Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие на границах фаз

    Объекты, с помош ью которых производятся измерения поверхностных сил, часто имеют искривленную — сферическую или цилиндрическую — поверхность [26—28, 32]. Частицы дисперсных систем, в устойчивости которых поверхностные силы играют огромную роль, также только в редких случаях представляют собой плоские пластинки. Чаш е их форма приближается к сферической, эллипсоидальной или цилиндрической. Формула кольцевых зон (11.49) позволяет связать силовое взаимодействие таких объектов с их кривизной и со свободной энергией взаимодействия границ раздела. При этом необходимо лишь, чтобы радиус действия поверхностных сил был гораздо меньше радиусов кривизны. Для силы и энергии двух одинаковых сфер метод Дерягина дает [33] (см. главу II, 7) [c.163]


    Факторы, влияющие на равновесие в реальных системах, можно свести к двум основным группам электростатические и химические взаимодействия. Граница между ними в известной мере условна например, сольватационные эффекты, обусловленные взаимодействием растворенных частиц с молекулами растворителя, обычно имеют частично электростатическую, частично химическую природу. [c.96]

    Частицы заключены в прямоугольный ящик, одна пара параллельных сторон которого представляла собой отражающие границы, т. е. потенциал взаимодействия граница — молекула жидкости [c.352]

    Исследование механического переноса энергии от одной системы к другой желательно проводить на какой-либо модели. Для этой цели может быть использована обычная пара систем, показанная на рис. 15.1. На этой модели граница а между двумя системами показана в виде двух взаимодействующих границ, с очень небольшим промежуточным участком окружающей среды. [c.236]

    Качественно этот механизм ничем не отличается от механизма синглетной фотореакции, за исключением того, что энергия берется на границе пакета Лг и включается стадия инверсии спина. Эффективность инверсии спина связана с величиной взаимодействия границ пакетов Лг и Лз за дыркой , необходимой для того, чтобы не было двухэлектронного пересечения Лх— Лз. Во всех последующих обсуждениях Л будет обозначать границу пакета. Кроме того, будет неизменно предполагаться, что проходит через середину дырки . [c.261]

    При изучении полиамидного моноволокна и пленки целлофана было установлено, что при отсутствии разветвленности граница адгезив — моноволокно является наиболее слабым местом системы . Разрушение образца сопровождается чаще всего полным отслоением резины вместе с пленкой адгезива. Если же между волокном и адгезивом образуется достаточно прочная связь за счет сил межмолекулярного или химического взаимодействия, граница адгезив— волокно уже не является слабым местом системы  [c.58]

    Фрикционное разрушение частиц происходит вследствие их взаимодействия с потоком жидкости, в котором имеет место градиент скоростного напора. Последний играет роль движущей силы разрушения. В случае, если градиент па границах частицы имеет различное значение и эта разность превышает по своим энергетическим параметрам энергию связи в частице, то будет наблюдаться разрушение последней. В АГВ такой механизм преимущественно возникает в зазоре между ротором и статором (рис. 3.1В). Здесь же, в силу разнообразия размеров частиц происходит и обратный процесс — их агрегирование. Таким образом, в условиях фрикционного взаимодействия необходимо учитывать оба процесса — разрушения частиц и их укрупнения. [c.102]


    Рассмотрим основные характеристики пористой среды. Если не учитывать силовое взаимодействие между твердым скелетом породы и прилегающими к нему частицами флюида, то пористую среду можно рассматривать как границы области, в которой движется жидкость. Тогда свойства пористой среды можно описать некоторыми средними геометрическими характеристиками. [c.11]

    Нижняя граница определяется проявлением неньютоновских реологических свойств жидкости, ее взаимодействием с твердым скелетом пористой среды при достаточно малых скоростях фильтрации. [c.18]

    Поверхность раздела между двумя жидкостями обычно обладает положительной свободной энергией. Межфазное поверхностное натяжение на границе раздела двух жидкостей также положительно. Условием полной смешиваемости жидкостей является выполнение требования, чтобы межфазное натяжение было отрицательным или равным нулю. В таком случае молекулярные силы не будут препятствовать смешению жидкостей, так как каждая из них притягивает молекулы другой с такой же или с большей силой, чем сила, с которой каждая жидкость притягивает свои собственные поверхностные молекулы. В этом случае молекулы свободно перемещаются из одной жидкости в другую. На поверхности раздела жидкость — жидкость молекулы ориентируются таким образом, чтобы энергия их взаимодействия была максимальной [210]. [c.192]

    Упомянутые в разделе 4.1 поверхностно-активные вещества (ПАВ) способны изменять фазовые и энергетические взаимодействия на поверхностях раздела. Это свойство обусловливается особенностями их химического строения, а также условиями использования (температурой, характером среды, концентрацией, состоянием фаз на границе раздела). Поверхностно-активными свойствами, как правило, обладают соединения, содержащие в молекуле углеводородный радикал и одну или несколько активных (функциональных) групп. Роль последних обычно играют группы, содержащие кислород, азот, серу или фосфор, а также серу и фосфор одновременно. [c.196]

    Показатели ККМ и 0ГБ связаны между собой соотношением 0ГБ = 7/ККМ. Объемные и поверхностные свойства ПАВ определяются их химическим строением, а также полярностью и поляризуемостью молекул. Важное значение, кроме того, имеют межмолекулярные взаимодействия. По этим показателям и устанавливают, относится ли то или иное соединение к ПАВ, а также определяют степень его активности на границе раздела фаз. [c.199]

    Второй из указанных выше подходов учитывает взаимодействие между молекулами моющих присадок и уже образовавшимися углеродистыми отложениями в масле. В этом случае эффективность моющего действия определяется рядом процессов, протекающих в системе параллельно или последовательно. Одним из них является адсорбция молекул присадок на металлических поверхностях и создание на границе раздела фаз заряженного слоя, препятствующего образованию отложений. Одновременно с этим в объеме масла происходит взаимодействие молекул моюще-диспергирующих присадок с твердыми частицами в виде солюбилизации и диспергирования последних, что в конечном счете приводит к повышению коллоидной стабильности системы. В результате этого снижается интенсивность образования отложений, а следовательно, и загрязненность основных узлов и деталей двигателя 232, 233]. [c.220]

    Адсорбционная способность присадок. Адсорбция присадок на границе раздела фаз является первичным актом взаимодействия среды с поверхностью трения. Адсорбция характеризует накопление в граничном слое вещества, способного при прочих равных условиях определять протекание дальнейших процессов, связанных (в зависимости от назначения присадки) с формированием прочной защитной пленки либо химически модифицированного поверхностного слоя. Под адсорбцией в данных случаях понимается адсорбция в электрически нейтральной форме (физическая адсорбция) и адсорбция с обменом зарядами (хемосорбция), тем более что во многих случаях четкую грань между этими двумя формами адсорбции провести невозможно [274]. [c.255]

    Поверхностно-активными веществами называют соединения, которые способны сорбироваться на границе раздела фаз, изменяя характер взаимодействия между этими фазами. [c.330]

    Термодинамической мерой молекулярного взаимодействия в жидкости может в известных границах служить внутреннее давление жидкости (ди/да) [см. уравнения (IV, 30—33), стр. 127—1281. [c.163]

    Представим себе поверхность твердого тела на границе с га-зом. Внутри твердого тела частицы (атомы, ионы или молекулы), образующие его решетку, правильно чередуются в соответствии с кристаллической структурой, причем их взаимодействия уравновешены. Состояние же частиц, находящихся на поверхности, иное—их взаимодействия не уравновешены, и поэтому поверхность твердого тела притягивает молекулы вещества из соседней газовой фазы. В результате концентрация этого вещества на поверхности становится больше, чем в объеме газа, газ адсорбируется поверхностью твердого тела. Таким образом, адсорбция представляет собой концентрирование вещества на поверхности раздела фаз (твердая—жидкая, твердая—газообразная, жидкая газообразная). Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объемной фазы вещество называется адсорбатом. Адсорбция из смесей связана с конкуренцией молекул различных компонентов. Например, при адсорбции из бинарного жидкого раствора увеличение концентрации у поверхности одного компонента (сильнее адсорбирующегося) приводит к уменьшению концентрации другого (слабее адсорбирующегося). [c.436]


Рис. 8. Взаимодействие сил на границе трех фаз Рис. 8. Взаимодействие сил на границе трех фаз
    Подробно изложены современные представления о структуре границ зерен в поликристаллах — геометрическая теория, структурные дефекты, атомная теория с учетом энергетических параметров, взаимодействие границ с примесными атомами и т. д. Рассмотрены механизмы, определяющие прочностные и другие физические свойства поликристаллов, а также механизмы миграции и перестройки границ, зернограничного проскальзывания и охрупчивания (тре-щинообразования), сегрегации и диффузии примесей, представляющие значительный научный и практический интерес. Книга содержит результаты оригинальных исследований авторов, а также новые данные советских и зарубежных исследований. [c.319]

    Неравновесное состояние зернограничной структуры рассмотренного типа обычно образуется в результате взаимодействия границ с рещеточными дислокациями. Когда дислокации выходят из кристалла на границу, поверхность зерна, образующая границу, меняется. При этом, если разориентировка (вдали от границы) не изменяется, параметры в, П1 и пг этой границы могут стать несовместными, у границы появятся дальнодействующие упругие поля, которые связаны с вощедщими в границу дислокациями. [c.97]

    К настоящему времени накоплен общирный экспериментальный материал, касающийся образования неравновесных границ зерен при их взаимодействии с рещеточньпми дислокациями [172]. Под взаимодействием границ зерен с дислокациями понимают действие больщеугловых границ как источников и стоков для дислокаций решетки. Достижением недавних исследований, включая компьютерное моделирование, явилось доказательство того, что решеточные дислокации, попадая в границу, остаются дискретными дефектами кристаллического строения и взаимодействие дислокаций с границами должно заключаться в достаточно сложных перестройках. Решеточная дислокация не может просто оборваться на границе, она должна продолжаться в границе зернограничной дислокацией (одной или несколькими). Поэтому в поликристалле решеточные дислокации вместе с зернограничными должны образовывать единую замкнутую систему (рис. 2.19) [172]. Следовательно, взаимодействие решеточных дислокаций с большеугловыми границами сводится, по существу, к взаимным превращениям внутризеренных и зернограничных дислокаций. Как и [c.97]

    К.Е. Аббакумовым и O.A. Шерманом [424, докл. 7.10] теоретически рассмотрен вопрос об отражении поперечных волн от тонких несплошностей типа трещин с взаимодействующими границами, т.е. час-тично пропускающих УЗ. Установлено, что, пока угол падения меньше третьего критического, отражение качественно сходно с отражением от свободной поверхности. При больших углах падения амплитуда отраженной волны убывает, достигая минимума при угле 45 . [c.193]

    Рассматривая границы применимости уравнения Юнга, существенно также, что входящие в зависимость (36) величины относятся не к самому твердому телу, а к покрывающему его адсорбционному слою (френкелев-ской подстилающей дорожке ). Следовательно, строго говоря, зависимость с физическим смыслом, обычно вкладываемым в уравнение Юнга, должна быть выведена методами не термодинамики, а капиллярной гидродинамики. Так, эффекты, связанные с сорбцией поверхностью субстрата отдельных компонентов адгезива, представляющего собой, как правило, гетерогенную систему, заметно изменяют свободную энергию на границе раздела фаз. На рис. 12 приведена схема, характеризующая такое изменение [84], обусловленное взаимодействием границы раздела твердое тело — жидкость с микрочастицами кубической и сферической формы. [c.32]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Образующиеся в ходе такого взаимодействия гидроксиды и оксиды будут, естественно, изменять свойства металла, в том числе его нулевую точку и работу выхода. Весьма вероятно, что отклонения, наблюдающиеся для галлия и некоторых других металлов, обусловлены именно этой причиной. В пользу такого заключения говорит и уменьшение расхождения при смещении потенциала электрода отрицательнее нулевой точки, т. е. когда становится более вероятным восстановление поверхностных оксидов и переход к чистому металлу. Следует, однако, иметь в ниду, что теория электрокапи.мярных явлений, элементы которой были рассмотрены, относится лишь к случ<1Ю идеально поляризуемых электродов. При переходе к обратимым электродам появляются осложнения, связанные с определением заряда их поверхностей. Во-первых, на обратимых электродах возможно протекание электрохимических реакций и связанный с ними перенос зарядов через границу раздела электрод — раствор. Во-вторых, в этом случае иельз) игнорировать (чего, впрочем, нельзя делать и для любых не идоал1>но поляризуемых электродов) передачу электронов от ионов или от других адсорбированных частиц на электрод и в обратном направлении. Многие [c.259]

    Как уже отмечалось, н полупроводника <, в отличие от металлов имеется два рода носителей заряда отрицательные--электроны и положительные — дырки. Поэтому проводпнкн по ряду свойств похожи на электролиты, где также присутствуют отрицательные и положител( Пые носители электричества — апиопы и катионы. Эта аналогия обнаруживается и и строении двойного электрического слоя, В ре.чультате наложения сил теплового движения и сил взаимодействия (притяжения и отталкивания) с поверхностью полупроводника внутри песо вблизи Гранины раздела устанавливается диффузное распределение зарядов и возникает так называемый объемный заряд. Таким образом, двойной электрический слой на границе раздела включает в себя как бы два слоя Гуи — один в раство- [c.274]

    Отрезок ДМ расположен на границе области ректификации АВМО, в которой (рис, 40, г) возможное распределение компонентов по высоте аппарата в общем случае благоприятно для протекания прямого процесса. Здесь, следовательно, могут быть выбраны сечения, наиболее благоприятные для расположения каталитической зоны. Достижение полного превращения реагента В, с другой стороны, связано с возможностями разделения ректификацией трехкомпонентной смеси АСО. В области АВМО при первом заданном разделении возможно выделение в дистиллят азеотропа М, а в нижний продукт бинарной смеси АО химически не взаимодействующих компонентов или (при достижении состава псевдоисходной смеси точки М ) выделение чистого вещества О. [c.203]

    Рассмотрим только вариант первого заданного разделения в совмещенном реакционно-ректификационном процессе, направленном на получение продуктов С и D из исходной смеси чистых реагентов А и В. Следуя результатам работы [46], отметим, что в рассматриваемом примере нет никаких отличий статического характера от примера II, поскольку поверхность DMS (рис. 42,6) пересекается линиями материального баланса. При первом заданном разделении граница DMS проявляется лишь как некоторая частная плоскость, в которой могут располагаться линии материальных балансов. Наличие этой плоскости ле вносит никаких изменений в распределение величин Hi/Wi, которые по-прежнему описываются левой ветвью кривой а на рис. 41, в. Таким образом, линиями предельного распо-, ложения составов псевдоисходных смесей остаются линии ВМ и АМ (рис. 42, в или рис. 40, в), а разделяющая линия областей ректификации SM на плоскости химического взаимодействия ABQ (прямая для случая первого разделения) переходима составами псевдоисходных смесей. [c.207]

    Углеводородные системы могут быть гомо- и гетерогенньпии. В гомогенной системе все ее части имеют одинаковые физические и химические свойства. Составляющие гомогенной системы (называемые компонентами) размазаны по всему пространству и взаимодействуют на молекулярном уровне. Для гетерогенной системы физические и химические свойства в разных точках различны. Гетерогенные системы состоят из фаз. Фаза-это часть системы, которая является гомогенной и отделена от других фаз отчетливыми границами. Смесь воды, нефти и газа в пласте-типичный пример гетерогенной среды. [c.252]

    В гл. 1 в связи с исследованием нияснец, границы применимости закона Дарси (при очень малых числах Рейнольдса) было рассмотрено аномальное (неньютоновское) поведение флюидов в пластовых условиях, не проявляющих этих свойств вне контакта, с пористой средой. Это объяснялось тем, что при очень малых, скоростях фильтрации наряду с силами вязкого сопротивление становятся существенными силы сопротивления, не зависящие от скорости фильтрации и связанные физико-химическим взаимодействием фильтрующихся жидкостей с материком пористой среды. Учет этих сил приводит к нелинейным законам фйльт-рации. [c.335]

    Особенность взаимодействия в объеме системы отражается на процессах, протекающих на границе раздела фаз. Например, резкое изменение контактной разности потенциалов ДКРП в процессе адсорбции присадок на металле наблюдается при концентрации, совпадающей с областью ККМ (рис. 4.9). [c.213]

    Соединения типа МСДА-1 резко уменьшают межфазное натяжение на границе нефтепродукт — вода, обладают удовлетворительной водовытесняющей способностью, легко взаимодействуют с водой. Следует отметить, что соли органических кислот и аминов, катионная и анионная части каторых соединены слабой водородной связью, увеличивают смачивающую способность нефтепродукта сразу же после введения присадки в среду. [c.294]

    Кроме того, полученные выше результаты, касающиеся механизма распространения и взаимодействия волн и переходных процессов в аппаратах с дисперсным потоком, применимы лишь в том случае, когда величина возмущающего сигйаЛа достаточно мала. Только в этом случае скорость распространения волны можно считать независящей от величины возмущающего сигнала. При значительной величине возмущающего сигнала либо при больших высотах аппарата указанное условие не вьшолняется. Первоначальное возмущение заметно деформируется, что приводит в результате к образованию, с одной стороны, скачков уплотнения, а с другой, сильно растянутых волновых фронтов. Так в противоточном аппарате фронт концентрационной волны при значительном уменьшении подачи дисперсной фазы резко очерчен и представляет собой скачок уплотнения. В то же время фронт волны концентрации при значительном увеличении подачи дисперсной фазы размыт. Скачком уплотнения является также граница раздела двух режимов (обычного осаждения и взвешенного слоя) в том случае, когда оба режима существуют в аппарате одновременно. Образование скачка уплотнения происходит в данном случае вследствие взаимодействия малых возмущений, распространяющихся навстречу друг другу. Анализ переходных процессов в таких случаях является задачей будущих исследований. [c.146]

    Химические реакции всегда связаны с разнообразными физическими процессами теплопередачей, поглощением или излуче-ниед электромагнитных колебаний (свет), электрическими явлениями и др. Так, смесь веществ, в которой протекает какая-либо химическая реакция, выделяет энергию во внешнюю среду в форме теплоты или поглощает ее извне. Поглощение света фотографической пленкой вызывает в ней химический процесс образования скрытого изображения. Химические реакции, протекающие в аккумуляторах между электродами и раствором, являются причино11 возникновения электрического тока. При повышении температуры вещества увеличивается интенсивность колебательных движении внутри молекул, и связь между атомами в молекуле ослабляется после перехода известной критической границы происходит диссоциация молекулы или взаимодействие ее с другими молекулами при столкновении, т. е. химический процесс. Число аналогичных примеров легко увеличить. Во всех случаях имее место тесная связь физических и химических явлений, их взаимодействие. [c.11]

    Состояние вещества на границе раздела фаз. Все жидкости и твердые тела ограничены внешней поверхностью, на которой онн соприкасаются с фазами другого состаЕа и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечни.-ксв атомов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком илн газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на границе жидкости или твердого тела с их паром) или с молекулами различной химической природы (иапример, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фйз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.310]


Смотреть страницы где упоминается термин Взаимодействие на границах фаз: [c.472]    [c.98]    [c.189]    [c.27]    [c.223]    [c.161]    [c.176]    [c.61]    [c.22]    [c.207]    [c.60]    [c.308]    [c.311]    [c.681]   
Смотреть главы в:

Физикохимия неорганических полимерных и композиционных материалов -> Взаимодействие на границах фаз




ПОИСК







© 2025 chem21.info Реклама на сайте