Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количество и природа связующего

    Минимальное количество пылеобразного цинкового пигмента, которое необходимо для обеспечения катодной защиты, зависит от ряда факторов, включая размер частиц 2п, природу связующего, содержание 2пО и других возможных пигментов [7]. Оно, вероятно, также зависит от того, образовалось ли изолирующее покрытие на самих частичках цинка за период до момента использования ЛКМ (т. е. от срока хранения ЛКМ). [c.251]


    Унитарные представления о природе химических сил были развиты Кекуле. Он назвал эти силы насыщаемыми силовыми лучами , которые можно символически обозначать крючками или черточками (Эрленмейер). Каждому атому присуща своя атомность , или валентность, которые указывают на количество его связей устойчивыми являются те молекулы, в которых не осталось неиспользованных валентностей. Характер валентных сил физика того времени еще не могла объяснить, но, тем не менее, с помощью этих представлений уже можно было описывать природу и превращения органических молекул. Едва ли какие-нибудь другие теории в естествознании были столь плодотворны для изучения и систематики колоссального экспериментального материала, как теория валентности Кекуле. Именно поэтому она долгое время находила почти неограниченное применение. [c.23]

    В процессе обжига углеродных материалов происходит их спекание. Прочность спекания связана с механической прочностью и зависит от многих факторов природы связующего и наполнителя, гранулометрического состава наполнителя, количества связующего, технологии приготовления коксо-пековых композиций и их обжига. Влияние технологических факторов на прочность спекания углеродных материалов показано в работах [1, 2], а взаимосвязь между комплексом физико-химических характеристик пека и свойствами углеродных материалов описана в работе [3]1. Ряд исследователей предлагает оценить технологические свойства пеков и материалов на их основе путем установления зависимостей между отдельными характеристиками пека и свойствами углеродных материалов [4, 5]1. Предложенные зависимости просты по определению и, хотя не претендуют на универсальность, но в отдельных частных случаях могут быть применимы в качестве приближенного экспресс-метода оценки связующего. Именно в таком [c.26]

    Гетероциклы систематизируют не только по природе и количеству гетероатомов в цикле, но и по размерам циклов (трехчленные, четырехчленные и т. д.), а также по природе связей насыщенные, ненасыщенные, ароматические. [c.314]

    В простейшем случае, когда эти молекулы располагаются монослоем по поверхности кристаллических частиц, их количество можно определить по уравнению Ленгмюра. Реально же в зависимости от природы связи между узлами твердого тела (ионная — дальнодействующая или ковалентная — близкодействующая), от заряда зерен с поверхностью частиц довольно жестко могут быть связаны не одни, а от 4 до 25 слоев воды [(4...25) Стах]. Образуется так называемая адсорбционная оболочка молекул НаО вокруг твердой частицы. Из-за упорядоченности расположения молекул и уменьшения интенсивности их теплового движения вода в такой оболочке обладает большей плотностью по сравнению с обычной водой, а также отличается от нее и по ряду других свойств (диэлектрическая постоянная и т. п.). Молекулы воды, связанные жестко с поверхностью твердого тела, образуют с твердой частицей (зерном) единый комплекс и никакого участия в текучести системы не принимают. Молекулы НгО, расположенные за адсорбционным слоем, менее прочно связаны с поверхностью частиц и именно они обусловливают текучесть (подвижность, пластичность) дисперсной системы. [c.259]


    Азот, как и углерод, относится к самым интересным элементам природы. Огромные массы азота и его соединений (особенно нитратов) сосредоточены на поверхности нашей планеты и в ее атмосфере большое количество азота связано в форме органических соединений. Между различными резервуарами азота постоянно происходит обмен, в результате которого осуществляется непрерывный круговорот этого элемента. Движущими факторами круговорота являются разности как физических, так и химических потенциалов соединения азота возникают и разлагаются в зонах электрических разрядов, при фотохимических процессах, в различных органических реакциях, в биологических процессах нитрификации, денитрификации и др. [c.177]

    К анодным ингибиторам, сильно тормозящим анодную реакцию, относятся ингибиторы окислительного типа, например нитрит натрия. Эта соль при введении в электролит в небольших количествах сдвигает потенциал стали в положительную сторону, переводя ее в пассивное состояние, причем начальный потенциал стали смещается сразу же примерно на 0,2 В, а через 10 сут более чем на 0,7 В. Такой сильный сдвиг потенциала во времени говорит о химической природе связи металла с ингибитором, так как при физической адсорбции процесс поляризации протекал бы намного быстрее. При высоких концентрациях нитрита натрия скорость катодного процесса может возрасти так, что возникает пассивация по механизму ускорения катодной реакции. [c.81]

    Большое количество работ было выполнено по воздействию на гемицеллюлозы в древесине различных ферментов с целью выяснения природы связей между ними и лигнином [142]. [c.425]

    Потеря текучести и наличие упругих свойств являются характерными свойствами гелей при этом для устранения текучести достаточно сравнительно небольшого количества межцепных связей. Очень большое значение имеет природа этих связей если узлы сетки образованы водородными связями или взаимодействием диполей, то достичь плавления студня легко нагреванием или изменением состава среды (см. выше), если же цепи связаны между собой химически- [c.208]

    В зависимости от химической природы атома-акцептора водородные связи отличаются друг от друга степенью прочности. О количестве водородных связей в белковой молекуле судят по данным изотопного метода, в частности по времени обмена атомов водорода, участвующих в образовании водородной связи, на дейтерий (при обработке белка тяжелой водой [c.62]

    Первая группа зависимостей связывает защитные свойства органических ингибиторов с такими структурными характеристиками молекул как длина и разветвленность радикала, его объем, площадь поверхности металла, перекрываемой молекулой ингибитора при его адсорбции, местоположением и количеством кратных связей в молекуле ингибитора и т. п. Вторая группа зависимостей связывает защитные свойства ингибиторов с электронной плотностью на адсорбционном центре молекулы, на которую существенное влияние оказывают природа и положение различных заместителей. Влияние природы заместителя на электронную плотность адсорбционного центра молекулы ингибитора может быть учтено с7-константами Гаммета-Тафта. [c.43]

    Как видно из данных табл. 10.63, коэффициент селективности при сорбции золота зависит от степени активирования, а таюке от природы связующего. С ростом обгара происходит развитие суммарного объема пор в основном за счет микропористости, а также увеличиваются эффективные радиусы пор. При одной и той же величине обгара адсорбенты, полученные с использованием тяжелой фракции сланцевой смолы, имеют значительно б6ш>шую селективность по извлечению золота, которая существенно возрастает с увеличением обгара, так как эта фракция в своем составе содержит большее количество гетероатомов. Образец с обгаром 43 % получен из шихты, представляющей собой смесь [c.591]

    Мэне и Эйшенс 1160, 161] применили инфракрасные спектры поглощения для исследования природы аммиака, хемосорбированного на алюмосиликатном катализаторе при 175° С. Был использован катализатор Америкен цианамид К° , прокаливание которого проводилось при 500° С. Б условиях, при которых выполнялась эта работа, происходила незначительная адсорбция аммиака на свежей поверхности силикагеля. Прокаленный катализатор, обработанный сухим аммиаком, давал относительно сильные полосы поглощения, подобные полосам поглощения самого аммиака, и относительно слабые полосы, напоминающие полосы NH в солях аммония. Кажущееся количество NH увеличивалось при добавлении воды к катализатору. Эти очень важные наблюдения дали первое прямое доказательство природы связи между азотными основаниями и кислотными центрами на поверхности дегидратированных катализаторов крекинга. Как показывают результаты, льюисовские кислотные центры в катализаторах существуют и их может быть больше, чем кислотных центров Бренстеда, по крайней мере для этого типа катализаторов. Однако, как будет обсуждаться в последнем разделе главы, ббльшая часть данных показывает, что для крекирующей активности кислотные центры Бренстеда имеют большее значение, чем кислотные центры льюисовского типа. [c.81]


    Ввиду наличия большого количества двойных связей в макромолекулах каучуков их сшивание возможно и без серы за счет взаимодействия с веществами типа инициаторов полимеризации (перекиси, азосоединения и др.), которые, атакуя двойные связи, вызывают их разрыв с образованием свободных радикалов. Эти радикалы реагируют друг с другом или с двойной связью, причем образующиеся поперечные углерод-углеродные связи имеют ту же природу, что и химические связи в основной цепи полимера  [c.45]

    Удовлетворение этим требованиям зависит не только от качества и количества связанного антитела, но также от природы нерастворимого носителя и природы связи. [c.115]

    Аналогичным образом, хотя полимер на основе диена всегда содержит остаточные ненасыщенные связи, характер этой ненасыщенности указывает на стереоспецифичность полимеризации. Природа и количество ненасыщенных связей в полимере на основе олефина представляют интерес с точки зрения определения механизма полимеризации, в частности реакции обрыва цепи. В табл. 10 собраны данные по ненасыщенности многих полиуглеводородов. [c.81]

    Кроме связующего и металлич. наполнителя, М. п. могут содержать др. наполнители минерального и органич. происхождения, стабилизаторы, красители, пластификаторы и поверхностно-активные в-ва, тип и количество к-рых зависят главным образом от природы связующего. [c.96]

    Из всех элементов, входящих в состав твердого топлива, горючи только углерод, водород и часть серы (5гор). Если вычислить теплотворную способность углей, исходя из теплот сгорания этих элементов в свободном состоянии, ее значение будет всегда выше полученного опытным путем. Разница в этих значениях не превышает 3—5% и объясняется тем, что теплотворная способность угля является функцией не только элементного состава, но и строения и зависит от характера связей между атомами в молекулах органической массы. Следовательно, для точного вычисления теплоты сгорания по результатам элементного анализа необходимо знать не только количество углерода и водорода, но и природу связей между ними, а также с другими элементами, входящими в состав топлива. К сожалению, ясности в этом вопросе пока нет. [c.124]

    В зависимости от температуры и времени обработки получается фторуглерод с отношением F/ в интервале 0,33-0,99 и цветом от черного до желто-белого. Цвет определяется количеством остаточного углерода и природой связи атомов углерода с фтором. По данным [6-153], часть этих связей яековалектЕа. Предполагается образование при фторировании акцепторных МСС I и И ступеней, стабильных на воздухе и имеющих повышенную электрохимическую активность по сравнению с фторуглеродом, полученным из природных графитов. [c.402]

    Растворы сходны как с механическими смесями частиц, так и с индивидуальными химическими соединениями. От первых они отличаются тем, что любой макроскопический объем раствора обладает таким же химическим составом и физическими свойствами, как и вся его масса. От химических соединений растворы отличаются тем, что их состав может изменяться в зависимости от количеств взятых компонентов и они не подчиняются закону кратных отношений. Так, состав водного раствора хлорида натрия может произвольно меняться в пределах, допустимых его растворимостью. В 100 г воды при 293 К можно растворить любое количество Na I в пределах от О до 36,8 г, что соответствует предельной растворимости соли при данной температуре. Растворы отличаются от химических соединений также и природой связи. Если для химических соединений характерны в основном ионная и ковалентная связи, то для растворов характерны более слабые ван-дер-ваальсовы, а в некоторых случаях и водородные связи. [c.79]

    В случае, когда диффундируют из объема и адсорбированы заранее частицы одной природы и адсорбция обратима, приэлектродную концентрацию Сз и адсорбированное количество можно связать изотермой Фрум-кина  [c.74]

    Аналитическая реакционная газовая хроматография (АРГХ) предусматривает совместное использование химических и хроматографических методов исследования, причем химические превращения могут быть выполнены в одном из звеньев хроматографической системы [301. Типичными химическими реакциями, осуществляемыми в АРГХ, являются гидрирование и дегидрирование, гидрогенолиз, дегидратация и дегидрогалогенирование. этерификация и декарбоксилирование, обмен функциональными группами между реактантом и реагентом и другие реакции, приводящие к образованию соединений, заметно отличающихся по летучести и параметрам удерживания от веществ, присутствующих в исходной пробе. Использование этих реакций для целенаправленного химического тестирования индивидуальных соединений или компонентов сложных смесей позволяет расшифровывать структуры весьма сложных объектов анализа (например, природных веществ), представленных в микрограммовых количествах. В связи с этим методы АРГХ особенно ценны при исследовании природы микропримесей и в функциональном анализе органических соединений [c.189]

    Исследованиями Кузьминского, Межробиана, Тобольского и др. установлено, что способность к окислению каучуков различна и зависит от их молекулярного веса и структуры разветвленно-сти молекул, количества двойных связей в главных цепях, наличия полярных заместителей, их положения и природы, [c.62]

    Системы, изучаемые физической химией, — газы, жидкости, растворы, — состоят из сравнительно небольших молекул, редко содержаш,их более одного-двух десятков атомов. Между тем суш,ествует огромное количество сис тем, отдельные частицы которых включают много сотен и тысяч атомов и достигают иногда микроскопически видимых размеров. Во многих случаях эти частицы представляют собой зародыши кристалликов, маленькие обломки различных кристаллических решеток или аморфных веществ, или капельки жидкостей. В случае кристаллических решеток, они по природе связей, соединяющих их структурные элементы, могут быть разделены на ионные (подобные решетке ЫаС1), атомные (решетки алмаза, графита), молекулярные (решетки антрацена, 2п8) и металлические (решетки Аи, Ag) в структурном отношении частицы относятся к трехмерным или слоистым решеткам. Так, например, в алмазе (рис. 1) весь кристалл можно рассматривать как одну молекулу, в которой все атомы углерода связаны в пространственную сетку одинаковыми, тетраэдри-чески расположенными, ковалентными связями С—С [c.4]

    Анализ спектров замещенных бензолов [184, 185] показал, что характеристические полосы образуют правильную очередность полос бензола со значительным смещением к видимой области в зависимости от количества, природы и положения заместителей, поэтому спектр полифункционального соединения является результатом суммирования поглощения соответствующих изолированных хромофоров и их взаимного влияния. Видимо, с этим связан и тот факт, что большинство спектральных исследований лигнина в УФ-области проведено на модельных соединениях, представляющих структурные единицы макромолекулы лигнина. Вместе с тем в [186] указывается, что спектр 4-окси-3-метокси-1-пропилбензола (принятого за основную единицу структуры лигнина) существенно не изменяется, если а) про-пановая цепь укорачивается до простого метильного заместителя б) две структурные единицы соединяются С- С-связью между кольцом и боковой цепью или с образованием кумарановой структуры в) в боковую цепь вводится ОН-заместитель. [c.170]

    Применение всех перечисленных приемов позволило определить природу связи между углеводной и пептидной частью в нескольких гликопротеинах. В настоящее время твердо установлено наличие О-гликозидной связи через оксиаминокислоты (тип Р) для муцинов подчелюстных желез, групповых веществ крови, комплекса гепарина с белком и др. и N-aцил-гликозиламинной связи через аспарагиновую и, вероятно, глутаминовую кислоту (тип Е) для овальбумина, орозомукоида и других гликопротеинов. Знаменательно, что для образования указанных гликопептидных связей необходимо присутствие специфических аминокислот — оксиаминокислот и двухосновных кислот, которые обязательно входят в состав природных гликопротеинов в количествах, иногда значительно превышающих их содержание в обычных белках. [c.573]

    В турбулентных потоках интенсивность переноса массы, тепла и количества движения определяется в основном коэффициентами турбулентной диффузии Д, температуропроводности и вязкости Все они имеют одинаковую природу (связаны с турбулентными пульсациями скорости) и по величине очень близки, а уравнения турбулентного переноса массы, тепла и количества движения имеют одну и ту же форму. Поэтому для определения скорости массопереноса широко используется аналогия не только с процессами переноса тепла (см. уравнения (5.2.3.9)), но и с процессами переноса импульса (гидродинамическая аналогия). Известные в литературе многочисленные гидродинамические аналогии устанавливают связь между коэффициентом массоотдачи и коэффрщиентом трения турбулентного потока, который в экспериментах определяется значительно проще. [c.293]

    Вопрос о природе связей, стабилизирующих пространственные структуры в водных дисперсиях казеина, до сих пор не решен. Это связано с тем, что нет специальных работ, посвященных исследованию контактов, ответственных за структурообразование. В основном исследователи пытались выяснить роль содержащих серу аминокислот в образовании пространственных структур. Так, Вор-мел [275], исследуя специфические группы, участвующие в гелеобразовании в системах казеин — вода — щелочь, пришел к выводу, что стабилизующими гель группами являются группы цис-теина. В работе Хиггинса, Фрэзера и Хейса [276], посвященной выяснению роли сульфгидрильных групп в образовании казеиновых гелей, изучался процесс выделения серы, освобождающейся под действием щелочи. Однако ввиду малого количества цистино-вых остатков в казеине авторы приходят к заключению, что только 3 — 8-связи не могут быть ответственны за структурообразование в концентрированных казеиновых системах. В работе [277] отмечалось, что если структурообразование инициировано ионами Са " , основную роль в образовании структуры играют ЗН-груины казеина. Однако в работе [278] было показано, что в казеине не происходит дисульфидный обмен и, следовательно, нет свободных 8Н-групп. [c.114]

    Влияние природы связу-юи его. Термомеханические свойства клееных нетканых материалов заметно зависят от природы применяемых связующих. Это видно из графиков (рис. 2), относящихся к нетканым материалам из хлопка, содержащим одинаковые количества связующего разной природы бутадиенакрилонитрильный карбоксилированный каучук СКН-40-1ГП (с добавкой 10% метазина) [4], поливинилхлорид или ацетохлорин. [c.295]

    Легче осуществить это исследование с помощью пленок, содержащих высокодисперсное твердое тело — наполнитель. Так, спектральным метбдом исследовалось взаимодействие в пленках полиэфирных смол ПН-1 и ФЛ-50 с поверхностью аэросилов, введенных в эти полимеры в качестве наполнителей [98— 100]. Параллельно исследовались механические свойства пленок. Смолы наполнялись большим количеством аэросила. При таком способе приготовления образцов доля пленкообразующего вещества, вступившего во взаимодействие с твердой поверхностью, значительно превышает его содержание в небольшом свободном (без наполнителя) объеме пленки. Это дает возможность исследовать природу связей на границе полимер — твердое тело путем съемки спектра на просвет. Производилась адсорбция аэросилом полиэфирной смолы из растворов в ацетоне в течение двух суток при 18—20° С. Затем добавлялся нафтенат кобальта и гидроперекись кумола и производилась полимеризация при 80° С в течение трех часов. Для съемки инфракрасного спектра полученный продукт спрессовывался в таблетки. На рис. 108 представлены спектры образца исходного аэросила, образца аэросила с нанесенной описанным путем полиэфирной смолой ПН-1 и образца пленки самой смолы без аэросила, обработанной в аналогичных условиях. В спектре самого аэросила (кривая 2) наблюдается узкая полоса свободных поверхностных гидроксильных групп 3750 см и широкая полоса с максимумом около 3500 см обусловленная поглощением связанных с аэросилом и друг с другом водородной связью молекул воды. Адсорбция из растворов смолы приводит к полному исчезновению [c.265]

    Байер [10], обсуждая проблему синтеза высокомолекулярных комплексообразующих веществ, обладающих способностью связывания ионов металла, проводит аналогию с природными веществами подобного тина В природе существуют высокомолекулярные комплексообразующие соединения, служащие для обогащения, переноса и аккумулирования тяжелых металлов [И]. Можно, например, указать на процесс концентрирования (в миллионы раз) ванадия из морской воды кровеносными клетками тунникатов [11, 12]. Апоферритин — белок млекопитающих, аккумулирующий железо,— может связывать в виде комнлексов только железо [13] . Аналогичные примеры приводит и Синявский [1] Гумусовые вещества ночв селективно связывают магний и кальций. Накопление золота некоторыми растениями так значительно, что они могут служить индикаторами месторождений золота и т. д. Все это дает основание предполагать, что создание сорбентов, обладающих высокой селективностью, вполне осуществимая задача . Однако отсутствие общего теоретического направления методов синтеза таких продуктов создает большие трудности в осуществлении заманчивых возможностей высокоселективных процессов поглощения веществ. Для повышения избирательности обычных универсальных ионитов исследователи пользуются различными приемами, которые основаны на учете факторов, влияющих в той или иной мере на избирательность (заряд противоионов, сольватация и набухание, степень сшивки и др.). Влияние этих факторов проявляется следующим образом [1] 1) Из разбавленных растворов ионит предпочтительнее поглощает противоионы с большим числом зарядов, при этом с ростом концентрации раствора электроселективность ионита уменьшается. 2) Ионит предпочтительнее поглощает противоион с меньшим молярным объемом. Избирательность увеличивается с увеличением разности молярных объемов, емкости и количества поперечных связей в ионите, с уменьшением концентрации раствора и с уменьшением молярной доли меньшего иона. 3) С иовыитением температуры избирательность ионита уменьшается. [c.100]

    Для получения эластичных пенополиуретанов применяют обычно смолы с линейной или слегка разветвленной структурой, а для получения жестких пен — смолы со значительно более разветвленной структурой. Химическая природа образования жестких и эластичных ненопо-лиуретаиов в общем одинакова за тем исключением, что жесткие пены представляют собой полимеры с большим количеством поперечных связей, чем эластичные. Ради удобства процесс пенообразования будет рассмотрен в основном на примере эластичных пенополиуретанов. [c.281]


Смотреть страницы где упоминается термин Количество и природа связующего: [c.135]    [c.51]    [c.117]    [c.83]    [c.50]    [c.125]    [c.18]    [c.349]    [c.90]    [c.43]    [c.36]    [c.40]    [c.548]   
Смотреть главы в:

Физико-химические основы синтеза окисных катализаторов -> Количество и природа связующего




ПОИСК





Смотрите так же термины и статьи:

Связь природа

природа связе



© 2025 chem21.info Реклама на сайте