Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетические уравнения реакций первого, второго и третьего порядков

    Порядок реакции определяется показателем степени при концентрации в кинетическом уравнении реакции. Если порядок равен единице, то реакцию называют реакцией первого порядка, если двум — второго порядка, если трем — третьего порядка. [c.321]

    Порядок реакции определяется на опыте. Для этого из смеси реагирующих веществ, первоначальная концентрация которых известна, так же как и при определении константы скорости, через определенные промежутки времени отбирают пробы и находят в них остаток не вступившего в реакцию вещества. Полученные опытные данные затем поочередно подставляют в кинетические уравнения для констант скоростей реакций первого, второго и третьего порядков. В каком из примененных уравнений вычисленная величина константы скорости сохраняет свое постоянство, таков, следовательно, и порядок реакции. [c.123]


    Порядок реакции определяют по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентраций в этом уравнении. Например, если кинетическое уравнение реакции представлено выражением (IV.3), то порядок этой реакции равен т- -п. По этому признаку реакции разделяются иа реакции первого, второго и третьего порядка. Реакции более высоких порядков отсутствуют. Известны также реакции нулевого и дробного порядков. [c.115]

    Порядок химической реакции определяется по применимости к реакции тех или других форм уравнений. Он равен молекулярности такой реакции, кинетическими уравнениями которой описывается ее скорость. По этому определению к реакциям первого порядка относят одномолекулярные реакции, к реакциям второго порядка — двухмолекулярные, а к реакциям третьего порядка — трехмолекулярные. Однако только в типичных, простых случаях порядок реакции совпадает с ее молекулярностью. Чаще этого совпадения нет. Так, например, омыление водой уксусноэтилового эфира вследствие гидролиза последнего в разбавленном водном растворе по уравнению  [c.289]

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]

    Порядок реакции. Порядок химической реакции определяется по в ду кинетического уравнения. Он равен сумме степеней концентраций в таком уравнении. По этому признаку реакции под разделяются на реакции первого, второго и третьего порядка. Реакции более высокого порядка не встречаются, [c.191]

    Каждому типу реакции отвечает свое кинетическое уравнение, выражающее зависимость скорости химической реакции от концентрации реагирующих веществ. В соответствии с этим реакции разделяются на реакции первого, второго и третьего порядков. Лишь в наиболее простых случаях порядок реакции совпадает с молекулярностью. Чаше такого совпадения не бывает. Реакция может быть бимолекулярной, но протекать по кинетическому уравнению реакции первого порядка. Это указывает [c.216]


    Основное уравнение реакций, протекающих в потоке, было проинтегрировано и для некоторых других обратимых и необратимых реакций первого, второго и третьего порядков . В данной работе кинетические уравнения выражены через кр, поэтому для того, чтобы записать указанные уравнения через концентрации, необходимо ввести множитель ЯТ)", где л—порядок реакции. [c.144]

    Кинетический порядок может быть определен также путем вычисления константы К с помощью дифференциальных или интегральных уравнений для различных порядков. Если, например, константа скорости, вычисленная по уравнению второго порядка, для различных моментов времени или концентраций будет практически постоянной, а при вычислении по уравнениям первого и третьего порядков изменяется, то порядок реакции будет вторым. [c.266]

    Полученные опытные данные затем поочередно подставляют в кинетические уравнения для констант скоростей реакций первого, второго и третьего порядков (76), (78), (80). В каком из примененных уравнений вычисленная величина константы скорости сохраняет свое постоянство, таков, следовательно, и порядок реакции. [c.118]

    Большинство химических реакций протекает в несколько стадий. Даже если скорость реакции описывается простым кинетическим уравнением, реакция может состоять из ряда стадий. Одной из задач кинетики является определение промежуточных стадий, потому что только таким путем можно понять, как протекает реакция. Отдельные стадии называются элементарными реакциями. Совокупность элементарных реакций представляет механизм суммарной реакции. При рассмотрении механизма говорят о молекулярности стадий, которая определяется числом реагирующих молекул, участвующих в элементарной реакции. Отдельные стадии механизма называются мономолекулярными, бимолекулярными или тримолекулярными в зависимости от того, одна, две или три молекулы вступают в реакцию на данной стадии. Для элементарных реакций молекулярность (моно-, би- и три-) совпадает с их порядком (соответственно первый, второй и третий), но по отношению к суммарной реакции эти термины не являются синонимами. Например, мономолекулярная стадия механизма имеет первый порядок, но реакция первого порядка не обязательно долл<на быть мономолекулярной, как будет показано ниже (разд. 10.12). [c.292]

    Реакция имеет суммарный третий порядок, суммарная скорость процесса прямо пропорциональна [О] и зависит уже не от константы скорости 1, а от константы равновесия К первой стадии и константы скорости кг второй стадии. В этом случае скоростьопределяющей стадией будет вторая. Естественно, что в промежуточной области зависимость скорости процесса от концентрации реагентов становится еще более сложной. Таким образом, установить молекулярность процесса, используя данные по кинетическому порядку реакции, удается только в некоторых благоприятных случаях. В то же время следует иметь в виду, что предлагаемый механизм процесса должен согласовываться с экспериментально полученным видом кинетического уравнения. [c.214]

    Сумма показателей ( 1+П2) в кинетическом уравнении (9.5) определяет порядок реакции п в целом. Значения 1 и Лг совпадают со стехиометрическими коэффициентами, если реакция (9.1) является элементарной, т. е. протекает в одну стадию. Реакции могут быть нулевого, первого, второго, третьего и т. д. порядков. Возможен дробный и даже отрицательный порядок. [c.183]

    Порядок реакции. Порядок химической реакции по данному веществу — частный порядок — это показатель степени, в которой входит концентрация этого вещества в уравнение скорости реакции. Если скорость реакции (I) описывается уравнением V = кс с , то /г и т — частные порядки соответственно по веществу В и О. Сумма показателей (тг+пг) в кинетическом уравнении определяет порядок реакции в целом. Частные порядки и стехиометрические коэффициенты совпадают лишь для некоторых простых реакций. Для реакций с большими стехиометрическими коэффициентами, которые протекают через ряд стадий, частные порядки и стехиометрические коэффициенты, как правило, не совпадают . Реакции могут быть нулевого, первого, второго, третьего и т. д. порядков. Возможен дробный порядок, например /а. [c.197]

    Показатели степени тип называют порядком реакции соответственно по веществам А и В, а сумму (от+я) — порядком реакции. Порядок реакции может быть как целым, так и дробным числом. Реакции, состоящие из повторяющихся одинаковых элементарных химических актов, имеют, как правило, второй порядок реакции, реже — первый, еще реже — третий. Сложность кинетического уравнения (дробный или переменный порядок реакции) указывает на сложность реального механизма реакции, протекающего в действительности по нескольким (или многим) элементарным стадиям. [c.86]


    Говорят также, что первая из этих реакций имеет третий порядок по веществу А, вторая — второй порядок по А и первый порядок по В, а третья — первый порядок по каждому из трех веществ. Коэффициент пропорциональности к в уравнениях такого типа называют удельной скоростью или константой скорости. Первый термин предпочтительнее и отражает тот факт, что к равна скорости реакции при условии, что все концентрации, входящие в кинетическое уравнение, равны единице. Термин удельная скорость первого порядка следует относить к величине [c.73]

    Для решения задач математического моделирования на первом, кинетическом, уровне удобно классифицировать процессы по формальному признаку — порядку уравнений скорости элементарных стадий по реакционным компонентам. Рассмотрение кинетики отдельных стадий показало, что скорость их протекания может быть охарактеризована как скорость реакции нулевого, первого или второго порядков по концентрациям участвующих в реакциях веществ. Так, для начальной фазы процесса — инициирования можно выделить следующие случаи нулевой, первый или второй порядок по мономеру первый или дробный порядок по катализатору общий порядок реакции — не выше третьего. Для стадии роста имеем первый порядок по мономеру первый, реже дробный, порядок по активному (юлимеру общий порядок реакции, как правило, второй. Для стадии обрыва первый или второй порядок по активному полимеру нулевой или первый порядок по мономеру, растворителю или другим сопутствующим веществам (в том числе примеси Т или агенты передачи цепи Н) общий порядок — не выше третьего. [c.13]

    В том случае, когда скорости реакции определить не представляется возможным, порядок реакции можно установить, воспользовавшись методом, в котором за исходные данные принимаются начальные концентрации реагирующих веществ и текущие концентрации исходных веществ в различные моменты времени. При этих условиях проверяют соответствие полученных экспериментальных данных кинетическим уравнениям первого, второго или третьего порядка. Для соответствия данной реакции уравнению первого порядка должно удовлетворяться уравнение (273). [c.182]

    Известны многочисленные реакции в растворе, подчиняющиеся кинетическим уравнениям третьего и даже более высоких порядков. Вполне вероятно, что в большинстве случаев эти реакции более сложны и состоят из двух, трех и большего числа последовательных элементарных реакций, которые в свою очередь могут быть моно- или бимолекулярными, обратимыми или необратимыми. Если скорость одной из этих элементарных реакций намного меньше скоростей остальных стадий, то она и определяет скорость суммарной реакции. Кинетическое уравнение суммарной реакции отвечает простому кинетическому порядку, который представляет только ход медленной реакции. Наоборот, если две элементарные реакции одной и той же суммарной реакции имеют скорости одного порядка, то частные кинетические порядки одних реагентов могут быть первого или второго порядка, а частный порядок другого реагента — дробным. Поэтому необходимо, чтобы в каждом случае результаты этих кинетических определений согласовывались с другими экспериментальными наблюдениями. При этом соответствующая реакция должна рассматриваться также и с точки зрения теории химической связи, чтобы можно было установить элементарные реакции, составляющие суммарную реакцию. [c.275]

    Основой химической кинетики является кинетический закон, согласно которому скорость реакции пропорциональна концентрации каждой из реагирующих частиц. Порядок реакции — это величина, определяемая числом концентрационных членов уравнения, необходимых для того, чтобы выразить кинетический закон для реакции. Эта величина определяется экспериментально, и она часто служит указанием на сложность механизма реакции. Если для реакции (2А В продукты) уравнение скорости реакции выражается как —dA/di = к [А] [В], то говорят, что реакция имеет третий порядок — первый по отношению к А и второй по отношению к В. Но порядок реакции не обязательно должен быть целочисленным разложение этаналя на СН4 и СО имеет порядок /г, поскольку реакция подчиняется уравнению [c.166]

    Порядок реакции определяется показателем степени при концентрации в дифференциальном уравнении скорости. Если порядок равен единитте, то реакцию называют реакцией первого порядка, если двум — второго порядка, если трем — третьего порядка. Различают полный и частный гюрядок реакции. Каждый из показателей степени нри концентрациях в дифференциальном уравнении скорости выражает частный порядок реакции. Сумма показателей степени при конттентрациях определяет полный (суммарный) порядок реакции. Уравнение, связывающее скорость реакции с концентрациями реагирующих веи еств, называется кинетическим уравнением реакции. Так, скорость реакции [c.325]

    Порядок реакции определяется кинетическим уравнением реакции и равен сумме показателей степеней при концентрациях в этом уравнении. Реакции могут быть нулевого, первого, второго и третьего (не выше), а также дробного порядка. Дробный порядок в особенности характерен для сложных реакций, протекающих через промежуточные стадии, т. е. имеющих более одного элементарного акта. Нулевой порядок наблюдается в таких гетерогенных реакциях, в которых скорость подвода реагирующего вещества во много раз больше скорости химического взаимодействия. В реакциях нулевого порядка скорость постоянна во времени w — onst. [c.230]

    Очень важной характеристикой процесса является порядок реакции. Порядок реакции определяется экспериментально из кинетического уравнения реакции и равен сумме показателей степеней при концентрациях в этом уравнении. Реакции могут быть нулевого, первого, второго и третьего (не выше), а также дробного порядка. Дробный порядок характерен для сложных реакций, протекаюших через какие-то промежуточные стадии. В реакциях нулевого порядка скорость реакции постоянна вр времен (u= oEst). [c.74]

    Время пребывания реагирующих -веществ в реакционной зоне (т) определяют из кинетических уравнений першго, второпо и третьего порядко1в. В реакциях первого порядка стехиометрический коэффициент прямой реакции равен единице, в реакциях второго порядка — двум, третьего — трем. Так как стехиометрические коэффициенты химического уравнения не всегда определяют порядок реакции, то его устанавливают экспериментально. Для реакций первого порядка  [c.21]

    Лимитирующей стадией процесса является вторая стадия. Если R — атом или простой радикал, то область концентраций М, в которой реакция имеет третий порядок, будет широкой вследствие большой скорости распада R2 или комплекса RM. В области высоких концентраций третьего тела (/JafM] 2> k i) скорость образования продукта рекомбинации будет следовать бимолекулярному закону Шр к = ilR] и лимитирующей стадией окажется первая стадия образования Ri или же комплекса RM. Таким образом, формально оба механизма могут приводить к однотипным кинетическим зависимостям, хотя смысл входящих в уравнения динамических параметров различен, как различно и существо протекающих процессов. [c.116]

    Метод изоляции, или метод избытка реагента. По этому методу, предложенному Оствальдом, проводят серию опытов, в каждом из которых и 1учается влияние концентрации только одного из исходных веществ на скорость реакции. Для этого все остальные исходные вещества берут в таком избытке, по сравнению с исследуемым, чтобы их концентрации в ходе реакции можно было считать практически постоянными. Составляют кинетические уравнения и определяют поря,док реакции по каждому из исследуемых исходных веществ при помощи первого, второго или третьего способов. Сумма порядков реакций по всем исходным веществам представляет собой порядок реакции в целом. [c.318]

    Молекулярность реакции представляет собой молекулярно-кинетическую характеристику системы, а понятие о порядке реакции следует из формально-кинетического описания. Для простых гомогенных реакций, протекаюших в одну стадию, эти два понятия совпадают, т. е. мономолекулярная реакция соответствует реакции первого порядка, бимолекулярная — реакции второго порядка, три-молекулярная — реакции третьего порядка. Для сложных реакций, протекающих в несколько стадий, формальное представление о порядке не связано с истинной молекулярностью реакций. Поэтому при формально-кинетическом описании таких процессов встречаются реакции дробного, нулевого и даже отрицательного порядка по одному из компонентов. Например, каталитическое разложение аммиака на поверхности вольфрама описывается уравнением и = А (реакция нулевого порядка, скорость которой не зависит от концентрации реагентов), разложение фосфина на стекле протекает в соответствии с уравнением и = йСрн (реакция первого порядка), стибин на твердой сурьме диссоциирует со скоростью ii = /e sbH, (реакция дробного порядка). Окисление оксида углерода, протекающее по уравнению 2С0-Ь02->2С02 на платиновом катализаторе, подчиняется зависимости v = k( o2/ o), т. е. эта реакция имеет порядок [c.216]

    Согласно кинетическим данным реакции гидролиза обычно имеют общий третий порядок первый — по концентрации фосфониевой соли и второй — по концентрации гидроксид-ионов 124]. На основании этих данных Мак-Ивен предложил механизм реакции (схема 139), который принят в настоящее время в качестве рабочей гипотезы. Общее дифференциальное уравнение для скорости реакции представлено уравнением 140. В том случае, если реакция, характеризуемая йз, является лимитирующей, суммарная скорость процесса будет в значительной мере определяться способностью группы Н к отщеплению в виде аниона. Если уходящая группа, например п-нитробензил или 1,4-дифенилбута-диен-1,3-ил, образует очень стабильный анион, как, например, в случае солей (79) и (80), наблюдается общий второй порядок реакции (первый — по фосфониевой соли и первый — по гидроксид-иону).  [c.644]

    Экспериментальное исследование скорости реакции позволяет выявить форму зависимости скорости реакции от концентрации. По форме зависимости v = /(с) различают реакции I, И, П1 порядка. Скорость реакции первого порядка пропорциональна концентрации исходных веществ в первой степени. В реакциях II и III порядка скорость сйответственно зависит от концентрации во второй и третьей степени. В общем случае порядком реакции называют сумму показателей степеней, с которыми концентрации реагентов входят в экспериментально найденное кинетическое уравнение. Йапример, для реакции типа niA -f п В = Hg + п Е порядок реакции п — п + п . Казалось бы, порядок реакции легко определить по виду стехиометрического уравнения. Однако порядок, по которому развивается реакция во времени, часто не совпадает с порядком, определяемым по стехиометрическому уравнению. Последнее отражает лишь исходное и конечное состояние системы. Так, например, окисление ионов йода ионами [c.192]

    Уравнение (4) показывает, что в общем случае скорость диспропорционирования сложным образом зависит от концентраций реагирующих олефинов. Уравнения (3) и (5) могут в некоторых случаях упрощаться. Например, при работе с весьма малыми концентрациями исходного олефина в уравнении (3) можно пренебречь третьим членом знаменателя. Если к тому же /С1[СзНб]о С1, то получится кинетическое уравнение второго порядка по олефину, а если /СЯ зНб]о>1, то получится уравнение первого порядка по олефину. Возможно, что именно с этим связан найденный в работе [83] переменный порядок по олефину для реакции диспропорционирования пентена-2. [c.168]


Смотреть страницы где упоминается термин Кинетические уравнения реакций первого, второго и третьего порядков: [c.16]    [c.89]    [c.211]    [c.630]    [c.134]    [c.827]    [c.515]   
Смотреть главы в:

Физическая и коллоидная химия -> Кинетические уравнения реакций первого, второго и третьего порядков




ПОИСК





Смотрите так же термины и статьи:

Кинетические второго порядка

Кинетические третьего порядка

Кинетическое уравнение и порядок реакции

Кинетическое уравнение реакци

Порядок второй

Порядок первый

Порядок реакции

Порядок реакции второй, уравнение

Порядок реакции третий, уравнения

Порядок реакций и реакции первого порядка

Порядок третий

Реакции второго порядка

Реакции второй

Реакции кинетическая

Реакции первого кинетического порядка

Реакции первого порядка

Реакции первый

Реакции порядок Порядок реакции

Реакции третий

Реакции третьего порядка

Реакция уравнение кинетическое

Третий

Уравнение кинетическое

Уравнение реакции первого порядка

Уравнения реакций



© 2024 chem21.info Реклама на сайте