Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера, определение ванадии

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]


    Третья проблема может решаться по двум направлениям более широкое использование на алюминиевых заводах нефтяных коксов с повышенным (до 2,5 %) содержанием серы и ванадия (до 0,002 %). Это, естественно, вызовет определенное сопротивление алюминиевой отрасли из-за проблем по экологии и возможности снижения сортности алюминия по примесям. Второе направление-подбор нефтей, поставляемых на заводы, и максимальное использование имеющихся ресурсов качественного сырья на заводах-производителях нефтяного кокса. Это направление требует определенных усилий как руководства нефтяных компаний, так и самих заводах. Но цель может быть оправдана результатом - существенным повышением цены кокса. [c.88]

    Их содержится 1—2 % [226], и для различных месторождений содержание может существенно разниться. Существуют определенные зависимости между содержанием гетероатомов и металлов в смолисто-асфальтеновых веществах [226]. Установлена связь между содержанием серы и ванадия, ванадия и азота нейтрального характера. С содержанием серы коррелируется железо, сурьма, хром. [c.274]

    Метод отгонки также применяют при определении ванадия, вольфрама, молибдена, олова, сурьмы, иода, фтора, осмия, серы, селена, теллура, кремния и других элементов. [c.360]

    Существует определенная зависимость между содержанием серы и ванадия в нефти. В высокосернистых нефтях восточных районов страны ванадия содержится в 200—500 раз больше, чем в малосернистых бакинских. Замечено, что содержание ванадия в смолисто-асфальтеновых веществах тем больше, чем выше содержание серы, а никеля — чем выше содержание азота. Ванадий полностью концентрируется в смолисто-асфальтеновых веществах, а в масляных фракциях практичес и отсутствует [89]. [c.83]

    Для определения ванадия 0,5—1 г очень тонко измельченной пробы сплавляют в покрытом фарфоровом тигле с 4 г серы и 6 г соды, а именно в продолжение 1 часа на маленьком пламени, а последние 10 минут — на большом. Сплав растворяют в воде и от раствора [с осадком, доведенного в мерной колбе до объема] в 500 мл, отделяют фильтрованием часть в 400 мл. Фильтрат сливают в большую фарфоровую чашку, прибавляют 20 мл концентрированной серной кислоты и выпаривают. Потом прибавляют 100 мл дымящей азотной кислоты и сгущают раствор до 50 мл. После этого разбавляют 50 мл воды и отфильтровывают выделившуюся вольфрамовую кислоту, а также серу. Их озоляют и прокаливают в фарфоровом тигле и потом нагревают с 15 мл серной кислоты 1 1. Этот раствор присоединяют к фильтрату который выпаривают до появления [густых белых] паров. Для колориметрического определения раствор охлаждают, разбавляют водой, прибавляют перекиси водорода, доводят водою до 200 мл и после часового стояния и вторичного фильтрования сравнивают полученный красный раствор с раствором ванадия известного содержания. Ддя сравнения приготовляют раствор, содержащий в 100 мл 0,01 г ванадия. [c.176]


    В т. 117 (1964) (новая серия) дан большой материал по анализу силикатных пород, определению ванадия в природной воде, галлия в касситерите и другие работы. [c.62]

    Щелочно-окислительный плавень для определения общей серы, хрома, ванадия, фосфора и мышьяка. [c.168]

    Бутыль с жидкой двуокисью серы двуокись серы требуется при определении ванадия полезна также при восстановлении суспензии окиси марганца. [c.19]

    Можно не опасаться, что хром не попадет в осадок от аммиака. Ванадий тоже полностью осаждается аммиаком в присутствии солей железа, всегда имеющихся на этой стадии анализа. Лишь в крайних случаях пренебрежение определением ванадия внесет ошибку в оба определения железа (см. стр. 88). Малому содержанию хрома в большинстве пород благоприятствует то обстоятельство, что процентное содержание хрома может быть определено с точностью до третьего десятичного знака. При подобной точности очень малые количества хрома в породах приобретают геохимическое значение например, безусловно стоит обратить внимание на то, что в одной серии пород содержится, скажем, 0,002—0,007% СггОз, тогда как в другой цифры колеблются от 0,030 до 0,040% СггОз. [c.38]

    Платиновые тигли и чашки, в которых рекомендуется проводить сплавление с пиросульфатом, не особенно хороши для такой цели. Трехокись серы легко теряется из плава, превращая его в сульфат калия, который не очень эффективен в разложении окисленных минералов. Кроме того, платина в процессе плавления заметно подвергается разрушению, переходя в анализируемый раствор. Это может оказать влияние на последующие определения, например на определение ванадия (см. гл. 48). Для такого определения породу целесообразно разлагать выпариванием с плавиковой кислотой в сосуде из тефлона остаток переносят в кварцевый тигель для сплавления с пиросульфатом. [c.31]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]

    Наблюдается наличие общей тенденции к увеличению содержания в нефтях ванадия с увеличением содержания серы, смол и асфальтенов. Например, в высокосернистых нефтях восточных районов страны ванадия содержится в 200—500 раз больше, чем в малосернистых бакинских. Замечено, что содержание ванадия в САВ тем больше, чем выше содержание серы, а никеля — чем выше содержание азота. Однако огромное разнообразие типов нефтей, различный возраст месторождений и многие другие факторы делают невозможным установление единых и определенных закономерностей. [c.298]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Общее содержание металлов в остатках нефтей различной глубины отбора изменяется в широких пределах 10—970 г/т и зависит от типа нефти и концентрации смол и асфальтенов (см. табл. 1.1-1.4). Отношение содержания ванадия к никелю также меняется в широком диапазоне от 0,5 до 4,8. Существует корреляция между характером распределения металлов в смолах и асфальтенах и типом исходной нефти. Например, в близких по химическому составу остатках сернистых нефтей преобладает содержание ванадия и никеля, которые равномерно распределены между асфальтенами и различными фракциями смол, а отношение ванадия к никелю в смолах может достигать 4,8-4,0. В несернистых нефтях нафтенового основания в смолисто-асфальтеновых компонентах это значение не превышает 0,4. Существует определенная зависимость между содержанием серы и ванадия в нефти. Например, в высокосернистых остатках нефтей Башкирии содержание ванадия в 200-500 раз больше, чем в малосернистых остатках нефтей Азербайджана. Для высокосернистых нефтей содержание вана1щя тем выше, чем выше [c.17]


    Физико-химические свойства смол среднечисловая молекулярная масса смол, определенная криоскопией в нафталине, колеблется от 600 до 800 ед. По данным ЭПР смолы отличаются парамагнетизмом (концентрацией стабильных свободных радикалов) до 10 -10 спин/г и повышенной склонностью к ассоциации, что свидетельствует о наличии в структуре полиаромати-ческих свободнорадикальных фрагментов, отношение С/Н составляет 0,60-0,83. По данным ИК, ПМР и ЯМР С смолы состоят из полициклических нафтеноароматических гетероатомных и карбоциклических структур, включающих цепочки алкильных заместителей и 0-, 8-содержащие функциональные группы. Асфальтены отличаются от смол повышенными молекулярной массой до нескольких тысяч, степенью конденсации нафтеноароматических ядер, содержанием серы и ванадия, парамагнетизмом до 10 спин/г. Существование свободных радикалов и замещенных нафтено-ароматических структур обусловливает высокую реакционную способность АСВ в процессах дегидрополиконденса-ции, сульфирования, галогенирования, хлорметилирования, гидрирования и в процессах их конденсации с формальдегидом, непредельными смолами, малеиновым ангидридом и т. д. Продукты химических превращений АСВ могут быть использованы как модификаторы битумов и сырье для производства эффективных сорбентов, ПАВ и электроизоляционных материалов. Кроме того, возможно применение АСВ для производства пеков, ингибиторов радикальных процессов окислительной деструкции полимеров, ингибиторов коррозии и т. д. В связи с проблемой рационального использования АСВ, определенную перспективу приобретает направление — получение концентратов АСВ путем глубокой деасфальтизации нефтяных остатков бензином (Добен-процесс). Продукты Добен-процесса могут быть использованы как стабилизаторы полимеров, сырье для углеродистых и композиционных материалов и т. д. [c.44]

    Натрия пероксид. ЫагОг, Т ,т = 460 °С. Щелочно-окис-лительный плавень. Применяют при определении серы, хрома, ванадия, марганца, кремния, фосфора в рудах и ферросплавах, молибдена в молибденовом блеске и др. Сплавление проводят с 6-8-кратным количеством плавня в железных, никелевых и серебряных тиглях. [c.48]

    Для аналитического определения ванадия используется экстракционно-фотометрический метод, основанный на экстракции соединения, образующегося при взаимодействии пятивалентного ванадия с бензоилфеннлгпдро-ксплампном (БФГА) П—51. Экстракция возможна из рас-створов с pH О—6 Ц] и из растворов соляной и серной кислот вплоть до 10 12—5] в качестве растворителя применяют главным образом хлороформ. Ф. Г. Жаровский и А. Т. Пилипенко [1] методом изомолярных серий установили, что при pH 3 и общей концентрации компонентов 2 10 А1 отношение БФГА V равно 2 1. Авторы предполагают, что соединение имеет формулу У. ОдА , где А — анион БФГА, а ванадий пятивалентен. Отношение 2 1 нашел тем же методом Риан, экстрагировавший ванадий из 5—9 N НС1 [2]. Индийские химики [4] пришли к выводу, что в зависимости от кислотности образуются, по-видимому, различные комплексы — фиолетовый в сильнокислых растворах (выше 2 Л ) и оранжево-красный в слабокислых (ниже 0,1 М) в 0,1--2,0 N соляной кислоте существует смесь комплексов. [c.69]

    Установлено, что расхождецие между графиками, полученными на трех сериях эталонов, достигает 50%. Пр.и введении калия в ВТФП абсорбционный сигнал повышается, а в случае ДФБВ сильно понижается, на сигнал ВСК калий практически не влияет. Аналогичные результаты получены при анализе пяти образцов нефтепродуктов с калием и без него. На основании лолученных данных авторы пришли к выводу, что при определении ванадия в нефтях и нефтепродуктах необходимо соответствие природы ванадиевых соединений образцов [c.98]

    В другой работе [291Гописан метод определения ванадия в нефти и нефтепродуктах с применением хроматографического силикагеля в качестве катализатора озоления пробы. Для этого 150 г силикагеля с зернами максимального размера 0,08 мм сушат в течение 5 ч при 200 °С в фарфоровой чашке и заливают дистиллированной водой так, чтобы над силикагелем был слой воды толЩ,ииой 1 мм. Затем в чашку наливают 375 мл водного раствора азотнокислого кобальта (внутренний стандарт), содержащего 0,04% кобальта. Воду выпаривают при постоянном перемешивании на водяной бане. После этого еще 2 раза силикагель заливают водой и выпаривают ее. Высушенный и растертый катализатор тщательно перемешивают в банке встряхиванием. Аналогичным способом к силикагелю добавляют различное количество водного раствора ванадата аммония (0,01% ванадия) и получают серию эталонов с содержанием ванадия 0,025—0,8%. [c.162]

    В нефтях месторождений Ирака найдено содержание ванадия и серы РФА с применением радиоизотопа железа-55 и полупроводникового детектора. Показано, что изменение плотности и состава сырой нефти не влияет на определение серы, но оказывает влияние при анализе на ванадий. Разработанный способ рекомендован для одностадийного определения серы и ванадия непосредственно в нефтетрубопроводах и очистных сооружениях [281]. Тот же радиоизотоп использован для определения серы и хлора в нефти. По содержанию серы и хлора устанавливали интенсивности Ка-линий с энергией 2,3 и 2,6 кэВ, разлагая суммарный фотопик математическим способом [282]. Кольцеобраз- [c.70]

    Так, в КазГУ им. С. М. Кирова проводятся исследования по использованию простейших спектрометрических систем для определения серы и ванадия в нефти. Первые результаты изложены в работах [91, 298]. Измерения проводили на стандартном рентгено-радиометрическом анализаторе Гагара с пропорциональным счетчиком. Для возбуждения рентгеновской флуоресценции ванадия использовали радионуклид железа-55 с активностью 255 мКи. Предел обнаружения ванадия составил 5-10 %, время анализа - 300 с. Дальнейшие исследования осуществляли на одноканальном портативном анализаторе РПС-4-01. Для анализа на ванадий разработан специальный измерительный датчик более простой и облегченной конструкции, нежели промышленный образец. Предел обнаружения в этом варианте анализа составил для ванадия 2,6-10 %, для серы 0,067о. Воспроизводимость результатов зависит от концентраций определяемых элементов и составляет для ванадия 28 и 10% [c.73]

    В связи с этим режим облучения и время охлаждения выбирали с учетом уменьшения влияния излучения радионуклидов основы на фотопики определяемых радиоизотопов. Условия определения ванадия, никеля, марганца, натрия, хлора, брома и серы даны в табл. 1.23. [c.101]

    При титровании целого ряда веществ в уксусной кислоте можно использовать также такие сравнительно новые титранты, как монохлорид иода или тетраацетат свинца. Определение иодида в присутствии хлорида и бромида проводят титрованием в среде уксусной кислоты раствором СЮг в качестве титранта. В серии окислительно-восстановип ельных титрований в среде уксусной кислоты некоторых окислителей (бром, хромовая кислота, перманганат калия, монохлорид иода, бромат калия и иодат калия) были апробированы в качестве титрантов такие соединения, как дитионат натрия, ацетат ванадила, три-хлорид мышьяка или хлорид олова(II). [c.348]

    Подобные методы нередко рекомендуются в литературе. Так, при изучении определения ванадия в виде перекисного комплекса выяснилось следующее [17]. В определенных условиях спектр поглощения стандартного раствора имеет максимум при Я, = 460 нм. Однако оптическая плотность при 460 нм сильно зависит от концентрации серной кислоты и перекиси водорода. В обычных условиях подготовки образца к анализу трудно добиться постоянства концентраций этих компонентов (выпаривание серной кислоты, каталитическое разложение перекиси и т. п.). Серия спектров при разных концентрациях Н2504 и Н2О2 показывает изобестическую точку при 405 нм. Поэтому измерение оптической плотности при 405 нм, хотя и менее чувствительно, но дает лучшую воспроизводимость результатов определения ванадия. [c.135]

    Такую навеску удобло брать для главной порции, в которой определяют кремнекислоту, окись алюминия и др., щелочноземельные металлы и магний но более 1 г брать не следует, потому что если взять большую навеску, то осадок гидроокиси алюминия и др. будет слишком объемистым. Навеску не следует и слишком уменьшать, если требуется точное определение марганца, никеля и стронция. Для определения щелочных металлов очень удобна навеска в 0,5 г. В общем можно принять за правило не брать для анализа бо.гее 2 г пробы, если ее будут сплавлять с карбонатами щелочных металлов, как это требуется при определении серы, фтора и хлора. Для определения СОг навеска может быть увеличена до 5 г или даже более, если содержание этого компонента очень мало. При этом на определение рас ходуется не больше времени, чем при навеске в 1 г, а результаты получаются значительно более точньши. Для определения ванадия также обычно нужна навеска, превышающая 2 г. [c.890]

    Нужно отметить также, что ие менее интересными могли бы быть и соотношения других пар элементов, которые изучены очень слабо, из-за отсутствия точных количественных определений, необходимых для их вычисления. Сильную корреляционную связь между серой и ванадием, а также никелем и серой отмечает С. М. Катченков для нечртей Волго-Уральской области и. Восточного Предкавказья, более слабее для Среднего Приобья, Зап. Сибири и Эмбы [44]. [c.17]

    Содержание серы в смолисто-асфальтеновых соединениях, выделенных из нефтей различных месторождений, колеблется от сотых долей до 9%. Между содержанием серы в асфальтенах и нефтях существует определенная зависимость (рис. 2), которая для 17 месторождений асфальтенов описывается уравнением 5асф 94 1,65нефть % (с точностью 0,34%) [56]. Между содержанием серы в нефтях и степеньд) ароматичности существует вполне устойчивая корреляция (коэффициент корреляции 0,6) (рис. 3). Наблюдается также корреляция между содержанием смолисто-асфальтеновых веществ нефти и содержанием серы и ванадия. В работе [57] эта связь объясняется следующим образом наличие в нефти ванадия способствует восстановлению сульфатов, содержащихся в пластовых водах, до сероводорода и свободной серы и окислению нефти за счет кислорода сульфатов в результате происходит осмоление и осернение нефти. Поэтому в богатых ванадием нефтях больше содержится сернистых и смолис-то-асфальтеновых соединений. Содержание серы в смолах составляет 42—46% от общего ее содержания в нефти, а в асфальтенах 15—20% [49]. [c.76]

    Предлагается [39] использовать для спектрального определения ванадия и других металлов в нефтяных продуктах метод растворов после сухого сжигания и прокаливания анализируемой пробы в кварцевом тигле. Для предупреждения потери металлов во время горения к пробе добавляют серу (10% от массы пробы), способствующую их переводу в менее летучие соединения. Прокаливание проводят при 550 С. Полученную золу растворяют в 10-ной Н(мОз и раствор разбавляют до определенного объема. Авторы излагают способ подготовки угольных электродов к анализу. Электроды предварительно пропитывают 3%-ным раствором полистирола с H I3, после испарения H lg на эту поверхность наносят 0,1 мл 0,1%-ного [c.9]

    Шаврин А. М. Применение метода разбавления при спектрально-аналитическом определении ванадия в титаиомагнетитах. [Доклад на 7-м Всес. совещании по спектроскопии]. Изв. АН СССР. Серия физ., [c.236]

    При анализе высокосортных сталей определению ванадия в большинстве случаев должно предшествовать отделение хрома. Для этого Roes h и W е г Z применяют предложенный Е. Deis s om способ отделения посредством восстановительной плавки, причем, однако, они заменяют углекислый натрий едким натром. Этим устраняется неприятная работа с паяльной горелкой, так как для сплавления с едким натром достаточно простой газовой горелки. Во время сплавления оказалось необходимым пропускать вместо светильного газа водород со светильным газом попадает много серы, которая потом мешает при титровании серноватистокислым натрием. В качестве окислителя берут надсернокислый аммоний, который не образует солей надванадиевой кислоты и избыток которого заведомо разрушается при длительном кипячении. [c.165]

    Перекись натрия. Этот щелочноокислительный плавень применяют при определении серы, титана, ванадия, хрома, при анализах хромовых руд и в ряде других случаев. При сплавлении с ним пользуются никелевыми или железными тиглями. [c.23]

    Виноградов А. П. Колориметрическое определение ванадия с фосфоровольфрамовой кислотой. — Доклады АН СССР , серия [c.144]

    Для определения ванадия в присутствии титана часто применяется метод, основанный на обесцвечивании перекисного соединения титана посредством ионов фтора, причем комплекс ванадия к действию ионов фтора остается устойчивым. В этом случае приходится применять содержащие ионы фтора кислые растворы, разъедающие стекло. Поэтому при применении такого метода не следует пользоваться приборами с ценными кюветами, лучше исего прибегнуть к методу стандартных серий или к колориметрическому титрованию. [c.235]

    Высокой чувствительностью определения ванадия отличаются методы с применением трифенилметановых красителей ксиленолового оранжевого (е = 1,3-10, == 530 нм) [21, 71, 72], пирокатехинового фиолетового ]73], альберона (хромазурола 8) [74], алюминона [75], а так>ке азокрасителей 4-(2-пиридилазо)резорцина (е = 3,6-10, >1 = 550 нм) [75], 1-(2-пиридилазо)-нафтола-2 (е = 1,7-10, Я= 615 нм [77], солохром черного ВК [78], хром синего К [79], серого прочного КА [80] и солохром серого прочного [18], В других фотометрических методах используют окрашенные комплексы ванадия с различными органическими реагентами пирокатехином [И, 81], мальтолом (2-метил-З-оксипироном) [82], ализарином 8 [83], койевой кислотой [84], гематоксилином [85], купфероном [14], пиридин-2,6-дикарбоновой [c.136]

    В последующем нормы на содержание серы ужесточались, а вышеуказанная схема ие могла обеспечить получение в конечном продукте содержание серы, как правило, менее 1,0%. Появилась необходимость в очистке от серы непосредственно и остатков. При решении этой сложной задачи сложился ряд вариантов. В основе прежде всего лежит характеристика перерабатываемого сырья. Она определяется исходной нефтью и глубиной отбора дистиллятных фракций. Это становится понятным, так как содержащиеся в различных количествах в разных нефтях металлы (ванадий и никель), отравляющие катализатор, концентрируются в остатках от перегонки нефти. Были попытки ввести градацию в содержание металлов в сырье и определение, исходя из этого, типа технологии его гидрообессеривания. При содержании металлов в исходном сырье менее 25 г/т процесс может быть осуществлен с высокими технико-экономическими показателями в реакторе со стационарным слоем одного вида катализатора, характеризующегося высокой гидрообессеривающей активностью и относительно небольшой металлоемкостью. При содержании металлов 25-50 г/т более эффективно использование системы из двух видов катализаторов, причем первый должен характеризоваться высокой металлоемкостью, при этЬм допустима невысокая гидрообессеривающая активность. Другой катализатор должен быть высокоактивным в реакции гидрообессеривания. При содержании в сырье металлов более 75 г/т фирма бЬеИ считает предпочтительнее использовать системы с движущимся слоем и непрерьтной заменой катализатора. По другим данным предельным содержанием металлов в сырье [c.151]

    Сама жизнь подсказывает необходимость комплексного использования замечательного дара природы — нефти, и научные разработки в данном направлении возобновились. В Институте ядерной физик АН Казахской ССР и Институте химии нефти Томского филиала СО АН СССР интенсивно изучают элементный состав нефтей и их фракций с помощью нейтронноактивационного анализа. Благодаря созданию установок экспрессного определения содержания в нефтепродуктах и сырье ванадия, серы и других неорганических примесей, появилась возможность четко определять, какие именно нефти стоит отправлять на извлечение металлов. [c.132]

    Представляется наиболее целесообразной реализация технологической схемы,позволяющей совместить процесс удаления серы в ходе коксования с процессом карбонизации углеводородного садья, которая, на наш взгляд, имеет определенные преимущества перед рассмотренными выше вариантами получения малосарнистого кокса из сернистого сырья. Суть разработанной схемы сводится к следующему Г16 J. На первой стадии процесса сернистый гудрон окисляется перекисными соединениями в присутствии катализатора. Окисленный гудрон затем подвергают деасфальтизации легким бензином, а деасфальтизат - посладующему коксованию. Кокс.полученный в результате такого оформлнния процесса, содержит 1,1-1, серы и 0,012-0,014 ванадия, удовлетворяет требованиям ГОСТа 22898-78 на малосернистые коксы. [c.27]

    Оксиды ванадия имеют кристаллическую структуру и каждой степени окисления соответствует определенный цвет /2 2 — светло-серый, У20з — черный, УгО, — сине-голубой, 205 — красный. [c.337]


Смотреть страницы где упоминается термин Сера, определение ванадии: [c.22]    [c.30]    [c.148]    [c.19]    [c.41]    [c.126]    [c.273]    [c.323]   
Аналитическая химия серы (1975) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Сера, определение

Серии определение



© 2025 chem21.info Реклама на сайте