Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхательная цепь переносчики

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]

    Природа остроумно решила эту проблему ценой дополнительных энергетических затрат в тех случаях, когда место включения электронов с окисляемого субстрата находится ниже энергетического уровня, на котором образуется НАД Н2, работает система обратного переноса электронов, т.е. лифт , поднимающий электроны по дыхательной цепочке в сторону более отрицательного потенциала, необходимого для восстановления молекул НАД" . Процесс обратного транспорта электронов требует энергии, и часть молекул АТФ, получаемых за счет окислительного фосфорилирования на конечном этапе дыхательной цепи, тратится для образования восстановителя. Окисление соединений с положительным окислительно-восстановительным потенциалом происходит, таким образом, без участия флавопротеинов и хинонов. Эти переносчики функционируют только в процессе обратного переноса электронов. Следовательно, у таких эубактерий дыхательная цепь работает в двух направлениях осуществляет транспорт электронов для получения энергии в соответствии с термодинамическим потенциалом и перенос электронов против термодинамического потенциала, идущий с затратой энергии, чтобы синтезировать восстановитель (см. рис. 97). [c.370]

    Жиры и белки подвергаются действию различных ферментов и в конечном счете продукты их превращений также попадают в цикл Кребса. Поток электронов из цикла Кребса направляется в цепь переносчиков, в которой последовательно располагаются НАД и ФЛ, и переносчик, обозначаемый Q (соединение типа хинона), и ряд цитохромов. Электроны, получающиеся в цикле, на уровне сукцината переходят непосредственно к ФП, минуя НАД. На пути от НАД к ФП происходит процесс окислительного фосфо-рилирования, т.е. образуется АТФ. Часть энергии электронов поглощается этой молекулой. Аналогичный процесс происходит еще в двух местах цепи ( дыхательная цепь ), так что вся цепь дает три молекулы АТФ на каждую пару перенесенных электронов. В конце цепи фермент цитохромоксидаза облегчает переход электронов к кислороду и образование воды  [c.370]


    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Перенос электронов от субстратов цикла трикарбоновых кислот к кислороду, сопровождающийся образованием воды, осуществляется сложной полиферментной системой, локализованной во внутренней мембране митохондрий. Последовательность функционирования отдельных дыхательных переносчиков в значительной мере была выяснена благодаря применению ингибиторного анализа, а также спектрофотометрических исследований. В настоящее время строение дыхательной цепи может быть представлено схемой на рис. 51. [c.435]

    Окислительно-восстановительные потенциалы каждого переносчика увеличиваются по мере приближения к кислороду, так что электроны, отщепленные от субстратов соответствующими дегидрогеназами, переносятся к кислороду термодинамически самопроизвольно. Внутренняя мембрана митохондрий содержит полную дыхательную цепь с двумя дегидрогеназами (сукцината и НАДН). Известно несколько специфических ингибиторов переноса электронов. [c.435]

    Перенос водорода на молекулярный кислород осуществляется с помощью системы структурно и функционально взаимосвязанных переносчиков, составляющих в совокупности дыхательную цепь . [c.356]

    Хиноны — жирорастворимые соединения, имеющие длинный терпеноидный хвост , связанный с хиноидным ядром, способным к обратимому окислению — восстановлению путем присоединения 2 атомов водорода (рис. 93, В). Наиболее распространен убихинон, функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами. В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран. [c.362]

    Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на О2. Последовательность их расположения, представленная на рис. 94, подтверждается различного рода данными значениями окислительно-восстановительных потенциалов переносчиков, ингибиторным анализом. [c.364]

    Экспериментально доказано существование по крайней мере трех индивидуальных переносчиков, катализирующих электронейтральный обмен фосфата на анионы дикарбоновых кислот, а-кетоглутарата — на анионы дикарбоновых кислот и анионов трикарбоновых кислот — на анионы дикарбоновых кислот. С участием специфических переносчиков осуществляется транспорт неорганического фосфата и глутамата в митохондриях. Субстратом переносчика фосфата в митохондриях является моноанион фосфорной кислоты, и распределение фосфата по обе стороны мембраны зависит от величины градиента pH. Таким образом, градиент pH, генерируемый на мембране в результате работы дыхательной цепи или АТФ-азы митохондрий, реализуется в градиент концентрации фосфата, а последний, в свою очередь, является движущей силой в перераспределении анионов ди- и трикарбоновых кислот. [c.447]

    Строят график зависимости активированного ионами Са + дыхания от pH среды инкубации и анализируют возможные ее причины с учетом влияния pH а) на активность системы аккумуляции энергии (транспорт субстрата через мембрану, перенос электронов в дыхательной цепи, аппарат сопряжения) б) на активность переносчиков Са и неорганического фосфата в мембране в) на концентрацию истинного субстрата переносчика неорганического фосфата в связи с изменением соотношения различных ионных форм фосфата [c.459]

    Серьезное исследование цепи переноса электронов и окислительного фосфорилирования началось вслед за тем, как Кеннеди и Ленинджер в 1949 г. показали, что митохондрии являются не только местом синтеза АТР, но также местом функционирования цикла трикарбоновых кислот и окисления жирных кислот. Чанс (1959 г.) завершил разработку новой элегантной спектрофотометрической установки. Полученные данные позволили ему постулировать следующую последовательность переносчиков в дыхательной цепи  [c.363]


    Дополнительным участником дыхательной цепи является железосерный белок FeS (негемовое железо). Он участвует в окислительно-восстановительном процессе, протекающем по одноэлектронному типу. Первый участок локализации FeS находится между ФМП и KoQ, второй - между цитохромами Ь и с . Это соответствует тому факту, что со стадии ФМП путь протонов и электронов разделяется первые накапливаются в митохондриальном матриксе, а вторые идут на гидрофобные переносчики - KoQ и цитохромы. [c.310]

    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Следует подчеркнуть, что последовательность расположения переносчиков такова, что значения потенциала ставновятся все более положительными. Каждый предыдущий, более восстановленный переносчик, находится в более высокоэнергетическом состоянии, чем каждый последующий. Другими словами, электроны переходят на все более низкий энергетический уровень. Компоненты дыхательной цепи расположены во внутренней митохондриальной мембране в виде высокоупорядоченных надмолекулярных ансамблей. Показано, что перенос электронов от НАДН к ФМН (1-й участок), от цит.Ь к ЦИТ.С) (2-й участок) и от цит. а, к О2 (3-й участок) сопряжены с фосфорилированием АДФ, т.е. происходит образование АТФ. Данные три участка называют участками окислительного фосфорилирования. Выяснено, что перенос пары электронов от НАДН к О2 сопровождается синтезом трех молекул АТФ. Это было показано отношением Р/О, т.е. числом молей Р, превращаемых на 1 грамм-атом израсходованного кислорода. [c.86]

    Вместо О2 некоторые эубактерии могут в качестве конечного акцептора электронов использовать ряд окисленных органических или неорганических соединений (табл. 29). Этот процесс получил название анаэробного дыхания. Освобождаемая энергия и состав переносчиков определяются окислительно-восстановительными потенциалами акцепторов электронов. Анаэробные дыхательные цепи содержат те же типы переносчиков, что и аэробные, но цитохромоксидазы заменены соответствующими редуктазами. Иные, нежели О2, акцепторы электронов могут использоваться [c.367]

    Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома Ь, действуя предположительно на НАД(Ф) Н2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomy es) подавляет перенос электронов от цитохрома Ь к цитохрому с,. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов а + Дз на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтран-спортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора — в окисленной форме. [c.364]

    Дыхательные цепи метилотрофов по составу переносчиков и их локализации на мембране похожи на таковые большинства аэробных эубактерий, что предполагает возможность функционирования у них трех пунктов сопряжения. В окислительном метаболизме С,-соединений участвуют НАД, флавины, хиноны, цитохромы типа Ь, с, а, о. [c.397]

    Электроны от окисляемых субстратов поступают в дыхательную цепь и далее через систему переносчиков передаются на О2, служащий обязательным конечным акцептором электронов. Электронный транспорт приводит к генерированию АДн+- [c.401]

    Как же происходит выделение энергии в этих метаболических процессах Электроны, удаляемые на разных стадиях цикла Кребса, а также на двух предшествующих ему стадиях (образование лактата и пирувата), передаются по дыхательной цепи переносчиков. В эту цепь входит сложный комплекс ферментов и коферментов, а именно НАД, фермент из группы флавопротеи-дов (ФП) и ряд железосодержащих ферментов — цитохромы Ь, с, а, йз. Электроны, проходя по цепи, передают свою энергию молекулам АТФ — происходит окислительное фосфорилирование. Открытие этого важнейшего явления связано с именами Энгель-гардта [36] и Белицера [37, 38]. В конечном счете электроны переносятся на кислород, восстанавливаемый до воды. [c.105]

    На этой стадии высвобождается мало энергии. Ее главная цель заключается в превращении любой пищи в стандартный набор химических веществ и подготовке к более эффективным стадиям получения энергии. На второй стадии, называемой циклом лимонной кислоты, пировиноградная кислота окисляется до СО 2, а атомы водорода от пировиноградной кислоты переходят к молекулам-переносчикам НАД (никот инамидадениндинуклеотид) и ФАД (флавинадениндинуклеотид). На этой стадии тоже происходит запасание лишь очень небольшого количества свободной энергии в молекулах АТФ. Главной целью этой стадии является разделение большой свободной энергии (1142 кДж-моль ), заключенной в пировиноградной кислоте, на четыре меньшие и легче используемые части (приблизительно по 220 кДж моль ), которые содержатся в 4 молях восстановленных молекул, переносящих энергию. На третьей стадии процесса, называемой дыхательной цепью, происходит использование этих восстановленных молекул-переносчиков. Они повторно окисляются, а водородные атомы, полученные при окислении, используются для восстановления О2 в воду при этом происходит запасание выделившейся свободной энергии в синтезируемых молекулах АТФ. [c.326]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Цитохромы — это переносчики электронов в процессе окислительного фосфорилирования, суть которого состоит в образовании АТР при переносе электронов от NADH или FADH2 к молекулярному кислороду. Весь процесс включает окисление субстрата (например, глюкозы). При этом поток электронов проходит через компоненты дыхательной цепи (цитохромы) к молекулярному кислороду, который в конечном счете восстапавливастся до воды. [c.413]

    У аэробных организмов восстановленные формы переносчиков водорода вновь окисляются молекулярным кислородом в цепи переноса электронов, получившей название дыхательной цепи (на рис. 7-1 показано в центральной части рисунка под окружностью). Окисление NADH (восстановленного NAD+) кислородом характеризуется значительным уменьшением свободной энергии (при pH 7 величина ДС составляет —219 кДж-моль ) и сопровождается образованием трех молекул АТР (из ADP и неорганического фосфата). Этот процесс, называемый окислительным фосфорилированием (гл. 10), представляет собой главный путь накопления биологически полезной энергии (в форме АТР), высвобождающейся при расщеплении жиров в организме человека. [c.84]

    Вскоре Кейлин установил, что три полосы поглощения, наблюдаемые при 604, 564 и 550 нм (а, Ь я с), обусловлены тремя различными пигментами, тогда как полоса при 521 нм оказалась общей для всех трех. Кейлин предложил называть эти пигменты цитохромами а, Ь и с. Представление о переносе электронов по дыхательной цепи [2] возникло почти сразу же после того, как была установлена роль флавин- и пиридиннуклеотидсодержащих коферментов на уровне дегидрирования субстратов. Атомы водорода, поступающие на эти переносчики, могли быть использованы для восстановления окисленных цитохромов. Последние могли бы окисляться кислородом при участии цитохромок-сидазы. [c.363]

    Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи—утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии обслуживается соответствующим дыхательным переносчиком НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов в то время как протоны переносятся через мембрану, создавая АрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее. [c.311]

    Было предложено множество схем образования высокоэнергетических промежуточных соединений в результате переноса электронов. В этом случае естественна аналогия с субстратным фосфорилировани- ем, при котором высокоэнергетические промежуточные соединения образуются при переходе электронов от субстрата к субстрату. Как мы уже видели (гл. 8, разд. 3,5), альдегидная группа глицеральдегид-З-фосфата превращается в ацилфосфат, который после переноса фосфатной группы на ADP освобождается в виде карбоксилатной группы. В этом процессе свободная энергия окисления альдегида в карбоксильную группу расходуется на синтез АТР. Реакция отличается от митохондриального переноса электронов тем, что продукт 3-фосфоглицери-Новая кислота уже не превращается обратно в глицеральдегид-З-фос- фат. В то же время переносчики электронов дыхательной цепи должны быть регенерированы в каком-то циклическом процессе. Последнее тре- бование вынуждает искать какие-то иные механизмы окислительного фосфорилирования. [c.410]

    В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбован-ных кислот. В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидроназ происходит перенос водорода на молекулярный кислород. Однако перенос осуществляется не непосредственно, а через молекулы-переносчики, образующие дыхательную цепь. [c.1051]

    К настоящему времени выяснена основная коферментная роль KoQj . Он оказался обязательным компонентом дыхательной цепи (см. главу 9) осуществляет в митохондриях перенос электронов от мембранных дегидрогеназ (в частности, НАДН-дегидрогеназы дыхательной цепи, СДГ и т.д.) на цитохромы. Таким образом, если никотинамидные коферменты участвуют в транспорте электронов и водорода между водорастворимыми ферментами, то KoQj благодаря своей растворимости в жирах осуществляет такой перенос в гидрофобной митохондриальной мембране. Пластохиноны выполняют аналогичную функцию переносчиков при транспорте электронов в процессе фотосинтеза. [c.243]

    Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ( сгорание ) одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедщие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавщийся ФАДН, прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН, попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ. [c.349]

    Некоторые авторы считают, что особенность окислительного пентозофосфатного пути — перенос электронов на окислительных этапах на НАДФ , а не на НАД — в последующем оказалась очень выгодной для аэробов, так как позволила иметь два отдельных пула восстановленных пиридиновых переносчиков, с одного из которых (НАД Н2) электроны поступали в дыхательную цепь, а с другого (НАДФ Н2) использовались в биосинтетических восстановительных реакциях. [c.252]

    Электроны с восстановленных переносчиков (НАД Нз, НАДФ Нз, ФАД Нз), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее соверщенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий. У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании. [c.360]

    НАД(Ф)-зависимые дегидрогеназы, катализирующие отрыв водорода от молекул различных субстратов и передающие его на стартовый переносчик дыхательной цепи — НАД(Ф) Нз-дегид-рогеназу, — растворимые ферменты. Дегидрогеназы флавопроте-иновой природы, выполняющие аналогичную функцию, могут быть локализованными в мембране (например, сукцинатдегидрогеназа) или существовать в растворимой форме (ацетил-КоА-де- [c.360]

    Основное же количество энергии тионовые бактерии получают в результате переноса образующихся при окислении восстановленной серы электронов, поступающих в дыхательную цепь на уровне цитохрома а (см. рис. 97). Дыхательная цепь тионовых бактерий содержит все типы переносчиков, характерных для аэробных хемогетеротрофов. У тионовых бактерий обнаружены флавопротеины, убихиноны, Ре8-белки, цитохромы типа Ь, с, цитохромоксидазы о, d, а + [c.372]

    Механизм окисления Fe " в дыхательной цепи изучен у Т. ferrooxidans. Дыхательная цепь этой бактерии содержит все типы переносчиков, характерные для дыхательной системы аэробных хемо-органотрофных эубактерий, но участок цепи, связанный с получением энергии, очень короток (рис. 98, А). Окисление Fe " происходит на внешней стороне ЦПМ в цитозоль через мембрану железо не проникает. Электроны с Fe акцептируются особым медьсодержащим белком — рустицианином, находящимся в периплазматическом пространстве. [c.379]

    Если водородные бактерии содержат обе формы гидрогеназы, функции между ними четко разделены. В случае отсутствия у водородных бактерий цитоплазматической гидрогеназы возникает проблема получения восстановителя при хемолитоавтотрофном способе их существования. Она решается с помощью механизма обратного переноса электронов на НАД . При функционировании только цитоплазматической гидрогеназы она выполняет обе функции часть восстановительных эквивалентов с НАД Нз поступает в дыхательную цепь, другая расходуется по каналам конструктивного метаболизма. Таким образом, из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД окислением неорганического субстрата. В электронтранспортную цепь электроны, следовательно, могут поступать с НАД Нз или включаться на уровне переносчиков с более положительным окислительно-восстановительным потенциалом. С этим связан энергетический выход процесса функционирование в дыхательной цепи 3 или 2 генераторов Ар1н+- [c.386]

    Таким образом, функционирование гликолиза и пути Энтнера—Дудорова совместно с ЦТК, а также окислительного пентозофосфатного цикла приводит к полному окислению исходных субстратов углеводной природы. Электроны с переносчиков поступают в дыхательную цепь (см. рис. 95, В) и в зависимости от условий могут передаваться на молекулярный кислород или другие конечные акцепторы (фумарат, нитрат). Кроме того, Е. oli в анаэробных условиях в отсутствие подходящего акцептора может получать энергию, осуществляя брожение, основным продуктом которого является этанол. [c.394]

    Биохимическое изучение широкого круга дышащих хемоорганотрофных эубактерий показало, что функционирующие у них системы получения энергии в принципе аналогичны описанной выше, различаясь определенными деталями наличием одного или больше катаболических путей, составом переносчиков дыхательной цепи, природой используемых конечных акцепторов электронов и т.д. Складывается впечатление, что природа, создавая наиболее совершенную систему извлечения энергии из органических субстратов, на уровне прокариот опробовала сочетание разных механизмов, прежде чем остановиться на чем-то определенном. [c.394]


Смотреть страницы где упоминается термин Дыхательная цепь переносчики: [c.221]    [c.206]    [c.456]    [c.1788]    [c.84]    [c.254]    [c.361]    [c.396]    [c.305]    [c.425]    [c.365]    [c.368]   
Микробиология Издание 4 (2003) -- [ c.360 ]

Микробиология Изд.2 (1985) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды

Переносчик



© 2025 chem21.info Реклама на сайте