Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сетка зацеплений

    В настоящее время многие свойства полимерных систем объясняют с позиций концепции об образовании физических узлов сетки макромолекул. В случае каучукоподобных систем расхождения между частотой поперечных связей, рассчитанной с помощью статистической теории высокоэластичности и определенной другим независимым методом (например, с помощью химического анализа), объясняют дефектами сетки и появлением дополнительных узлов (зацеплений) физической природы. В случае расплавов полимеров особенности их реологических свойств (например, появление высокоэластичности) также объясняют с позиции образования физических узлов флуктуационной сетки зацеплений. При этом возможны два варианта 1) узел сетки образован вследствие переплетения цепей так, как это изображено на рпс. 4.10 2) узел сетки представляет собой ассоциат наиболее плотно упакованных макромолекул. [c.141]


    Это явление можно объяснить изменением плотности сетки зацеплений при средних и больших скоростях течения. При таких числах Деборы перемещающиеся молекулы сопротивляются разрушению сетки зацеплений сильнее, чем в естественном состоянии, и в результате в структуре полимера возникают избыточные напряжения, появление которых и приводит к экстремуму на зависимости напряжений от времени. Равновесная плотность сетки зацеплений достигается лишь по истечении значительного времени после прекращения течения, т. е. упомянутые выше структурные изменения обратимы. [c.139]

    Справедливость рассмотренной теории высокоэластичности подтверждена многочисленными экспериментами. Сравнение результатов кинетической теории высокоэластичности полимерных цепей и сеток показывает, что модули упругости для цепей и для сеток определяются одинаковыми выражениями. В связи с этим возникло представление о том, что и у линейных аморфных полимеров, находящихся в высокоэластическом состоянии, имеется пространственная сетка, образованная не химическими связями, а переплетениями цепей. Существование пространственной сетки зацеплений у линейных аморфных полимеров приводит к тому, что в высокоэластическом состоянии у ннх проявляется равновесная высокоэластическая деформация (при не слишком высоких напряжениях и температурах). Эта аналогия в вязкоупругом поведении сшитых (сетчатых) и линейных полимеров особенно ярко проявляется в случае не очень большой продолжительности эксперимента, так как иначе возни- [c.88]

    Следовательно, зависимость rio от М оказывается очень сильной, если полимерные цепи являются достаточно длинными для того, чтобы образовать сплошную сетку зацеплений. Напротив, эта а й имость сравнительно слаба, если длина цепей недостаточна для образования такой сетки. [c.51]

    Характер морфологии цепей в кластерах очевидно определяется химическим строением полимера, его молекулярной массой и в значительной степени параметрами сетки зацеплений [37]. Если расстояние между соседними узлами сетки зацеплений достаточно велико и соответствует длине нескольких десятков (или больше) мономерных звеньев (у атактического полистирола, например, 45—60), то очевидно, что наиболее вероятной внутри кластера будет складчатая конформация цепи. Такая картина, по-видимому, должна наблюдаться для многих не слишком жесткоцепных полимеров. Если расстояние между соседними узлами сетки зацеплений включает несколько повторяющихся звеньев, то очевидно, что наиболее вероятной внутри кластера будет конформация, соответствующая развернутой цепи. В рамках такой модели становится понятным, что максимально возможная для данного аморфного полимера объемная концентрация ф1 кластеров (как и максимальная степень кристалличности у, у кристаллического полимера) задается параметрами сетки зацеплений. Кластерная модель устанав- [c.69]


    При увеличении концентрации полимера в геле до 40 % (мол.) доминирующим по влиянию на подвижность фактором становится сетка зацеплений [если т 20 % мол.)]. Это означает, что при данной концентрации число зацеплений не менее указанного числа химических или водородных связей. [c.278]

    Фазовые диаграммы системы ПВА — метанол для спин — меченого и немеченого полимеров, определенные по точкам помутнения, совпадают с фазовыми диаграммами, определенными по спектрам ЭПР спиновых меток и зондов. Локальная подвижность как зондов, так и меток, мало меняется до концентраций полимера 15—20 % (масс.), а при больших Тс резко возрастает. Этот эффект объясняют влиянием флуктуационной сетки зацеплений. Заметим, что по вязкости образование сетки зацеплений наблюдается при меньших концентрациях, чем по спектрам ЭПР, отражающим локальную подвижность радикалов. [c.292]

    Важной характеристикой пространственной сетки зацеплений является параметр Мс — молекулярная масса среднего участка цепи, заключенного между соседними узлами сетки зацеплений. Представление о существовании пространственной сетки зацеплений в линейных аморфных полимерах распространено достаточно широко 17—20]. Сведения о параметре М , для ряда полимеров приведены в обзоре Портера и Джонсона [20]. Рассмотренные варианты кинетической теории высокоэластичности хорошо согласуются с экспериментальными данными лишь в области малых деформаций. При больших деформациях наблюдается существенное расхождение. Это расхождение связано с исходными положениями и допущениями кинетической теории. Действительно, в этой теории не учитывается вклад изменения внутренней энергии в величину упругой силы, что противоречит ряду экспериментальных фактов, имеющих место при больщих деформациях. Использование гауссовского распределения также должно приводить к расхождению с экспериментом в области больших деформаций. Особенностью (а может быть и недостатком) кинетической теории высокоэластичности является то, что в ней практически не учитывается межмолекулярное взаимодействие, которое в высокоэластическом состоянии хотя и невелико, но все-таки существует. Тем не менее кинетическая теория высокоэластичности добилась большого успеха в описании и объяснении ряда физических (в том числе и механических) свойств полимеров, в установлении связи между пространственной структурой и физическими свойствами каучукоподобных полимеров. Эта теория является одной из наиболее хорошо разработанных областей физики полимеров. [c.89]

    При этом оказалось, что число повторяющихся звеньев, приходящихся па один эйнштейновский гармонический осциллятор, равно 35—50, в то время как одна макромолекула полистирола содержит 35—350 (в зависимости от молекулярной массы) повторяющихся звеньев. Однако это противоречие становится понятным, если принять во внимание, что молекулярная масса участка цепи полистирола, заключенного между соседними узлами пространственной сетки зацеплений, по результатам акустических измерений равна 33—45 [18]. [c.136]

    Поскольку измерения охватывали достаточно широкий интервал температур, включая область плато высокоэластичности, иа основе полученных результатов, зная динамический модуль сдвига в области плато (где его значение достигает равновесного), удалось рассчитать параметры пространственной сетки зацеплений в аморф- [c.277]

    Если высказанное предположение справедливо, то можно ол<идать, что в стеклообразном состоянии более жесткие и более густые сетки зацеплений будут препятствовать плотной упаковке полимерных цепей, и поэтому динамический модуль упругости у таких полимеров в стеклообразном состоянии будет меньше, чем у полимеров с более редкой пространственной сеткой зацеплений. Именно такая закономерность была обнарул<ена при изучении вязкоупругих свойств аморфных полимеров при низких температурах [20]. Было установлено, что полиметилметакрилат (га = 52) при 4,2 К имеет ди- [c.281]

    Важным фактором в фазовом разделении подобных систем является то, что основным механизмом движения цепей является их рептация, или переползание в трубе, образованной лабильными узлами сетки зацеплений [18, 19]. Очевидно, в тех случаях, когда лабильные узлы становятся стабильными (допустим, в результате химической сшивки), переползание цепей, связанное с требованиями фазового разделения, будет тормозиться, приводить к появлению локальных напряжений и даже станет невозможным без разрыва некоторых химических связей. С аналогичными ограничениями молекулярного движения связано торможение процессов фазового разделения в системах на основе линейных гомополимеров и блоксополимеров при стекловании. [c.183]

    Исследование показало, что параметр работы создания поверхности начинает заметно зависеть от молекулярного веса, когда последний становится ниже 4-10 . Детали объяснения, предложен- ного Берри, могут дискутироваться, однако представляется весьма вероятным, что его основные положения верны, т. е. что в процессе роста трещины происходит значительная ориентация материала в области, прилегающей к поверхности разрушения, и что работа, затрачиваемая в этом процессе, зависит от молекулярного веса. По-видимому, молекулярный вес около 4-10 необходим для того, чтобы могла образоваться молекулярная сетка зацеплений и, следовательно, для того, чтобы могло произойти упрочнение в процессе растяжения. [c.324]


    В начальный период деформации основное значение имеют процессы молекулярной ориентации и, как следствие, увеличение межмолекулярного взаимодействия. Этой стадии соответствует восходящая ветвь кривой т]>,(е). Одновременно вследствие повышения напряжения при растяжении образца увеличивается частота разрывов пространственной сетки зацеплений. В результате этого и появляется максимум на кривых Т1х(е), за которым следует довольно быстрое снижение продольной вязкости. [c.84]

    При М У-Мс при увеличении молекулярной массы с ростом скоростей и напряжений сдвига возрастает возможность разрушения сетки зацеплений — аномалия вязкости становится все более сильной. При этом условия проявления аномалии вязкости зависят от того, насколько молекулярная масса полимера превышает М . [c.191]

    Положение изменяется при значительном понижении температуры. Тогда скорость образования сетки уменьшается. Динамическое равновесие процессов уменьшения плотности сетки зацеплений под влиянием деформирования и ее образования под действием теплового движения смещается в сторону снижения плотности сетки. Это означает, что при высоких значениях МШ условия перехода полимера из текучего в высокоэластическое состояние должны зависеть от температуры, точнее, от удаленности состояния полимера от температуры стеклования при более высоких температурах переход полимера в высокоэластическое состояние совершается лишь в условиях слабо выраженной аномалии вязкости при понижении температуры этому переходу может предшествовать значительная аномалия вязкости .  [c.193]

    При значительном расширении ММР, когда возрастает пространственная неоднородность сетки зацеплений, одновременно с повышением аномалии вязкости увеличивается податливость высоком - [c.198]

    В предыдущих разделах неоднократно указывалось на то, что при молекулярных массах, превышающих критическое значение М >Л/ ) полимеров в блоке, образуется флуктуационная сетка зацеплений. При М ш с Сс это происходит и в растворах полимеров. [c.210]

    Рассмотрим далее молекулярно-кинетические характеристики элементов структурной организации и релаксационные механизмы. Для дальнейшей детализации схематизируем две из упоминавшихся моделей суперсеток. На рис. 1.15 приведена такая схема для каучукоподобного полимера (эластомера). Узлы сетки принимаются образованными микроблоками трех типов (ср.. с рис. 1.13), а узлы зацепления во внимание не принимаются, ибо легко показать, что для неполярных каучуков при 20 °С их времена жизни имеют порядок всего т, = 10 с, а с повышением температуры т. убывает ПО формуле Больцмана [ср. с формулой (1.18)]. Поэтому существование сетки зацеплений может сказаться в механическом [c.54]

    ИХ в единую пространственную сетку модель сетки зацеплений). Появление концепции сеток, образованных физическими узлами, вызвано тем, что модель хаотически перепутанных цепей не описывает принципиально процессов, которые связаны с существованием больших времен релаксации, причем характер этих процессов не зависит от структуры звеньев макромолекулы и подвижности свободных сегментов. Зацепления следует рассматривать как специфические локальные межмолекулярные взаимодействия физические узлы), оказывающие влияние на крупномасштабные движения цепей и, следовательно, на длинновременную часть релаксационного спектра. Время жизни этих узлов значительно больше, чем время сегментальной подвижности. [c.28]

    С1еклование свя ывают также с образованием флуктуационной сетки зацеплений вследствие сильного межмолекулярно-го взаимодействия. Эта сотка образуется в том случае, когда энергия теплового движения недостаточна для преодоления сил внутри- и межмолскулярных взакмодействин. В изотермических. условиях процессы разрушения и образования таких связей находятся в термодинамическом равновесии. [c.237]

    Существенное отличие рис. XII. 3 от рис. XII. 2 состоит в том, что это изотермический спектр, типичный для эластомеров, т. е. снятый заведомо выше Гст- Хотя температурные спектры типа рпс. XII. 2 и удобнее для экспериментального воспроизведения, именно широкая вариация частоты (или длительностей импульсов) позволяет выявить дополнительные детали. Медленные движения, которые на рис. XII. 2 не проявляются из-за И-переходов, отчетливо видны на рис. XII. 3. О Ягпереходах и других очень медленных формах подвижности см. разд. XII. 3. Эти переходы относятся к модам, проявляющимся на реологическом уровне (энергии их активации близки к энергии активации вязкого течения) для них реализуются и идентичные скейлинговые отношения типа т/ М Их можно отнести к образовавшейся флуктуационной сетке зацеплений или микроблочных физических узлов, включающих много сегментов от разных цепей. Вопрос о том, сохранились бы эти переходы выше Тц, пока остается открытым. [c.304]

    Завпсимость вязкости смесей растворов ИПММА и СИЛ ММА-МАК в среде диоксана выражается кривой с отрицательным отклонением от аддитивности (см. рис. 1), что, очевидно, вызвано образованием в области высоких концентраций пзотактических триад компактных структур. Отсутствие гидрофобных взаимодействий а-СНд-групп в неполярном диоксане ослабляет стерео-комилексообразовапие в смесях полиметакрилатов и снижает вероятность ассоциации стереокомплексов с образованием сплошной сетки зацеплений. [c.100]

    Интересно, что температурный интервал ДТ 1 2 между точками высокотемпературного Т и низкотемпературного Т2 переходов, расположенными в главной релаксационной области, в сильной степени зависит от параметров, характеризующих сетку зацеплений. Ближе всего друг к другу по щкале температур расположены эти переходы в полисульфоне (ДГ1 2 = 8°С), для которого характерно самое низкое значение параметра п. Наибольшее значение Д7 1 2 = 37°С имеет для полиметилметакрилата, отличающегося и наибольшим значением п. Естественно предположить, что значение ДГ1 2 зависит от надмолекулярной организации полимерных цепей, а та, в свою очередь, определяется жесткостью каркаса сетки зацеплений, т. е. в конечном счете химическим строением полимера. Действительно, если исходить из изложенных выше представлений, то нужно ожидать, что у таких жесткоцепных полимеров, как полисульфон (л=2,4) и поликарбонат (п = 3,7), кластеры образованы участками распрямленных цепей, и складки цепей в кластерах практически отсутвтвуют. Таким образом, различие между морфологией цепей, а следовательно, и энергией активации релаксационных процессов, обусловленных размораживанием сегментального движения, в неупорядоченной матрице и в упорядоченном [c.279]

    Важное значение имеет также выявленное в работе различие поведения растворов исследованных полимеров в зависимости от природы полимера и качества растворителя, которое связывается с эффектом интенсивного струк-турообразования, доходящего до формирования ассоциатов. Результаты реологических измерений представляют собой лишь косвенный метод изучения структурообразования в растворах. Но все же последовательное сопоставление [3] всего комплекса характеристик вязкостных и вязкоупругих свойств растворов различных полимеров в растворителях разного качества действительно показывает, что привлечение структурных представлений позволяет дать объяснение наблюдаемых особенностей поведения растворов в отношении влияния природы растворителя на значения вязкости т (,, модуля высокоэластичности Од, температурных и концентрационных зависимостей Т1о и Оо- Как показано в работах [3], поведение растворов полистирола н полиметилметакрилата в растворителях различной природы, представляющих собой частные случаи в ряду возможных типов растворов полимеров оказывается во многом принципиально различным. Это связано с тем, что интенсивность структурообразования существенно зависит от качества использованного растворителя, причем этот фактор проявляется в различной степени в зависимости от природы макромолекулярной цепи. Следствием этого являются невозможность объяснения различий вязкости растворов полиметилметакрилата в разных растворителях с позиций представлений теории свободного объема, несовпадение значений модуля высокоэластичности эквиконцентрированных растворов (из-за разницы в плотности флук-туацпонной сетки зацеплений, обусловленной зависимостью интенсивности структурообразования от природы растворителя) и появление сильной температурной зависимости модуля высокоэластичности (из-за влияния температуры на распад ассоциатов). [c.246]

    Наблюдается интересная закономерность чем уже интервал температур, в котором осуществляется переход нз стеклообразного в высо Коэластнческое состояние, тем больше пик механических потерь, связанный с этим релаксационным процессом. Таким образом, характер сетки зацеплений (т. е. значения величин Мс и п) как бы задает морфологию цепей в аморфном полимере и тем самым определяет степень кооперативности сегментального движения при переходе из стеклообразного состояния в высокоэластическое. [c.281]

    Плотность сетки зацеплений существенным образом влияет на а-кустичеокие свойства аморфных полимеров в области плато высокоэластичности. Оказалось, что изученные полимеры в зависимости от жесткости каркаса сетки зацеплений мол<но разделить на две группы, отличающиеся по величине Со примерно в пять раз. Полимеры с малым п (полисульфон, поликарбонат, поливинилхлорид) имеют в области плато высокоэластичности модуль Со 5 МПа, в то время как у полимеров с большим п (полистирол, полиметилметакрилат) 0 л 1 МПа. Заметное различие между значениями динамического модуля сдвига полимеров, находящихся в области высокоэластичеокого состояния, наводит на мысль [c.281]

    В то время как модуль упругости лишь слегка изменяется при химическом сшивании, прочность при растяжении снижается весьма заметно. Следовательно, хотя число химических сшивок, образованных перекисью, не очень велико в сравнении с числом уже имеющихся узлов физической сетки (зацеплений), эти фиксированные сшивки должны образовывать места концентрации напряжений, которые не могут передавать усилия на поли-стирольпые домены столь же эффективно, как зацепления цепей. [c.112]

    В данной работе поднят ряд важных для физической химии растворов полимеров вопросов относительно обобщенного представления зависимости вязкости tio от концентрации с и молекулярного веса М, формы концентрационной зависимости i и природы определяющих параметров, роли струк-турообразования в растворе. В самое последнее время был получен ряд новых результатов в этой области, существенных для понимания проблем, обсуждаемых в данной работе. Вопрос о возможности приведения концентрационных зависимостей вязкости полимеров разных молекулярных весов рассматривался для большого числа объектов в широком диапазоне составов в работах [1, 2]. Было показано, что использование вязкостной функции в форме, предложенной Симхой с соавторами (nsp/rf lOi а аргумента в виде (с[т]]) во всех исследованных случаях позволяет построить обобщенную концентрационную зависимость вязкости. При этом величина (с[т]]) во всем диапазоне составов при ее изменении от нз ля до нескольких сотен остается определяющим безразмерным параметром, характеризующим объемное содержание полимера в растворе и в том случае, когда молекулярные клубки перекрываются и образуют флуктуационную сетку зацеплений. Учитывая, что [т]] Л1 , нетрудно сделать вывод, что обобщенным аргументом рассматриваемой зависимости вязкости от с и AI является величина (сМ"), причем, конечно, а не может быть постоянной величиной, а зависит от природы системы полимер — растворитель. Поэтому возможность применения каких-либо конкретных значений а (как в данной работе, где а придавались значения 0,68 или 0,625) представляется частными случаями, так что не следует пытаться искать какого-либо универсального значения а, поскольку такое значение в лучшем случае будет иметь смысл не более чем грубого усреднения. В сущности именно этот результат дополнительно подтверждается пр имером, приводимым в данной работе на рис. 7, из которого следует, что при правильном выборе значения а, отвечающего показателю степени в уравнении Марка — Хоувинка, аргумент ( AI ) с успехом можно использовать для обобщения экспериментальных данных по зависимостям [c.244]

    Простота расчета для высокомолекулярных полимеров Гкогда (М/Мс) >10], находящихся вдали от Т , обусловлена тем, что у них определяющее значение имеет плотность флуктуацнонной сетки, а фактор свободного объема не играет заметной роли. Он становится существенным, когда с уменьшением молекулярной массы ниже ЪМс все возрастающее влияние начинают оказывать свободные концы макромолекул, что приводит к снижению пространственной однородности флуктуацнонной сетки зацеплений. Специфическое влияние может оказывать также большое различие молекулярных масс и соответственно вязкостей компонентов смеси, как это поясняется схемой, представленной на рис. 2.31, б. В этом случае, когда концентрация высокомолекулярного компонента велика, наблюдается двухступенчатая зависимость объемного расхода от перепада давления. При достижении критической скорости сдвига высокомолекулярного компонента он переходит в высокоэластическое состояние. Специфика явления в данном случае определяется тем, что этот переход оказывается облегченным вследствие значительной неоднородности флуктуацнонной сетка зацеплений. В результате диссипативные потери снижаются скачком, и наблюдается эффект срыва. Однако этот срыв происходит при напряжении т <3 Поэтому он отличается малой амплитудой, и при дальнейшем повышении нанряжения сдвига развивается режим неньютоновского течения, пока не будет достигнуто значение т , типичное для данного полимергомологического ряда. [c.198]

    Отсутствие количественного согласия между экспериментальными данными и теориями Бики и Грессли может иметь различные причины. Прежде всего это может быть обусловлено тем, что условия образования сетки зацеплений зависят от характеристики разветвленности полимерной цени. Качественно это можно понять, исходя из того, что клубки макромолекул находятся в контакте друг с другом преимущественно своими внешними частями. [c.205]


Смотреть страницы где упоминается термин Сетка зацеплений: [c.140]    [c.424]    [c.54]    [c.277]    [c.26]    [c.30]    [c.107]    [c.111]    [c.112]    [c.263]    [c.60]    [c.278]    [c.278]    [c.60]    [c.60]    [c.186]    [c.191]   
Реология полимеров (1977) -- [ c.220 , c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость и сетка зацеплений

Диффузии коэффициент самодиффузии в сетке зацеплений

Значения параметров флуктуационной сетки зацеплений в расплавах полимеров

Модели сетки зацеплений и сетки узлов-микроблоков

Модель сетки с проскальзыванием в узлах зацеплений

Модель сетки флуктуационных зацеплений

О влиянии сетки зацеплений макромолекул на начальную вязкость растворов полимеров

Оценка среднего молекулярного веса отрезка цепи в сетке, образованной зацеплениями

Параметры флуктуационной сетки зацеплений в расплавах полимеров

Сетки

Сетки, образованные зацеплениями

Упругости модули сетка зацеплений



© 2025 chem21.info Реклама на сайте