Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гамильтониан симметрия

    Физический смысл приведенных коммутационных соотношений понять нетрудно, если вспомнить, что оператор Сг связан с поворотом вокруг оси г. В силу аксиальной симметрии линейной молекулы ее гамильтониан остается неизменным относительно такого поворота. Вместе с тем, вращение электронной оболочки вокруг осей X ч у приводит к разрушению молекулы, так как электронная плотность при этом уходит от ядер. Так как [c.192]


    Как это обычно бывает, когда используется сильно упрощенный гамильтониан, о корректности результатов говорит симметрия. Например, мы упоминали в гл. 2, что соответствующие комбинации двойных произведений векторов х, у и г дают неприводимые представления для -орбиталей и их вырожденностей. Применив уже рассмотренные принципы (гл. 2), можно показать, как получают все те состояния, которые обусловлены одноэлектронными уровнями. Этот подход можно распространить и на многоэлектронные системы различной геометрии. [c.75]

    Вторым фактором, определяющим степень расщепления энергетических уровней квадруполя, является градиент поля д на ядре, вызванный электронным распределением в молекуле. Расщепление уровня квадруполя связано с произведением e Qq. Для молекулы с аксиальной симметрией д часто лежит вдоль оси симметрии высшего порядка, и если известна величина eQ, то можно определить значение д. В несимметричном окружении энергии различных уровней квадруполя уже не выражаются уравнением (14.6), поскольку необходимо использовать полный гамильтониан уравнения (14.5). В случае 1 = 3/2 для энергий двух состояний можно вывести [2] следующие уравнения  [c.266]

    Существует также прямое взаимодействие векторов моментов магнитных диполей электрона и ядра, которое зависит от величины момента ядра и от угла, образуемого вектором ядро — электрон, с направлением магнитного поля. В изотропных системах при хаотическом движении частиц это взаимодействие усредняется. В общем случае, как и -фактор, константа СТВ а —величина тензорная. Только для изотропных систем этот тензор характеризуется одним параметром (сферическая симметрия), а для анизотропных систем имеет два (симметричный волчок — эллипсоид вращения) или три (асимметричный волчок) независимых параметра. Удобно разделить тензор СТВ на изотропную и анизотропную части. Анизотропная составляющая связана как раз с прямым дипольным взаимодействием и обратно пропорциональна кубу расстояния между ядром и электроном, усредненного по волновой функции электрона. При значительной анизотропии тензора СТВ спектры ЭПР сильно усложняются и для их анализа требуется компьютерная обработка с соответствующими программами, составленными по алгоритмам решения задач с разной записью гамильтонианов взаимодействия сложных систем с полем. [c.62]

    Резкое расширение в последнее время интереса к соединениям тяжелых элементов ставит неотъемлемой задачей учет релятивизма. Наиболее совершенные релятивистские методы основываются на релятивистском аналоге уравнения Шредингера — уравнении Дирака. Главное отличие этих уравнений заключается в том, что оператор релятивистской одноэлектронной кинетической энергии, учитывая зависимость массы электрона от его скорости, совершенно отличается от соответствующего нерелятивистского оператора. При этом гамильтониан Дирака содержит матрицы четвертого порядка в отличие от скалярного вида гамильтониана Шредингера. Решение уравнения Дирака является четырехкомпонентным вектором, называемым четырехкомпонентным спинором. Спинорная природа волновых функций приводит к тому, что в определенных состояниях, например, р"-спин-орбиталь может смешиваться с р - или р -спин-орбиталями. Это вызывает смешение электронных состояний различных симметрии и спина. [c.87]


    Действительно, гамильтониан, как известно, зависит от Зп координат Хи уи 21, лгг, у2, 22,, Хп, Уп, гп, которые для удобства обозначим дг ( =1, , 3/г). В результате действия преобразования симметрии координаты гамильтониана меняются, т. е. [c.129]

    Здесь W содержит члены гамильтониана, которыми пренебрегают при вычислении уровней энергии нулевого приближения, а (] 1И — волновые функции нулевого приближения для дискретной и непрерывной областей. Поскольку гамильтониан полносимметричен, легко сделать вывод, что полные свойства симметрии двух состояний должны быть одинаковыми то же самое относится и к полным моментам количества движения. Здесь следует подчеркнуть, что как свойства симметрии, так и момент J являются вполне определенными также в непрерывной области энергий. [c.184]

    Если квантовая система не обладает сферической симметрией, то по крайней мере не все операторы коммутируют с Н. Так, в однородном магнитном поле гамильтониан содержит член [c.196]

    Можно, однако, сразу же заметить, что у данной задачи имеется довольно высокая точечная симметрия, в частности имеется плоскость симметрии О/,, перпендикулярная соединяющей ядра оси симметрии бесконечного порядка. Отражение в этой плоскости не меняет электронный гамильтониан, как не меняют его и другие операции [c.302]

    Электронный оператор Гамильтона отвечает фиксированной ядерной конфигурации, которая при наличии в молекуле тождественных ядер может обладать определенной точечной симметрией, т.е. симметрией той или иной точечной группы. Так, у молекулы СН3 имеются три тождественных ядра - протона, что приводит к возможной симметрии у этой молекулы, отвечающей точечной группе Оз , (плоская конфигурация), либо Сзу (пирамидальная конфигурация), либо lv (плоская с расположением протонов в вершинах равнобедренного треугольника), Сз (плоская) и С). Возможны, конечно, и линейные конфигурации, хотя они и весьма мало вероятны. Каждой симметричной конфигурации отвечает группа операций, не меняющих электронный гамильтониан и, следовательно, коммутирующих с этим гамильтонианом. [c.308]

    Для уже упоминавшейся двухэлектронной задачи, например для атома в состоянии 5, находящегося в поле симметрии Ог/,, этот гамильтониан может быть сведен к такому [c.401]

    Оператор Гамильтона - это оператор энергии он состоит из членов кинетической и потенциальной энергий, которые относятся ко всем частицам, содержащимся в системе. Нас будут интересовать только свойства его симметрии. В результате обмена между подобными частицами (ядрами или электронами) гамильтониан должен оставаться неизменным после выполнения операции симметрии. Каждая операция симметрии переводит систему в эквивалентную конфигурацию, неотличимую от исходной. Если же в системе ничего не изменилось, то ее энергия должна быть одинаковой до и после выполнения операции симметрии. Таким образом, говорят, что гамильтониан инвариантен по отнощению к операциям симметрии точечной группы изучаемой молекулы. Это означает, что он принадлежит к полностью симметричному представлению точечной группы молекулы. [c.247]

    Операции симметрии в молекулах можно рассматривать с двух точек зрения. Их можно определить или как операции, которые переводят молекулу в эквивалентное положение, так что после выполнения операции каждая точка молекулы совпадает с эквивалентной точкой (или сама с собой) молекулы в ее первоначальной ориентации, или как операции, которые оставляют неизменным гамильтониан молекулы. Первое определение легче понять с физической точки зрения, однако второе определение является более общим и подчеркивает тот важный факт, что симметрия зависит от конкретного вида гамильтониана. Так, если приближенный или модельный гамильтониан обладает более высокой симметрией, чем истинный гамильтониан, это может оказаться очень полезным прн расчете приближенных волновых функций молекул, которые сами по себе не обладают высокой симметрией. [c.136]

    В ЯМР в сильных полях каждое собственное состояние 0 гамильтониана характеризуется магнитным квантовым числом М,, а каждой когерентности 0< ставится в соответствие порядок когерентности рш = М1 - Ми- При свободной прецессии как М,, так и р,и являются хорошими квантовыми числами. Это обусловлено тем, что в случае сильных полей гамильтониан имеет вращательную симметрию и собственное состояние 0 преобразуется по неприводимому представлению М одномерной группы вращений. Как следствие, когерентность 0< преобразуется по представлению Рш = М1 — Ми- [c.353]

    В задачах, при решении которых в гамильтониане явно не учитывается спин (к ним относится большинство рассматриваемых нами задач), необходимо принимать во внимание лишь перестановочные свойства спиновой функции. Эти свойства можно определить непосредственно из соответствующих симметрических групп, не обращаясь явно к рассмотрению групп углового момента. После этого остается лишь скомбинировать пространственные волновые функции так, чтобы они приобрели свойства соответствующей перестановочной симметрии. Для фермионов (например, электронов) пространственные и спиновые функции должны преобразовываться по сопряженным неприводимым представлениям соответствующей группы 8(УУ), И тогда их произведение оказывается полностью антисимметричным. Для бозонов пространственные и спиновые функции должны преобразовываться по одному и тому же неприводимому представлению, и тогда их произведение оказывается полносимметричным. [c.139]


    Поскольку хюккелевский гамильтониан является суммой одноэлектронных эффективных гамильтонианов и поскольку все эти одноэлектронные гамильтонианы имеют одинаковую форму [см. выражение (12.1)], приближение Хюккеля сводится к решению уравнений ЛКАО для одного электрона, движущегося в поле всех атомных остовов (т. е. ядер и всех электронов, кроме входящих в состав я-системы). В результате получается набор одноэлектронных молекулярных орбиталей и соответствующих энергий. Расселяя я-электроны по этим молекулярным орбиталям, можно установить соответствующую молекулярно-орбитальную конфигурацию. При необходимости для построения правильных состояний можно учесть перестановочную симметрию электронов, однако на хюккелевском уровне приближения [c.240]

    Гамильтониан любой системы остается инвариантным при любом изменении системы координат и любой перестановке эквивалентных частиц. Если входящие в систему индивидуальные частицы обладают собственной (внутренней) симметрией (собственным угловым моментом, или спином), то полная группа симметрии гамильтониана должна также включать и эту симметрию. Взаимосвязь между внутренней симметрией и перестановочной симметрией приводит к перестановочным ограничениям, налагаемым на волновую функцию системы (т. е. к принципу Паули). В этой главе мы сосредоточим внимание на симметрии, связанной с изменением системы координат, т. е. на пространственной симметрии. [c.264]

    Поскольку гамильтониан инвариантен к операциям симметрии, он должен коммутировать с ними. Энергия, как постоянная величина, должна коммутировать с любой операцией. Следовательно, уравнение (13.1) полностью эквивалентно уравнению [c.265]

    Обычно в динамике твердого тела гармонические члены в гамильтониане являются главными. Но в гармоническом приближении кристалл не испытывает никаких фазовых переходов. Необходимым условием фазового перехода является наличие ангармонических эффектов, так как в отсутствие энгармонизма положения равновесия атомов и симметрия кристалла не меняются с температурой. Таким образом, для описания перехода необходимо учесть ангармонические члены в разложении [c.15]

    В заключение этого параграфа рассмотрим вид уравнения Шредингера в различных системах координат. Оператор энергии (гамильтониан) представляет собой сумму операторов потенциальной и кинетической энергии частиц системы. Вид оператора потенциальной энергии системы частиц записывается просто в- системах координат, явно отражающих свойства симметрии системы. Удобно и оператор кинетической энергии [c.72]

    Спин-гамильтониан действует только на спин-неременные и описывает различные взаимодействия в системах, содержащих неснаренные электроны. Его можно рассматривать как стенографический способ представления описанных выше взаимодействий. Спин-гамильтониан ЭПР для иона, находящегося в ноле аксиальной симметрии (т. е. тетрагональном или тригональном), имеет следующий вид  [c.49]

    Далее мы рассмотрим эффективный спин S. Мы уже пользовались этой концепцией, но теперь дадим ему формальное определение, чтобы описать, как некоторые из уже рассмотренных эффектов учитываются спин-гамильтонианом. Если кубическое кристаллическое поле оставляет основное состояние (например, состояние Т) орбитально вырожденным, то поля более низкой симметрии и спин-орбитальное взаимодействие будут снимать как орбитальное, так и спиновое вырождение. В случае нечетного числа неспаренных электронов крамерсово вырождение оставляет низшее спиновое состояние дважды вырожденным. Если расщепление велико, то этот дублет хорошо отделяется от дублетов, лежащих вьш1е, и переходы наблюдаются только в низшем дублете, который ведет себя как более простая система с S = 1/2. Тогда мы говорим, что система имеет эффективный спин S, равный только 1/2 (S = 1/2). Примером может служить комплекс Со . В кубическом поле основным состоянием является F под действием полей более низкой симметрии и спин-орбитального взаимодействия это состояние расщепляется на шесть дублетов. Если низший дублет отделен от других значительно больше, чем на кТ, то эффективный спин имеет величину 1/2 (S = 1/2) вместо 3/2. Если эффективный спин S отличается от спина S, то спин-гамильтониан может быть записан через S, а не через S. [c.222]

    Эта -электронная конфигурация исследовалась очень тщательно. Высокоспиновые комплексы имеют основные состояния а другие секстетные состояния отсутствуют. Другим ближайщим термом является и для его подмешивания необходимы спин-орбитальные взаимодействия второго порядка, поэтому его вклад мал. Таким образом, время жизни электронного спина велико, и спектры ЭПР можно легко регистрировать при комнатной температуре и в кристаллических полях любой симметрии. Более того, при нечетном числе электронов крамерсово вырождение наблюдается даже при большом расщеплении в нулевом поле. Энергетические уровни комплекса Мп(П) изображены на рис. 13.10. Результаты, полученные для высокоспиновых комплексов, можно согласовать с гамильтонианом [c.239]

    Как уже говорилось в 5 гл. VI, в 1964 г П. Хоэнберг и В. Кон сформулировали теорему (и дали одно из ее доказательств), которая утверждает, что для основного состояния электронная плотность полностью определяет волновую функцию и все свойства молекулы в этом состоянии. Это утверждение может быть перенесено и на приближение Хартри-Фока, по крайней мере в тех его вариантах, где можно ввести единый фокиан для всей системы занятых орбиталей. Коль скоро плотности различны, функции и Ф2 основных состояний двух систем с одним и тем же набором частиц различаются хотя бы одной орбиталью, поскольку плотность определяется суммой квадратов модулей отдельных орбиталей. Для канонических хартри-фоковских орбиталей, собственных для фокиана, определяемого этими же орбиталями, задание одной орбитали при известном исходном гамильтониане по существу определяет весь набор хартри-фоковских занятых орбиталей основного состояния (для данного типа симметрии). По этой причине граничные орбитали (по крайней мере занятые), пусть некоторым сложным и неизвестным пока образом, определяют всю волновую функцию приближения Хартри-Фока и отражают поведение этой функции при изменении параметров задачи. [c.441]

    Впервые спектр ЭПР железа (Ре +) в природном [30], а позднее и синтетическом кварце был описан именно для аметистов. Так, Д. Р. Хаттон показал [30], что наблюдаемый в аметистах спектр ЭПР относится к ионам Ре +, изоморфно заместившим ионы 51 +. Эффекты низкой симметрии, которые могут иметь место для центров моноклинной симметрии (а именно к таким центрам относится, судя по ( а = 3), описанный центр), были, по-видимому, невелики, и спектр описан в приближении ромбической симметрии спин-гамильтонианом вида (5 = 5/2) [c.62]

    Выше мы утверждали, что гамильтониан должен быть инвариантен (т. е. симметричен) по отношению к операциям симметрии системы. На самом деле инвариантность гамильтониана определяет группу симметрии системы. Но волновые функции системы могут изменяться (возможно, изменять лишь знак) при операциях симметрии. Группа симметрии волновых функций должна быть такой же, как и группа симметрии гамильтониана. Однако различные собственные функции, которые описывают движения электронов в системе, преобразуются по разным неприводимым представлениям ее группы симметрии. В рассмотренном выше примере функции 11з1 и фз преобразуются по представлению, симметричному относительно вращения на 180°, а функции 1152 и 1)54 — ПО представлению, антисимметричному относительно этой операции. [c.266]

    Для обертонов рассмотрение проводится точно так же, как и для электронных состояний, если колебание является невырожденным. Если же колебание вырождено, то необходимо прибегнуть к симметризации с учетом перестановочной симметрии. При рассмотрении колебаний нужно иметь в виду, что колебательный гамильтониан представляет собой бозонный оператор, как уже упоминалось выше. Это означает, что в случае вырожденного представления следует определять результат симметричного произведения двух таких представлений, т. е. симметричную степень представления, а не антисимметричную степень, как при рассмотрении электронных состояний. Для п-й степени вырожденного представления необходимо проводить симметризацию в соответствии с представлением п] перестановочной группы Это выполняется с использованием формулы (7.9). Например, для трехквантового возбуждения е-колебания метана находим [c.346]


Смотреть страницы где упоминается термин Гамильтониан симметрия: [c.243]    [c.56]    [c.162]    [c.31]    [c.153]    [c.140]    [c.164]    [c.193]    [c.199]    [c.425]    [c.445]    [c.153]    [c.63]    [c.64]    [c.240]    [c.316]    [c.386]    [c.63]    [c.64]   
Квантовая химия (1985) -- [ c.264 , c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Гамильтониан аксиальной симметрии

Группа симметрии гамильтониана

Преобразования симметрии гамильтониана

Спин-гамильтониан для аксиальной симметрии



© 2024 chem21.info Реклама на сайте