельной исследуемой реакции. [c.20]

    Известно, что механизм и кинетика химических реакций изучаются, как правило, в изотермических условиях в замкнутых сосудах и при интенсивном пере-метпиваиии газов или жидкостей. Между тем химикотехнологические процессы в большинстве случаев сопровождаются значительным выделением или поглош е-пием тепла, что создает большие градиенты темиера-туры в условиях быстрых турбулентных потоков и при наличии твердых катализаторов, нередко находящихся во взвешенном состоянии. При реакциях обычно происходят изменения числа частиц, взаимная диффузия исходных и конечных продуктов и т. д. Макрокинетика — это кинетика реакций с учетом физических и гидродинамических факторов (градиенты температуры, концентрации, турбулентность, размеры и форма аппаратуры), воздействующих на скорость реакций и выход продуктов. [c.26]

    Кинетика сложных процессов, включающих химические и физические стадии, является предметом рассмотрения в специальном разделе кинетики — макрокинетике. При одисании кинетики гетерогенных реакций приходится включать элементы макрокинетнки. [c.256]

    В настоящей монографии рассмотрены только гомогенные изотермические реакции, в то время как соответствующие про-мьпнленные процессы часто протекают в гетерофазных системах с неоднородными нолями концентраций и температур внутри реактора. Для математического моделирования таких систем прежде всего необходимо выбрать адекватную кинетическую модель процесса, правильно описывающую химические превращения компонентов. Изложенный в книге материал должен помочь сделать такой выбор научно обоснованным. После того как кинетическая модель выбрана, явления переноса вещества и тепла в реакторе могут быть учтены при построении общей математической модели процесса стандартными методами. Возникающие при этом задачи относятся уже к области макрокинетики и, следовательно, выходят за рамки настоящей монографии. Вместе с тем совершенно ясно, что развитие макрокинетики реакций образования и превращения полимеров, столь важной для математического моделирования промышленных процессов их синтеза и химической модификации, невозможно без хорошо разработанных методов описания истинной химической кинетики соответствующих реакций. Эти методы, подробно изложенные в данной книге, могут быть с успехом использованы и нри решении многих макрокине-тических задач химической технологии получения и модификации лолимеров. [c.362]

    Химическая кинетика каталитической реакции определяет не только оптимальный режим ее протекания, но и структуру катализатора, позволяющую реализовать его потенциальные химические возможности. Следует также учитывать, что химические процессы на ге1ерогенном катализаторе тесно связаны с рядом физических процессов переноса вещества и тепла. Для совокупности всех этих процессов в химической литературе пользуются термином макрокинетика . Очев идно, что знание кинетических и макрокинетических закономерностей необходимо как для выполнения упомянутого вто- [c.6]

    Реальные кинетические закономерности гетерогенного каталитического процесса определяются как истинной кинетикой реакции на активной поверхности, так и условиями массо— и тесглопереноса. Их изучение и составляет предмет макрокинетики, ил и так называемой диффузионной кинетики химических процес — сев. [c.96]

    В отношении диффузионной кинетики гетерогенно-каталитических реакций часто нринимается термин макрокинетика . Более детально макрокинетика каталитических реакций рассмотрена в монографии [1]. [c.55]

    Диффузионное торможение процесса обычно сопровонедается и затруднениями с отводом тепла реакции, ведущими к появлению перепадов температуры внутри пористого зерна катализатора и между поверхностью частицы и ядром потока. Реальные кинетические закономерности каталитического процесса определяются как истинной кинетикой реакции на активной поверхности, так и условиями массо- и теплопереноса их изучение составляет предмет макрокинетики химических процессов. [c.98]

    Таким образом, особый характер макрокинетики физикохимических процессов в МСС, является следствием непрерывного изменения химической и структурной природы системы в процессе ее наблюдения. Любые такие системы описываются законом типа у = ехр ( к I " ). Эти законы выполняются для всех относительно медленных физических и химических процессов. Это явление универсально для всех систе.м, если время эксперимента превышает время изменения последовательности структурно-энергетических состояний системы. Это возможно, когда система, в которой течет жидкость гит протекает реакция, изменяет свою природу. В быстрых процессах, если время эксперимента (наблюдения). меньше времени изменения состояния систелш, в которой развивается процесс, имеет место обычная кинетика. [c.41]


Библиография для Кинетика и макрокинетика реакции: [c.99]    [c.579]   
Смотреть страницы где упоминается термин Кинетика и макрокинетика реакции: [c.190]    [c.90]    [c.13]    [c.38]    [c.7]   
Смотреть главы в:

Кинетика топохимических реакций -> Кинетика и макрокинетика реакции




ПОИСК





Смотрите так же термины и статьи:

Макрокинетика



© 2025 chem21.info Реклама на сайте