Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода в природе и состав ее

    При применении биохимического метода большое значение имеет состав воды, природа соединений и их концентрация, наличие в воде биогенных элементов (азота, фосфора, калия, железа) и растворенного кислорода, а также pH и температура. Концентрация органических соединений, находящихся в сточных водах, подаваемых на биохимические очистные сооружения, не превышает 1—2 г/л. Многие из соединений, присутствующих в стоках, могут в той или иной степени нарушать нормальную жизнедеятельность микроорганизмов, поэтому концентрация их не должна превышать допустимых величин (МКб, МКв. о. с). [c.496]


    Молекула воды имеет угловое строение входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода. Межъядерные расстояния О-И составляют 96 пм, расстояние между ядрами атомов водорода равно примерно 150 пм. Строение воды, природа ковалентной связи О-Н и межмолекулярной водородной связи с участием молекул воды нами рассмотрены в гл. 4. [c.212]

    Вариации изотопных отношений кислорода происходят в биосфере преимущественно в" природных водах и связаны с общим круговоротом воды. Изотопный состав кислорода в природных водах изменяется одновременно с изотопным составом водорода, поскольку молекулы воды ООН и ООО, с одной стороны, и Нг О и Нг 0, с другой, обладают одинаковыми физическими свойствами. В природе наблюдается корреляция между изменением изотопного состава водорода и кислорода. Эта корреляция, по Г. Крейгу, определяется отношением 60 = 86 0+10. Графически она может быть выражена прямой Крейга, которая показана на рис. 48. [c.393]

    Электрохимическая коррозия зависит от состава жидкости и газа. В первую очередь это касается состава воды, как наиболее коррозионноактивной фазы в системе нефть — вода. Количество воды, ее состав, природа и количество растворенных газов, давление и температура — все это может меняться в широких пределах и оказывать решающее влияние на интенсивность коррозии. [c.189]

    Все необходимые для роста и жизнедеятельности вещества микроорганизмы получают из очищаемой сточной жидкости. Поэтому состав воды, природа веществ (с точки зрения их доступности для микробов) и их концентрация, наличие в жидкости минеральных биогенных элементов (азота, фосфора, калия, железа), а также соответствующие условия среды, т. е. количество растворенного кислорода, pH, температура, имеют очень большое значение при применении для очистки производственных сточных вод биохимического метода. [c.8]

    Коагуляция относится к числу весьма сложных физико-хи-мических процессов обработки воды, на который оказывают влияние большое число факторов. Главные из них природа, концентрация и дисперсный состав нерастворимых веществ и коллоидов, электрический потенциал частиц, щелочность обрабатываемой воды, ионный состав растворенных веществ и величина pH, температура воды. Большое значение имеет вид применяемых коагулянтов, количество и состав посторонних примесей в товарном продукте. Большинство из этих факторов изменяется во времени. За небольшим исключением измерение их связано с большими трудностями. [c.62]


    Можно ли повысить атмосферостойкость уже полученного лакокрасочного покрытия Да, есть различные способы, и один из них подсказала нам природа. Поверхность яблока покрыта тонким слоем воскообразного вещества, влага не задерживается на его поверхности, бактерии, вызывающие гниение, через него не проникают. Химики создали нечто подобное-так называемую полировочную воду, в состав которой входят воскообразные и моющие вещества и мягкие наполнители. Она удаляет загрязнения, слегка полирует поверхность и, главное, создает на поверхности лакокрасочного покрытия тонкий, всего в несколько микронов слой гидрофобной пленки. Эта пленка способствует защите покрытия от влаги и частично от действия солнечных лучей. Придание гидрофобности поверхности лакокрасочного покрытия-задача очень важная и достаточно сложная. [c.60]

    Абиотические факторы — температура, свет, радиоактивные излучения, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности. Эти свойства неживой природы прямо или косвенно влияют иа живые организмы. [c.6]

    Кислород в природе. Воздух. Кислород — самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Общее количество кислорода в земной коре близко к половине ее массы (около 47%). [c.374]

    Одним из важнейших свойств вещества (материи), ставшим очевидным со времен Дальтона, является то, что оно построено из отдельных, дискретных частиц. Большинство веществ природы внешне представляются непрерывными, например вода, ртуть, кристаллы солей, газы. Однако если бы наш глаз мог различать ядра и электроны, входящие в состав атомов, а также элементарные частицы, из которых состоят ядра, сразу обнаружилось бы, что любое вещество в окружающем нас мире состоит иэ определенного числа таких основных структурных единиц и, следовательно, имеет квантованную природу. Материальные предметы кажутся непрерывными только из-за крохотных размеров составляющих их индивидуальных частиц. [c.353]

    Вода Н2О — наиболее распространенная в природе жидкость, В водной среде зародилась жизнь, и вода входит в состав всех живых существ. Вода — аномальная жидкость, она имеет ряд особенностей, отличающих ее от других жидких веществ (см. разд. 2.8). Они обусловлены малым размером молекул Н2О и действующими между ними сильными водородными связями. При 25 °С и 101 кПа не существует ни одного жидкого соединения, молекулы которого были бы меньше или равны по размеру (и по массе) молекуле Н2О.  [c.439]

    Несомненно, в природе процесс формирования и изменения солевого состава вод сложен, он зависит от многих факторов и, конечно, от температуры и давления. Изменение температуры и давления с глубиной погружения водоносных горизонтов сказывается на физико-химических процессах, протекающих в недрах земли и определяющих основные свойства подземных вод. Так же как и в породах, с увеличением давления и температуры химический состав вод из меняется, содержание одних ионов уменьшается, других, например хлора и кальция, возрастает. [c.21]

    Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности. [c.184]

    Рассмотрены основные свойства химических элементов, минералов и горных пород. Приведены химические составы изверженных, метаморфических и осадочных пород и руд, распространенность химических элементов в природе, состав природных вод и других природных образований. Описаны геохимия стабильных иерадиоактивиых изотопов, ядерная геохронология, геохимические методы поисков. Большое вни-маиие уделено методам выявления геохимических аномалий, геохимической съемки, интерпретации геохимических данных. [c.2]

    По химическому составу бирюза — основной фосфат меди и алюминия, содержащей воду СиАЦ [Р04]4 (0Н)8 5Н20. Теоретический химический состав ее (в %) Р2О5 34,12 АЬОз ЗС,84 % СиО 9,57 Н2О 19,47. Однако в природе состав минерала крайне непостоянен. В качестве примесей в бирюзе могут присутствовать Ре, Са, Мд, 2п, Т1, V, Сг, 5г, Ва, Мп, Ыа, 51 и др. [c.249]

    К моноксигеназам относят ферменты, катализирующие окисление органических соединений, приводящее к включению одного из атомов кислорода молекулы О2 в молекулы этих соединений, и восстановление второго атома кислорода до воды. Для большого числа реакций, катализируемых оксигеназами, характерно участие двух доноров, один из которых включает в свой состав атом кислорода, а второй является донором водорода при образовании молекулы воды. Природа второго вспомогательного донора может быть различной. Большое число моно-оксигеназ используют в качестве донора NADPH. В этом случае суммарное уравнение реакции можно записать в виде [c.133]


    Известно всего несколько простых солей Со ". Безводный фторид получают фторированием металла или o lj при 300—400°. Это коричневый порошок, который мгновенно восстанавливается водой. Природа гидрата oFg-3,5 Н2О не установлена. Он выделяется в виде зеленого порошка при электролизе Со" в 40%-ном растворе НР. Голубой сульфат С0.2 (504)3-ISH.jO устойчив только в сухом состоянии и разлагается водой он выпадает в осадок при окислении Со" в 8н. H2SO4 либо электролитическим путем, либо при помощи озона или фтора. Со " входит также в состав квасцов M o(S04),- I2H.2O (М=К, Rb, s, NH4), которые окрашены в темноголубой цвет и восстанавливаются водой. По-видимому, в состав сульфата и квасцов входят одни и те же ионы [Со (Н20)в1 +. Замечательно, что квасцы диамагнитны. Ацетат кобальта(П1) выпадает в осадок из раствора ацетата двухвалентного кобальта в ледяной уксусной кислоте при электролитическом окислении. Состав ацетата кобальта(П1) не известен, но, по-видимому, это сравнительно устойчивый комплекс, так как он растворяется в воде и при этом лишь очень медленно разлагается. Известно такл е несколько форм черной гидроокиси СоО(ОН), которую можно получить мягким окислением гидроокиси кобальта(П). [c.280]

    Колонка трубка из нержавеющеЯ стали с калиброванным каналом, I мХ2,1 мм (внутренний диаметр) насадка 156 ОДЦ-пермафаза образец 5 мкл хлорированных бензолов в изонропаноле детектор УФ-фотометр при 254 нм температура 60 °С давление у входа в колонку 72 атм. Хро-матограмма а линейный градиент 40/60 метанол—вода к метанолу при 8%/мин. Хроматограмма б постоянный состав, 50/50 метанол—вода. Природа пиков /—бензол 2—монохлорбензол 3—о-дихлорбензол 4—1,2,3-трихлорбензол 5—1,3,5-трихлорбензол 6—1,2,4-три-хлорбензол 7—1,2,3,4-тетрахлорбензол S—1.2,4,5-тетрахлорбензол —пентахлорбензол  [c.70]

    Состояние определяемых элементов. Большое число различных водопользователей с их требованиями к анализу потребляемых и сточных вод, многообразие компонентов, допустимые концентрации которых нормируются соответствующими организациями (см. выше), требуют разработки методов определения большого числа индивидуальных минеральных и органических компонентов. Истинное число подлежапщх определению компонентов в действительности существенно больше нормируемых. Это обусловлено, с одной стороны, необходимостью детального исследования механизма процессов, протекающих в природных водоемах,— сложных реакторах, включающих помимо всего прочего гидроби-онты и продукты их разложения с другой стороны, многообразие протекающих в воде реакций существенно изменяет природу, состав и свойства естественных и вносимых со сточными водами различных компонентов. Для неорганических соединений это — реакции, связанные с изменением валентности и гидролизом, комплексообразовапием элементов, а также с сорбцией взвешенными частицами и донными отложениями, биологическим концентрированием. Для органических соединений это — окисление, минерализация, сорбция, биологическое концентрирование и ассимиляция. Такая метаморфизация компонентов часто существенно искажает результаты их определения по обычным методикам, предложенным для модельных или технологических растворов. Работа по изучению процессов, протекающих в водоемах, требует всестороннего физико-химического изучения одно- и многокомпонентных систем с привлечением средств современной вычислительной техники. Она начата сравнительно недавно и ограничивается пока изучением отдельных элементов [ 7 ]. [c.11]

    Наиболее важными и интересными каркасными силикатами являются цеолиты. Важнейшая характерная особенность их — наличие открытого каркаса [(А1, 81)02] (рис. 19.5 и 19.6), что позволяет использовать их в качестве а) ионообменных веществ и б) селективных адсорбентов или молекулярных сит. Известно много природных цеолитов, а некоторые нз них получены синтетически имеется, кроме того, несколько десятков синтетических цеолитов, не встречающихся в природе. Состав их можно выразить общей формулой Мд., [ (А10,). . ( 0.,)у1 -гН-зО, где п — заряд катиона металла, М"+—обычно Ма+, К+ илиСа +, г — число молей гидратацион-ной воды, которое бывает весьма различным. [c.324]

    Потенциометрическое титрование можно применять в неводных средахЭтот вид титрования особенно важен для анализа лакокрасочных композиций, большинство которых не растворяется в воде. Природа растворителя влияет на величину константы диссоциации кислот и оснований. Варьируя состав растворителя, можно создать благоприятные условия для раздельного титрования компонентов таких смесей, которые в водной среде не могут быть оттитрованы раздельно. [c.68]

    При применении биохимического метода очистки ПСВг большое значение имеет состав воды, природа веществ и их концентрация, наличие в жидкости биогенных элементов (азога, фосфора, калия, железа), а также количество растворенного кислорода, pH, температура. Обычно концентрация органических веществ, находящихся в ПСВр, подаваемых на биологические очистные сооружения, ие превышает I—2 г/л. Многие из веществ, присутствующие в ПСВг, могут в той ли иной степени нарушать нормальную жизнедеятельность микроорганизмов. Чаще всего нарушение вызывается превышением МКб и МКб. о. с- Поэтому при проектировании очистных биологических сооружений необходимо предусматривать возле цехов емкости для аварийного сброса, чтобы исключить залповые выбросы сточных вод. [c.324]

    Количество и состояние воды в ионите тесно связано с особенностями строения гидратированного ионообменника. Обычно [20, 119-121] воду, содержащуюся в ионите, делят на две части "связанную", входящую в состав гидратных оболочек фиксированных и подвижных ионов, и "свободную", состояние которой мало отличается от состояния воды вне ионита. Разумеется, в ионите имеется вода, находящаяся в промежуточных состояниях, однако, деление на две части в качестве первого приближения во многих случаях вполне оправдывает себя и оказывается достаточным для понимания сути анализируемого явления. Свойства связанной и свободной воды сильно отличаются. Данными ЯМР-спектроскопии [48] было показано, что количество связанной воды определяется в основном природой противоионов и фиксированных групп, количество свободной воды - природой и степенью сшитости матрицы. В ионитах на углеводородистой основе значительная часть воды является свободной, в то время как в обычных (немодифицированных) перфторированных мембранах из-за сильной гидрофобности полимерных цепей и неспособности их образовывать с водой водородные связи практически вся вода локализуется у фиксированных групп и противоионов. [c.38]

    Водород широко распространен в природе. Содержание его в земной коре (атмосфера, литосфера и гидросфера) составляет 3,0 мол. доли, %. Он входит в состав воды, глин, каменного и бурого угля,, нефти и т. д., а также во все животные и растительные организмы. В свободном состоянии водород встречается крайне редко (в вулканических и других природных газах). Водород — самый распространенный элемент космоса он составляет до половины массы Солниа и большинства звезд. Гигантские планеты солнечной системы Юпитер и Сатурн в основном состоят из водорода. Он присутствует в атмосфере ряда планет, в кометах, газовых туманностях н межзвездном газе. [c.273]

    Помимо воды, входящей в состав оксидов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью или ван-дер-ваальсовыми адсорбционными силами [303]. Тип связи воды с поверхностными атомами металла зависит от природы и металла, и электролита. Так, в кислой или нейтральной среде поверхность железа несет на себе положительный заряд, и можно ожидать электронодонорного взаимодействия воды с этой поверхностью. В щелочной среде или при недостатке НзО+-ионов вблизи электродов предпочтительна ориентация воды в двойном слое атомами водорода к поверхности металла. Следовательно, энергия связи воды с поверхностью металла может изменяться в широком интервале — от химической связи до слабой водородной или ван-дер-ваальсовой. [c.292]

    Нефтяные сульфокислоты можно грубо разделить на растворимые в углеродах и растворимые в воде. По признаку цвета первые названы цвета красного дерева , а последние — зелеными кислотами. Состав каждого типа кислот меняется в зависимости от сырья, подвергавшегося сульфированию, и концентрации кислоты. В общем случае сульфокислоты, получаемые нри неглубокой кислотной обработке, растворимы в воде, в то время как маслорастворимые кислоты образуются нри более глубоком сульфировании [209]. Была предложена и другая классификация сульфокислот, основанная па растворимости солей кальция этих кислот в воде и этиловом эфире [210—214]. Кислоты классифицируются по четырем типам (см. табл. ХП1-3). Практически ничего не известно о химическом составе упомянутых типов сульфокислот. Предполагается, что природа 7-кислот не зависит от характера сульфируемого нефтепродукта. Элементарный анализ очищенной натриевой соли -кислоты показал формулу С1зН1зЗОдКа. [c.574]

    Водород в природе. Получение водорода. Водород в свободном состоянии встречается на Земле лишь в незначительных количествах. Иногда он выделяется вместе с другими газами при вулканических извержениях, а также из буровых скважин при добывании нефти. Но в виде соединений водород весьма распростра-иен. Это видно уже из того, что он составляет девятую часть Mii bi воды. Водород входит в состав всех растительных и животных организмов, нефти, ка.менного и бурого углей, природных газов и ряда минералов. На долю водорода из всей массы земной коры, считая воду и воздух, приходится около 1%. Однако при пересчете на проценты от общего числа атомов содержание водорода в земной коре равно 17%  [c.342]

    Щелочные металлы в природе. Получение и свойства щелочных металлов. Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калнй принадлежат к распространенным элементам содержание каждого из них в земной коре равно приблизительно 2% (масс.). Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида илн двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения в СССР, стассфуртские в ГДР и эльзасские — во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль в зимние месяцы толстым слое.м осаждается на дне. [c.562]

    На состояние молекул воды в ГС влияют также природа подложки и состав раствора. В. Дрост-Хансеном [493], Я. Из-раелашвили [494, 495] рассмотрено состояние ГС вблизи полярной и неполярной поверхности. Нерастворимые примеси поверхности, как и ее выщелачивание, в определенной степени влияют на ГС, однако, как отмечают Б. В. Дерягин и Н. В. Чураев [422], эффект выщелачивания не играет значительной роли. Предварительная обработка поверхности, примеси [422 480, 494, [c.172]

    Металлический Мп используется главным образом для придания твердости и прочности сталям. Для марганца известны состояния окисления от + 2 до +1, наиболее важными из них являются низшее и высшее состояния окисления. В отличие от , V" и Сг" ион Мп" обнаруживает небольшую склонность к переходу в высшие состояния окисления. Он сильно сопротивляется окислению и является плохим восстановителем. Марганец(П) в воде образует розовый октаэдрический комплекс Мп(Н20) , а его соли Мп804 и МпС тоже имеют розовую окраску. Состояния окисления от Мп(1П) до Мп(УГ) встречаются редко, исключение составляет только наиболее распространенная в природе марганцевая руда МпОз. Марганец(У1) существует в виде манганат-иона, МПО4 . Состояние Мп( Т1) является наиболее важным в этом состоянии марганец входит в состав перманганат-иона, МПО4, обладающего пурпурной окраской. Перманганат-ион-один из наиболее сильных среди распространенных окислителей его восстановительный потенциал равен -ь 1.49 В. [c.444]

    Б добываемой па месторождениях сырой нефти содержится большое количество примесей неорганической природы — пластовая вода с растворенными в ней солями, взвешенные минеральные частицы, продукты коррозии технологического оборудования. Подготовка нефти к переработке обычно не приводит к полному удалению таких примесей и в ней сохраняется небольшое количество как тонкодиснерсной воды, так и частиц малых, зачастую к коллоидным, размеров. Эта часть нефти существенно влияет на микроэлементный состав, повышая содержание основных породообразующих элементов — Si, Fe, Al, Р, щелочных и щелочноземельных металлов и галогенов [861, 882, 885]. Даже специальная обработка нефти для аналитических целей не всегда обеспечивает полное освобождение от неорганических примесей. Поэтому данные по общему микроэлементпому составу и по соста- [c.160]

    Элементы этих групп достаточно широко распространены в природе. Практически все представители их найдены в нефтях, причем содержание N3, К, Са, Мд достаточно высоко и достигает порядка 10- —10 % [923], а в золе нефтей на эти элементы приходится до 15—20% веса. Несхмотря на их широкую представительность, сведений о содержащих эти элементы органических соединениях очень мало. Это связано с тем, что ще-иочными и щелочноземельными элементами представлен основной катионный состав пластовых вод, их ионы с трудом отмываются от нефти и могут находиться в ионном равновесии с входящими в нефть веществами кислотной природы. Большинство исследователей приходят к выводу, что щелочные и щелочноземельные металлы присутствуют в нефтях в форме солей нефтяных кислот, фенолятов и тиофеноля-тов как в виде простых монофункциональных соединений, так и в виде составных частей крупных иолифуикциональных молекулярных агрегатов, смол и асфальтенов. Найдено, например, что 92% их в нефти С-1 (Калифорния) присутствует в форме легко гидролизуемых нефтерастворимых соединений [76]. [c.171]

    Большой интерес представляют системы, в которых имеются как положительные, так и отрицательные бинарные азеотропы. Два положительных азеотропа или положительный азеотроп и низкокипящий компонент, не входящий в состав этого азеотропа, порождают образование хребта на поверхности давления. Два отрицательных азеотропа или один отрицательный азеот-. роп и высококипящий компонент, не входящий в состав этого азеотропа, обусловливают появление впадины. При одновременном наличии в тройной системе хребта и впадины может получиться седловина на поверхности давления (рис. 20, в). При наличии седловины к поверхности давления можно провести параллельную концентрационному треугольнику касательную плоскость. Точка касания отвечает седловидному или положительно-отрицательному азеотропу. В соответствии с геометрической природой седловины давление (или температура) в точке седловидного азеотропа не должно быть ни самым большим, ни самым малым в системе. Следоватепьно, седловидные азеотропы не имеют экстремума температуры или давления. Такой азеотроп впервые был обнаружен Райндерсом и де Минье [79] пр исследовании системы ацетон—хлороформ—вода. [c.75]

    В качестве растворителя самых разнообразных веществ вода пспользуется чаще всего, поскольку она является самым распро-страиенпым веществом иа поверхности Зе.мли, Вода покрывает около трех четвертей поверхиостн земного и ара, природные воды— океанские, морские, озерные, речные, болотные — по существу представляют собой растворы, содержащие и большей илн меньшей концентрации разнообразные соли и некоторые другие вещества, В виде растворов вода пропитывает rpyirrbi, почвы и входит в состав растительных и животных организмов. В твердом состоянии вода в природе встречается в виде горных, арктических и антарктических льдов. В этом состоянии вода наиболее чистая. Наконец, в атмосфере содержатся водят/ые нары и их конденсаты— капельно-жидкие и кристаллические (туманы, облака, дождь, снег), которые также относительно чисты. [c.169]

    Химические структуры асфальтенов чрезвычайно разнообразны от соединений с преобладанием алифатических элементов в молекулах до высококонденсированных ароматических систем - и от чистых углеводородов до гетероциклических соединений с различными полярными группами. Поэтому асфальтены рассматривают как класс веществ, объединенных не по химической природе, а по растворимости. Учитывая, что свойства нефтевмещающих пород и компонентный состав нефти изменяются и в пределах одной залежи, а также принимая во внимание физикохимическое воздействие пластовых вод, контактирующих с нефтью, и биохимические процессы, можно предполагать, что и физико-химические свойства асфальтенов различны. [c.9]

    Все природные и большинство синтетических цеолитов представляют собой алюмосиликаты. Наибольшее значение в катализе имеют кристаллические алюмосиликатные цеолиты типа А, X, У и другие, с прочным трехмерным скелетом [215]. Общую формулу цеолитов можно представить в виде Мг/пО-АЬОз- сЗЮг-г/НгО, где п — валентность металлического катиона М л — мольное соотношение ЗЮг АЬОа у — число молей воды. Величина х в значительной степени определяет структуру и свойства цеолитов. В цеолите типа А X близок к 2 в цеолитах типа X — изменяется от 2,2 до 3 У — от 3,1 до 5,0 в синтетическом мордените достигает 10. Для каталитических процессов используют цеолиты с х = 2,8—6,0 [215, 216]. При различных условиях синтеза цеолитньус катализаторов (химический состав кристаллизуемой массы, параметры кристаллизации, природу катиона) можно в широких пределах изменять величину X [217, 218]. Так, низкокремнистые катализаторы (х = = 1,9—2,8) синтезируют в сильно щелочной среде, а в качестве источника кремнезема используют силикат натрия. Для получения высококремнистых цеолитов применяют более реакционно-способные золи или гели кремневой кислоты, а синтез проводят в менее щелочной среде [219]. [c.172]

    Гидросфера - водная оболочка Земли, включающая океаны, моря, континентальные водоемы и ледяные покровы материков. Гидросфера обуславливает существование биологической жизни на планете, так как вода - необходимый компонент всех биологических процессов. Естественные водоемы, входящие в состав гидросферы, служат источниками промышленного и бытового снабжения водой, источниками энергии, путями сообщения. Свыше 95% всех вод гидросферы приходится на долю Мирового океана, играющего важную роль в поддержании жизни на Земле путем синтеза белковых веществ и жиров в массе фитопланктона, насыщения атмосферы кислородом, регуляции обмена веществ и поддержания динамического равновесия в природе. Промышленное производство приводит к загрязнению, засорению и истощению (континентальные водоемы) гид-росфер >1, в том числе и вод Мирового океана. [c.8]

    Поверхностные воды представляют воды открытых водоемов рек, озер, каналов, водохранилищ. В состав поверхностных вод входят различные минеральные и органические вещества, природа и концентрация которых зависят от климатических, геоморфологических, почвенно-геологических условий, а также от arpo- и гидротехнических мероприятий, развития промышленности в регионе и других факторов. [c.72]

    Летучие продукты, выделяющиеся при коксовании и образующие прямой коксовый газ (ПКГ) составляют до 15% от массы коксуемой шихты, или около 300 нм на тонну шихты. В состав ПКГ входят пирогенетическая вода, смесь высококипящих многоядерных и гетероциклических соединений — каменноугольная смола (КУС), ароматические углеводороды ряда бензола, нафталин, аммиак, соединения циана, сернистые соединения и, образующие после их отделения обратный коксовый газ (ОКГ), водород, метан, оксиды углерода (П) и (IV) и газообразные углеводороды различной природы. В ПКГ содержатся также в незначительных количествах сероуглерод S2, серок-сид углерода OS, тиофен 4H4S и его гомологи, пиридин 5H5N и пиридиновые основания. [c.174]


Смотреть страницы где упоминается термин Вода в природе и состав ее: [c.65]    [c.66]    [c.476]    [c.612]    [c.99]    [c.309]    [c.185]    [c.181]   
Смотреть главы в:

Неорганическая химия -> Вода в природе и состав ее




ПОИСК





Смотрите так же термины и статьи:

Вода в природе

Природа воды



© 2025 chem21.info Реклама на сайте