Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография полисахаридов

    Гельфильтрация — один из видов распределительной хроматографии, при котором гели с пространственной сетчатой структурой, обладающие свойствами молекулярных сит, используются для фракционирования по молекулярному весу или для очистки полисахаридов от примесей  [c.140]

    Гель-проникающая хроматография полисахаридов [c.132]

    О химическом составе полисахаридов гемицеллюлоз других тканей дерева листьев, хвои, шишек пока имеется очень мало сведений. Методом количественной хроматографии был исследован углеводный состав гидролизатов легко- и трудногидролизуемых полисахаридов клеточных стенок листьев осины и березы, хвои сосны и ели, а также спелых шишек сосны и ели, освобожденных от семян [159]. Результаты анализа этих тканей приведены в табл. 43. [c.242]


    Одной из самых важных и трудных стадий в исследовании полисахаридов является их очистка и фракционирование с целью получения более или менее однородных индивидуальных веществ. До настоящего времени разделение проводилось главным образом фракционным осаждением производных полисахаридов в органических растворителях или избирательным осаждением из водных растворов различными электролитами [1, 2]. Из-за отсутствия подходящих адсорбентов хроматография полисахаридов не достигла больших успехов. Введение в практику Соберем и сотр. [3, 4] ионообменников на основе целлюлозы для колоночной хроматографии белков и нуклеиновых кислот привело к появлению новых адсорбентов, весьма удобных для разделения высокомолекулярных растворимых в воде веществ. [c.268]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]


    В последние годы все более широкое применение в химии углеводов находит важный и относительно новый метод, известный под названием аффинной хроматографии. Этот метод включает использование носителей с лигандами, имеющими значительное сродство к молекулам с определенной стереохимией. Лиганд, который в данном случае представляет собой лектин (гемагглютинирующий гликопротеин), ковалентно присоединяется к нерастворимой матрице, обычно агарозной или полиакриламидной природы. При хроматографии полисахариды или гликопротеины, содержащие группировки, связывающиеся с лектином, удерживаются на подобного рода носителях и таким образом отделяются от других компонентов, которые быстро проходят через колонку. Связанные с носителем соединения далее можно десорбировать путем элюирования колонки раствором низкомолекулярного углевода, содержащего группировку, специфически связывающуюся с лектином. Тот же эффект достигается при изменении pH или ионной силы элюента с тем, чтобы разрушить образовавшийся ранее комплекс адсорбированного соединения с иммобилизованным лектином. [c.34]

    Бумага, применяемая как носитель (суппорт) в распределительной хроматографии, должна удовлетворять определенным требованиям. а-Целлюлозы должно быть в бумаге 95—99%. Бумага должна быть чистой и однородной по составу и строению волокон с их длиной 0,5—3 мм. В такой бумаге дистиллированная вода поднимается за 10 мин на 60—80 мм, смесь бутилового спирта с уксусной кислотой за 6 ч на 15—25 см при комнатной температуре. Для хроматографии наиболее подходит линтерная бумага , не содержащая веществ, растворимых в органических растворителях (например, клеящих веществ), т. е. непроклеенная бумага. Линтерная целлюлоза — это высокомолекулярный полисахарид, содержащий 2500—3000 остатков глюкозы в макромолекуле. Текстура такой бумаги должна быть всюду одинаковой. Поры или пространства между волокнами должны иметь размеры 1—12 мк. [c.520]

    Огромное достоинство хроматографических методов в том, что они позволяют работать с очень малыми количествами вещества (например, порядка микрограмма) и, что еще важнее, позволяют идентифицировать не только мало очищенные вещества, но даже вещества, присутствующие в качестве компонентов сложных смесей. Последнее особенно существенно для разбираемой нами задачи, так как, например, гидролизат полисахарида может содержать несколько разных моносахаридов. И хроматография позволяет идентифицировать их без предварительного разделения. [c.58]

    Для установления качественного и количественного состава компонентов гидролизата метилированного полисахарида применяют хроматографию на бумаге, разделение на колонках с адсорбентами, электрофорез на бумаге или газожидкостную хроматографию. [c.94]

    При гидролизе нейтральных полисахаридов в мягких условиях образуется ряд нейтральных олигосахаридов. Для разделения их применяют хроматографию на колонках с углем, а также хроматографию на бумаге. [c.125]

    В дальнейшем с помощью метода бумажной хроматографии был подвергнут анализу состав гидролизованных полисахаридов в молодой и спелой древесине березы и осины [29]. Результаты анализа смеси моносахаридов из молодой и спелой древесины березы бородавчатой приведены в табл. 67. [c.313]

    Для установления химического строения выделенных индивидуальных полисахаридов используется ряд химических методов, основанных на реакциях деструкции с изучением ее продую-ов метилирование с последующим гидролизом периодатное окисление частичный кислотный гидролиз контролируемый ацетолиз ферментативный гидролиз щелочная деполимеризация. Для разделения и идентификации продуктов деструкции используют хроматографические методы (хроматография на бумаге, тонкослойная хроматография и газо-жидкостная), в том числе в комбинации с масс-спектроскопией и др. [c.282]

    Полностью метилированный полисахарид гидролизуют до метилированных моносахаридов в присутствии серной и трифторуксусной кислот. Реакционную смесь фракционируют с помощью распределительной хроматографии на целлюлозе или силикагеле [22], адсорбционной хроматографии или, лучще, газожидкостной хроматографии в виде летучих производных, например полностью метилированных метилгликозидов [23], частично метилированных ацетатов альдитов [24] или частично метилированных триметилсилильных эфиров [25]. Для дальнейшей идентификации этих [c.218]

    Для разделения полисахаридов может быть использована бумажная [34] и тонкослойная [35] хроматография, однако основами методами являются колоночные гель-фильтрация [36] и [c.223]

    Газожидкостная хроматография находит лишь ограниченное применение при установлении строения полисахаридов из-за необходимости использования летучих и устойчивых в условиях разделения соединений. Этот метод применяют для анализа моносахаридного состава гидролизатов и, что более важно, для анализа частично метилированных сахаров при установлении строения [c.224]

    Декстран ( Sephadex ) — очень гидрофильный материал. Присоединение ионогенных групп происходит также по гидроксилалг полисахарида. Пористость и жесткость матриц на основе сефадексов зависит от процентного содержания сшивки (эпихлоргидрина). Модифицированные сефадексы для ионообменной хроматографии выпускаются на основе только двух типов сефадексов G-25 и G-50. Размеры пор у модифицированных сефадексов значительно выше, чем у двух исходных типов матриц, за счет уже знакомого нам эффекта расталкивания одноименно заряженных ионогенных групп. Ионообменные сефадексы соответственно и менее жестки их объемы тоже могут изменяться в зависимости от pH и ионной силы элюента. Особенно сильно это выражено у ионообменников, полученных на основе сефадекса G-50. Рабочий диапазон pH 2—12. [c.251]


    Орсин-сернокислотный метод был использован Кеслером [45] в хроматографии свободных углеводов на анионообменных смолах в боратной форме. Он использовался также для регистрации разделения продуктов гидролиза древесины и древесной пульпы на анионообменной смоле в сульфатной форме с применением в качестве подвижной фазы 92%-ного водного этанола [57]. Кроме того, орсин-сернокислотный реагент может быть полезен в автоматических анализах элюатов в гель-проникающей хроматографии полисахаридов [58]. Схематическое изображение этой системы с использованием ТесЬп1соп Аи1оапа1угег дано на рис. 22.4. Элюат после колонки вначале смешивают с 1%-ным водным орсином, а затем с 72%-ной серной кислотой. Реакционную смесь затем нагревают до 95 °С, охлаждают и измеряют поглощение образовавшихся продуктов при 420 нм [58]. Для этой цели используют двойной стеклянный змеевик длиной 24 м [c.72]

    Групповой сорбент. для аффинной хроматографии полисахаридов, гликопротеидов и гликопептидов, а также моносахаридов. Лкгапд сорбента — конканавалин А — гем-агглютирующий металлопротеин растительного происхождения, выделенный из канавалии мечевидной. Лиганд специфически реагирует в присутствии Мп - и Са +) с углеводами, содержащими терминальные а- [c.226]

    При хроматографии полисахаридов и высших олигосахаридов предпочтительным является использование элюентов с высокой ионной силой для предотвращения ассоциации молекул хроматографируемых веществ и их взаимодействия с сорбентом. Данный прием приобретает особое значение в анализе молекулярно-массового распределения, при проведении которого рекомендуется в качестве элюента 0,3%-ный [124] или 0,9%-ный раствор Na I [125]. Однако наиболее широкое применение для этой цели находит 1М Na I [132, 170—173], использование которого для элюирования колонок с полиакриламидными и агарозными гелями обычно обеспечивает достаточную воспроизводимость хро.матографических данных. Полученные таким образом результаты можно использовать при анализе олигосахаридов, образующихся при избирательном расщеплении изучаемых полисахаридов [171—173]. [c.33]

    Так как способность к перекрестной реакции зависит от структурного сходства полисахаридов, то иммунологическая реакция успешно применяется при структурных исследованиях. Так, Волфром (1947, 1952) выделил из легких крупного рогатого скота после удаления гепарина галактан и показал, что последний состоит в основном из D-галактозы. Гейдельбергер нашел (1955), что галактан, выделенный из легких, как и предполагалось, образует осадок с полисахаридом пневмококков типа XIV. Однако галактан давал также положительную реакцию преципитации и с полисахаридом пневмококков типа II, состоящим из L-рамнозы, /)-глюкозы и D-глюкуроновой кислоты. В дальнейшем при помощи бумажной хроматографии было показано, что галактан, выделенный Волфромом из легких крупного рогатого скота, неоднороден и загрязнен примесями, содержащими D-глюкуро-новую кислоту. [c.579]

    Гидролизаты легко- и трудногидролизуемых полисахаридов исследовались хроматографией иа узких (5X250 мм) лентах хроматографической бумаги с растворителем этилацетат—пиридин—вода (5 1 5). Количество углеводов определялось по соотношению площадей пиков, полученных при записи на денситометре и проявленных анилинфталатом исследуемых хроматограмм и хроматограмм с известным количеством моносахаридов. [c.326]

    Л. извлекают из водорослей горячей водой или разб. к-тами сопутствующие кислые полисахариды отделяют осаждением в виде нерастворимых солей (напр., с катионными детергентами типа цетилтриметиламмонийбромида) или ионообменной хроматографией. М-Цепи и G-цепи разделяют хроматографически с использованием в качестве сорбента диэтиламиноэтилцеллюлозы (ДЭАЭ-сефадекс) в мо-либдатной форме. [c.577]

    Важнейшие источники Л.-семена растений, особенно бобовых (в последних их содержится 2-10% от общего кол-ва белков). Для выявления Л., как правило, используют р-цию агглютинации интактных или модифицир. эритроцитов. Очистку Л. осуществляют так же, как и др. белков, в т. ч. с помощью аффинной хроматографии, используя в качестве сорбентов полисахариды, гликопротеины и синтетич. углеводы, иммобилизованные на носителе. [c.586]

    Р-римые П. можно осадить из водных р-ров смеишваю-щимися с водой орг. р-рителями (напр., этанолом, метанолом, ацетоном). Р-римость конкретного П. определяет методику выделения его из прир. объекта. Так, целлюлозу и хитин получают, отмывая подходящими реагентами все сопутствующие в-ва, тогда как прочие полисахариды вначале переводят в р-р и вьщеляют затем фракционным осаждением р-рителями, с помощью образования нерастворимых ко.мплексов или солей, ионообменной хроматографией и т.д. [c.22]

    На полоску хроматографической бумаги размером 1X1,5 см наносят 0,005— 0,1 мл 1—2%-ного раствора исследуемых полисахаридов в боратном. буфере (pH 9,3). Полоски подсушивают на воздухе н помещают в широкий бюкс. Полоски картона (картон для электрофореза) размером 2.5X40 см смачивают боратным буферным раствором и помещают в камеру прибора для Эотектро-фореза. Для этой цели можно использовать прибор ЭФА-1. Полоски бумаги с исследуемым раствором кладут на ленты картона, лежащие на рамке камеры прибора так, чтобы они были вблизи катода и на расстоянии 4—5 см от сгиба картона. Электрофорез проводят в боратном буферном растворе при pH 9,3. Электрофореграммы высушивают- и разрезают на отдельные участки длиной по 2 см. Полисахариды с каждого отрезка элюируют водой или раствором щеоючи. Элюаты гидролизуют с 2%-ным раствором НС1 в течение 3 ч при слабом кипении и затем исследуют хроматографией на бумаге или газожидкостной хроматографией. Качественная и количественная хроматография компонентов в гидролизатах элюатов позволяет установить порядок распределения полисахаридов на электрофореграммах и их химический состав. [c.51]

    Частичный гидролиз полисахаридов позволяет выделить фрагменты с промежуточной молекулярной массой и разделить их с помощью таких хроматографических методов, как гель-фильтрация, ионообменная или распределительная хроматография. Строение этих более простых олигосахаридов установить легче, чем строение исходного полисахарида. Если все гликозидные связи в полисахариде гидролизуются с одной и той же скоростью (как, например, в линейных гомополисахаридах), то, например, в случае-амилозы продукт частичного гидролиза будет состоять из глюко.чы и ряда олигосахаридов — мальтозы, мальтотриозы и мальтотетра-озы. В гетерополисахаридах присутствуют гликозидные связи разных типов, и скорости гидролиза их различны. Фуранозиды обычно гидролизуются быстрее пиранозидов в 10—1000 раз, что приводит например, к удалению остатков арабинофуранозы, связанных с остатками ксилопиранозы в арабиноксиланах. Условия гидролиза влияют также на специфичность расщепления полисахарида. (1- 6)-Связи более устойчивы к действию минеральных кислот чем (1- 4)-связи, однако если гидролиз проводился в уксусном ангидриде, содержащем около 5 % серной кислоты, менее устойчивы (1-)-б)-связи. Параллельное использование этих двух методов гидролиза, приводящих к образованию фрагментов разного состава, позволит лучше воспроизвести строение полисахарида. Концентрация углеводов в реакционной смеси должна быть ниже [c.219]

    Другой метод количественного анализа смеси моносахаридов газожидкостной хроматографией [82] состоит в том, что полученные после гидролиза полисахаридов моносахариды восстанавливают боргидридом натрия в соответствующие многоатомные спирты (альдитолы) и затем превращают их в ацетильные производные, которые затем разделяют в газожидкостном хроматографе. Условия хроматографирования позволяют разделить ацетаты альдитолов за 30—45 мин. [c.85]

    К диализованному раствору, содержащему окисленный полисахарид добавляют 1,1 г боргидрида натрия и оставляют стоять при комнатной температуре в течение 10 ч. Затем к смеси добавляют по каплям 1 н. раствор соляной кислоты для разрушения избытка боргидрида и нейтральный раствор концентрируют в вакууме при 40° С до 150 м.л. К полученному нейтральному раствору полиола добавляют соляную кислоту до 0,5 и. концентрации и подкисленный раствор оставляют при комнатной температуре на 8 ч. Для удаления ионов хлора и натрия гидролизат последовательно обрабатывают анионитом А-4 (ОН -форма) и катионитом Щ-120 (Н+-форма), а затем упаривают досуха в вакууме при 40° С. Остаток трижды упаривают со 150 мл метанола для удаления борной кислоты в виде летучего метилбората. Исследование нейтрального гидролизата методом хроматографии на бумаге в системе пиридин — этилацетат—вода (2 5 7 по объему) показывает наличие в нем эритрита и ряда менее подвижных гликозидов эритрита. Для идентификации разделенных хроматографией веществ вырезают участки хроматограммы, соответствующие отдельным соединениям, элюируют водой, элюаты фильтруют и упаривают в вакууме досуха. В табл- 16 приведена характеристика очищенных продуктов. [c.115]

    Раствор, содержащий окисленный продукт, обрабатывают этиленгликолем и освобождают от избытка йодата диализом. К раствору, свободному от ионов йодата, добавляют 20 мл фенилгидразина и 20 мл уксусной кислоты. Нерастворимый продукт конденсации, содержащий примерно один остаток фенилгидразина на одну диальдегидную группировку, выделяется в виде вязкой коричневой массы. К 4,7 г окисленного галактана добавляют 30 г фенилгидразина и 60 мл уксусной кислоты и нагревают при 100 С в течение 2 ч. Комплекс с фенилгидразином постепенно растворяется. К окрашенному раствору приливают трехкратный объем спирта, отфильтровывают выпавший полисахарид, исчерпывающе экстрагируют его уксусной кислотой, спиртом и эфиром. В ре.эультате получают светло-желтый растворимый в воде порошок, содержащий 1,1% азота. Исследуя спиртовые растворы озазонов методом хроматографии, обнаруживают фенилозазон глицеринового альдегида и дифенилгидразон глиоксаля. [c.119]

    Для щелочного расщепления раство"ряют полисахарид при 25— 38° С в известковой воде, не содержащей кислорода. Реакция протекает в течение нескольких недель или месяцев. Ионы кальция после расщепления полисахарида удаляют с помощью катионообменной смолы. Оставшийся нерасщепленный полисахарид выделяют осаж дением этанолом. Продукты распада разделяют фракционированным осаждением их кальциевых солей. Сахараты исследуют распределительной хроматографией на бумаге с растворителем этилацетат— уксусная кислота — вода 10 1,3 1). [c.121]

    Для анализа электрофореграммы разрезают на отрезки по 2 см, полисахариды с полученных отрезков элюируют водой, элюаты гидролизуют и углеводный состав гидролизатов определяют хроматографией на бумаге с растворителем пиридин— этилацетат—вода (1 5 5). Состав углеводов на хроматограммах, соответствующих отрезкам —6 электрофореграмм (рис. 26), дает возможность представитв распределение на электрофореграммах 4-0-метилглюкуроноарабоксилана и галактуроноарабогалактана. Наличие только двух пиков на электрофореграмме свидетельствует об однородности разделенных полисахаридов. [c.177]

    СКОЛЬКИХ лет служила материалом для упаковки колонок, и на ней впервые удалось почти полностью разделить энантиомеры. (В 1944 г. было опубликовано сообщение о том, что основание Тре-гера разделено на колонке с лактозой длиной 0,9 м [2].) Разделяющая способность полисахаридов, в частности целлюлозы, была впервые обнаружена при попытке разделить рацемические аминокислоты методом бумажной хроматографии [3—5]. При этом выяснилось, что эти соединения в некоторых случаях дают два пятна на бумажной хроматограмме. Далглищ развил свою теорию трехточечного взаимодействия в 1952 г. на базе данных о бумажной хроматографии рацемических аминокислот [6]. Известны и другие ранние работы по непосредственному разделению энантиомеров аминокислот посредством бумажной хроматографии [7] и тонкослойной хроматографии на целлюлозе (ТСХ) [8]. Все это способствовало использованию целлюлозы и ее производных, а также крахмала и циклодекстринов в хиральной ЖХ. В настоящее время в качестве потенциальных хиральных сорбентов изучается ряд природных полисахаридов. [c.108]

    Сорбенты на основе полисахаридов и их производных. Как уже упоминалось в гл. 7, наиболее распространенный и наиболее полно изученный сорбент этой группы — триацетилцеллюлоза, особенно ее микрокристаллическая форма. Это довольно дешевый материал, но его свойства могут различаться от партии к партии. Поскольку для хроматографии сорбент используют в набухшем состоянии, он подвержен до некоторой степени сжатию, хотя МТАЦ с малым размером частиц была успешно применена в стальных колонках при довольно высоком давлении (50—100 бар) [1]. Тем не менее препаративные разделения на этом сорбенте были вьшолнены только при низком или среднем давлении, которые обеспечивают лишь очень низкую эффективность колонки. И все же на колонках вполне умеренного размера можно осуществить за один прогон разделение граммовых количеств энантиомеров (рис. 9.2). [c.228]

    В свете успехов, достигнутых Окамото и др. (см. разд. 7.1.1.2) при нанесении МТАЦ и других производных полисахаридов на силикагелевую подложку, в ближайшем будущем можно ожидать появления улучшенных сорбентов такого типа для препаративной хроматографии. Важный аспект применения МТАЦ, к которому стоит сейчас вернуться, — это возможность разделения на ней энантиомеров соедине- [c.228]

    Электрофорез не заменяет хроматографию, но дает очень ценную дополнительную информацию, так как разделение при электрофорезе основано на других свойствах молекул (заряд, размер, форма). Высоковольтный электрофорез на бумаге применен для разделения не только моно-, но и олигосахаридов. Этот метод может быть использован не только для производных углеводов, содержащих заряженную группу (как, например, гексуроновые кислоты, аминомоносахариды, сульфаты и фосфаты моносахаридов), но и для нейтральных соединений, способных образовывать заряженные комплексы с такими электролитами, как борат, арсе-нит или молибдат натрия. Относительные подвижности углеводов зависят от природы комплексообразователя [57]. Правильный выбор электролита часто позволяет идентифицировать углевод. Разделение кислых полисахаридов [58] проводят с помощью высоковольтного электрофореза на бумаге, нейтральные полисахариды предварительно превращают в боратные производные [59]. [c.226]


Смотреть страницы где упоминается термин Хроматография полисахаридов: [c.150]    [c.106]    [c.12]    [c.576]    [c.84]    [c.181]    [c.234]    [c.51]    [c.100]    [c.123]    [c.322]    [c.483]    [c.224]    [c.225]    [c.273]   
Химия углеводов (1967) -- [ c.486 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2024 chem21.info Реклама на сайте