Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасная спектроскопия и комбинационное рассеяние

    Инфракрасная спектроскопия. Комбинационное рассеяние [c.277]

    Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, ядерного магнитного резонанса, электронного парамагнитного резонанса. Особое место в совр, К. а. занимает масс-спектрометрия и хромато-масс-спектрометрия (ниж. предел обнаружения-10 % по массе). [c.360]


    Об использовании К. с. для количеств, анализа и др. целей, а также о совр. технике колебат. спектроскопии см. в ст. Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия. [c.432]

    Количеств, информацию о строении молекул дают дифракционные методы (рентгеновский структурный анализ, электронография и нейтронография), а также микроволновая спектроскопия. Качеств, сведения о строении молекул можно получить по колебательным спектрам, масс-спектрам, спектрам ЯМР и ЭПР (см. Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Ядерный магнитный резонанс, Масс-спектрометрия, Электронный парамагнитный резонанс). [c.445]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]

    Поглощение и испускание ИК-лучей. Колебания молекул Инфракрасная спектроскопия Комбинационное рассеяние То ше То же [c.109]

    Книга из серии монографий по теоретической органической химии. Рассматриваются методы, применяемые для изучения ионов и ионных пар в органических средах (спектрофотометрический, инфракрасной спектроскопии, комбинационного рассеяния, электронного парамагнитного резонанса и др.). [c.4]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]


    Молекулярная спектроскопия. Электронные переходы, колебательные переходы и вращательные переходы. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Спектр поглощения. Закон Беера и молярный коэффициент экстинкции. Сопряженные полнены. [c.551]

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]

    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]

    К спектральным методам исследования структуры веществ наряду с инфракрасной спектроскопией относится спектроскопия комбинационного рассеяния. [c.159]

    В процессе симметричного валентного колебания молекула претерпевает растяжение или сжатие, при этом электронная плотность в элементе объема изменяется, и по этой причине изменяется поляризуемость. Неизменным остается дипольный момент. Вот почему такие колебания следует наблюдать в спектре комбинационного рассеяния [см. уравнение (5.3.13)], но не в инфракрасном [см. уравнение (5.3.12)]. Для антисимметричных валентных колебаний складываются обратные соотношения. Для молекул с центром симметрии имеется правило альтернативного запрета, по которому колебание может быть активным только в инфракрасных спектрах или в спектрах комбинационного рассеяния. Из этого следует необходимость комбинирования методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния при изучении колебательных спектров молекул. [c.222]

    Физические методы определение степени кристалличности, температуры стеклования, температуры плавления, изучение теплоты полимеризации (сополимеризации), инфракрасная спектроскопия, спектроскопия комбинационного рассеяния, нейтронная спектроскопия, ЯМР-спектроскопия, измерение дипольных моментов  [c.25]

    Рассмотреть основные принципы важнейших методов молекулярной спектроскопии спектроскопии в ультрафиолетовой (УФ) и видимой областях, инфракрасной (ИК) спектроскопии и спектроскопии комбинационного рассеяния (КР, или рамановской спектроскопии), спектроскопии ядерного магнитного резонанса (ЯМР) на ядрах и масс-спектрометрических методов. [c.146]

    Химические методы определения функциональных групп основаны на реакциях титрования и широко описаны в литературе. Из числа физических и физико-химических методов наиболее широко распространены для изучения функциональных групп полимеров методы молекулярной спектроскопии (инфракрасная и спектроскопия комбинационного рассеяния), а также метод ядерного магнитного резонанса. С помощью I этих методов можно обнаружить функциональные группы, содержащиеся в полимерной цепи (например, галогены, нитрильные, а также карбонильные и другие группы, которые образуются в полимере в результате реакций окисления). [c.40]

    Видимая и ультрафиолетовая (УФ) спектроскопия инфракрасная (ИК) спектроскопия спектроскопия комбинационного рассеяния (К,Р) эллипсометрия [c.152]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]


    Локальные свойства существенны, когда мы хотим выбрать полимер, наиболее подходящий для данного практического применения. Если мы хотим изготовлять резину, то нам необходимо хорошо понимать локальные движения в цепях каучука - как они зависят от температуры, какую роль играют стерические ограничения между соседними мономерами и т.п. Экспериментальные методы, применяемые для исследования локальных свойств полимерных цепей, в общем мало отличаются от методов, применяемых для малых молекул, практически это те же инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Аналогично применяемые (или планируемые к применению) теоретические методы связаны с теми, которые используются для обычных жидкостей, - это молекулярная динамика, методы Монте-Карло и т.д. [c.23]

    Интерпретация спектров ЯМР поливинилхлорида затянулась и оказалась спорной, частично из-за того, что не удавалось отнести все линии в спектрах, частично- из-за противоречивых выводов, сделанных на основании данных других методов, в особенности колебательной спектроскопии (инфракрасной и спектроскопии комбинационного рассеяния). Эти неясности и расхождения, по-видимому, в значительной степени должны быть разрешены при регистрации спектров ЯМР в сильных магнитных полях. Изучение модельных соединений — 2,4-дихлорпентанов и 2,4,6-трихлор-гептанов (см. разд. 3.2 и 9.2) — оказалось очень полезным при определении конформации полимерной цепи, но в го же время вызвало некоторую путаницу при установлении ее стереохимической конфигурации. Это касается, главным образом, спектра р-метиленовых групп, для которых разница между химическими сдвигами протонов уменьшается с ростом числа соседних т-диад. Мы не будем обсуждать здесь все довольно многочисленные работы, посвященные этой проблеме [1—24], а остановимся подробнее на результатах наиболее ранних и наиболее поздних работ. [c.119]

    Область применения ультрафиолетовой спектроскопии, ограниченная в основном ароматическими углеводородами, за последние годы расширяется в связи с развитием синтеза новых ароматических полимеров и полимеров, содержащих двойные связи. Основные достоинства метода ультрафиолетовой спектроскопии при решении аналитических задач и при идентификации углеводородов заключаются в высокой чувствительности, точности и быстроте анализа, а также в простоте экспериментальной методики и аппаратуры и достаточно малом количестве вещества, требуемого для исследования. К числу недостатков метода, в некоторых случаях ограничивающих возможность его аналитического использования, следует отнести наложение спектров и их недостаточную избирательность. В этом отношении колебательные спектры (инфракрасные и комбинационного рассеяния) обладают более широкими возможностями, однако во многих случаях целесообразно использовать одновременно несколько спектральных методов. [c.3]

    Спектроскопия комбинационного рассеяния (СКР) дополняет инфракрасную спектроскопию происхождение полос в обоих случаях одинаково. Изменение волнового числа, связанное с возникновением спектра комбинационного рассеяния, равно волновому числу полосы инфракрасного поглощения, соответствующего тому же колебательному переходу, но интенсивность линий подчиняется другим закономерностям. [c.161]

    В методе СКР существует линейная зависимость между интенсивностью и концентрацией, благодаря чему идентификация основных составляющих оказывается проще, чем в инфракрасной спектрометрии. Анализ многокомпонентных смесей с помощью спектроскопии комбинационного рассеяния часто проще других. Одним из важных применений [c.162]

    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ И СПЕКТРОСКОПИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ [c.65]

    Гл. 3. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния [c.66]

    Возможности инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. Вскоре были установлены четыре фактора, в наибольшей мере стимулировавшие развитие спектрального изучения Н-связи. Благодаря чувствительности колебательных спектров (в особенности Vg) к образованию Н-связи, ИК-спектроскопия дает  [c.66]

    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    Элементный К. а. можно проводить хим. методами с испольэ. р-ций обнаружения, характерных для неорг. ионов в р-рах или атомов в составе орг. соединений. Эти р-ции обычно сопровождаются изменением окраски р-ра (см. также Капельный анализ), образованием осадков (см., напр.. Микрокристаллоскопия) или выделением газообразных продуктов. К. а. неорг. в-в часто требует систематич. хода, при к-ром с помощью хим. р-ций иэ смеси последовательно выделяют небольшие группы ионов (т. н. аналит. уш ы элементов), после чего проводят р-ции обнаружения. В дробном К. а. каждый элемент открывают непосредственно в смеси по специфич. р-ции. Хим. методы имеют практич. значение при необходимости обнаружения только 1—2 элементов. Многоэлементные фиэ. методы, напр, эмиссионный спектральный анализ, активационный анализ, рентгеноспектральный анализ (см. Рентгеновская спектроскопия), позволяют обнаружить ряд элементов после проведения небольшого числа операций. Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, масс-спектрометрии, ядерного магнитного резонанса и хроматографии, Используют также хим. методы и методы, основанные на измерении таких физ. характеристик в-ва, как, напр., плотность, р-римость, т-ры плавления и кипения. [c.250]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    Кроме перечисленных выше методов, дающих непосредств. информацию о геометрич. параметрах молекул (кристаллов), широко примен. т. и. косвенные методы — электронный парамагнитный резонанс, инфракрасная спектроскопия, комбинационного рассеяния спектроскопия, масс-спектрометрия и т. д. Эти методы позволяют определять тип симметрии молекулы, первичную структуру (т. е. порядок соединения атомов) и век-рые геом. параметры на основе эмпирич. корреляц. соотношений, предварительно установленных и проверенных для большого числа соед. известного строения. Для определения структуры в-в наряду с экспериментальными примен. разл. расчетно-теоретич. методы, в частности квантовохямические. Для грубых оценок геометрии молекулярных систем часто рассчитывают длины связей исходя из ионных и ковалентных атомных радиусов их усредненные значения, найденные путём анализа большого числа эксперим. данных, а также типичные величины валентных углов табулированы. [c.549]

    Для исследования состава поверхностных слоев, определения функциональных групп на поверхности, межатомных и межмоле-кулярных связей широко используются традиционные оптические методы спектроскопия (инфракрасная, ультрафиолетовая, комбинационного рассеяния), рентгенография, электронография и др. Их применение для таких исследований отличается специфическими способами приготовления испытуемых образцов, поскольку информация должна поступать из очень тонкой области системы, тол-щиной порядка нескольких моноатомных или мономолекулярных слоев. Названные методы исследования достаточно подробно из лагаются в курсах физики и физической химии. [c.246]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Методы колебательной спектроскопии — инфракрасной (ИК) и спектроскопии комбинационного рассеяния (КР) света широко применяются в качественном и количественном анализе жидких, твердых п газообразных фаз. Каждое соединение имеет свой собственный, индивидуальный, специфичный ИК-спектр гюглощения, отличающийся от ИК-спектра поглощения любого другого соединения. Нет двух таких различных веществ, которые имели бы одинаковые ИК-спектры поглощения во всем спектральном Ж-диапазоне. Если ИК-спектры поглощения двух или нескольких изучаемых объектов полностью совпадают, то это означает, что данные объекты представляют собой одно и то же вещество (одну и ту же форму соединения). Если же ИК-спектры поглощения двух [c.528]

    Метод колебательной спектроскопии, включающий инфракрасную спектроскопию и спектроскопию комбинационного рассеяния, принадлежит к числу немногих методов, в равной степени широко используемых при изучении как твердой фазы, так и растворов. Обычно информацию о строении комплексонатов получают при исследовании спектра лиганда [181, 202, 243, 234]. При этом наиболее широко распространены работы, связанные с наблюдением поглощения в диапазоне характеристических частот валентных колебаний карбоксильной, фосфоновой, С—Н- и N—Н-групп .  [c.409]

    Следовательно, при изучении строения или свойств любого вещества, содержащего в своем составе оксигидрильные группировки, необходимо знать не только геометрическое строение последних, но и целый ряд свойств их электронных оболочек. Очевидно, что реальные возможности ответить на последний вопрос появились только после широкого распространения в исследовательских лабораториях таких современных физических методов, как нейтронография, ядерный магнитный резонанс п колебательная спектроскопия (спектроскопия комбинационного рассеяния и инфракрасная спектроскопия). [c.6]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    Колебательные уровни молекул обусловлены колебательными движениями ядер в молекулах около некоторых равновесных положений. Частоты этих колебаний (нормальных колебаний молекул) отвечают энергиям примерно от 0,025 до 0,5 эВ, т.е. волновым числам от 200 до 4000 см Переходы между колебательными уровнями молекул лежат в основе методов инфракрасной спектроскопии (ИКС) и спектроскопии комбинационного рассеяния света (С1СРС). В последнем случае изменения Ау частоты рассеянного света равны частотам переходов между колебательными уровнями рассеивающих молекул в отличие от ИК-спектроскопии СКРС позволяет изучать колебания и вращения безди-польных молекул. Этот метод обладает более высокой избирательностью, чем ИК-спектроскопия. [c.334]

    Инфракрасная спектроскопня н спектроскопия комбинационного рассеяния Основы методов [c.282]

    Спектроскопия в инфракрасной области. Это хорошо отработанный метод исследования состава поверхности и протекающих на ней химических процессов широко используется для исследования адсорбции. О применении ИК-спектроскопии, а также спектроскопии комбинационного рассеяния (КРС) для изучения поверхностей говорится в гл. XIII. [c.225]


Смотреть страницы где упоминается термин Инфракрасная спектроскопия и комбинационное рассеяние: [c.349]    [c.250]    [c.349]    [c.675]    [c.68]   
Смотреть главы в:

Криохимия -> Инфракрасная спектроскопия и комбинационное рассеяние




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопи

Комбинационное рассеяние

Спектроскопия инфракрасная

Спектроскопия комбинационного

Спектроскопия комбинационного рассеяни

Спектроскопия комбинационного рассеяния



© 2025 chem21.info Реклама на сайте