Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость образование пар капель

    Здесь Д — коэффициент диффузии, п — число электронов, принимающих участие в реакции, г—вес ртути, вытекающей из капилляра в секунду, t—время образования капли. Изменение этого времени мало сказывается на высоте волны, так как t входит в степени Ve. Величина tn, как известно, мало изменяется с растворителем. Следовательно, для количественной интерпретации зависимости г д ф от растворителя следует учитывать изменение величин п, Д л с под влиянием неводных растворителей. Эти изменения могут явиться следствием 1) влияния изменения вязкости на коэффициент диффузии в связи с изменением растворителя, 2) влияния сольватации ка коэффициент диффузии, 3) изменения активной концентрации восстанавливающегося вещества в связи с изменением силы электролита, 4) изменения взаимодействия вещества с фоном в связи с изменением растворителя, 5) изменения характера восстановления вещества под влиянием растворителя (изменение величины я), 6) изменения pH под влиянием неводного растворителя. [c.930]


    Интенсивное перемешивание нефти с водой при добыче приводит к образованию стойких водонефтяных эмульсий. Дисперсная фаза (капли воды) распределена в дисперсионной среде (нефти). Без поступления внешней энергии и специальных реагентов эмульсии не расслаиваются. Их высокая стабильность обусловлена присутствием нефтяных ПАВ (сернистых, смолисто-асфальтеновых веществ, нефтяных кислот и др.). Эти ПАВ являются сильными эмульгаторами, образующими на поверхности дисперсных частиц прочный адсорбционный слой, препятствующий слиянию и укрупнению частиц. Стабильность эмульсий зависит от физико-химических свойств нефти, размера частиц дисперсной фазы, температуры, интенсивности перемешивания, плотности и вязкости нефти. Чем больше степень дисперсности, тем меньше диаметр капли и тем устойчивее эмульсия. Мелкодисперсные эмульсии содержат капли диаметром менее 20 мкм (2 10 м), грубодисперсные — диаметром более 20 мкм. [c.695]

    V — объем и М — вес капли. Стекло плавилось в электропечи в воронкообразном тигле, выпускное отверстие которого было частично или полностью закрыто платиновой пробкой. Скорость образования капель есть функция не только поверхностного натяжения, но и вязкости расплава. Для исключения ее влияния время образования капли должно быть растянуто до 70 час. Для определения размеров капли установившаяся ее форма фотографировалась. [c.129]

    Механизм образования высокодисперсных эмульсий можно представить так. В результате продавливания эмульсии через небольшие отверстия или через зазор между ротором и статором коллоидной мельницы возникают высокие скорости сдвига. Вследствие этого капли эмульсии вытягиваются и принимают нитеобразную форму. Достигнув определенной длины, зависящей от межфазного натяжения и вязкости жидкости, масляная нить разрывается, образуя более мелкие капли. [c.179]

    Вращательное и смещающее движения капель в момент сдвига оказывают большое влияние на явления, вносящие вклад в вязкость эмульсий столкновение между каплями флокуляция, приводящая к образованию агрегатов циркуляция жидкости внутри агрегатов и т. д. Некоторые из этих явлений уже обсуждены в предыдущих разделах, другие обсуждаются ниже. [c.255]

    Трехгорлую колбу емкостью 100 мл, снабженную мешалкой и вводом для азота, откачивают и заполняют азотом 3 раза. Приготавливают следующие растворы а) 500 мг олеата натрия (или лаурилсульфата натрия) в 16 мл деаэрированной воды б) 125 мг (0,32 ммоль) Ре(N1 4)2(504)2 и 125 мг пирофосфата натрия в 4 мл деаэрированной воды (для создания буфера). Этот раствор встряхивают в течение 15 мин при 60—70 °С и затем выливают в колбу вместе с раствором, указанным в пункте а . После охлаждения до комнатной температуры в колбу вносят 20 мл (0,2 ммоль) изопрена, перегнанного в атмосфере азота и содержащего 50 мг (0,21 ммоль) перекиси бензоила. Сильное перемешивание способствует образованию стабильной эмульсии, вязкость которой возрастает во времени. После 6-часовой выдержки при комнатной температуре изопрен почти полностью полимеризуется. Полимер высаживается в виде хлопьев из латекса при добавлении эмульсии по каплям к 500 мл метанола, в котором содержится 500 мг М-фенил-Р-нафтиламина, необходимого для стабилизации полиизопрена образование осадка можно усилить добавлением в осадитель нескольких капель соляной кислоты. После фильтрования с отсасыванием и промывки метанолом прочный эластичный образец высушивают в вакуумном сушильном шкафу при 50 °С. Определяют растворимость полученного полимера в различных растворителях, измеряют характеристическую вязкость в растворе толуола при 25 °С, содержание 1,2- и 1,4-звеньев в цепи, а также соотношение цис- и тро яс-структур (см. опыт 3-30). Сопоставьте полученные данные с результатами полимеризации изопрена под действием бутиллития (опыт 3-30). [c.137]


    Следовательно, —то необходимое время ожидания, в течение которого мениск жидкости дойдет до другого конца ка< пилляра. Однако для того, чтобы на поверхности мембраны образовалась видимая капля жидкости (или пузырек воздуха), необходимо еще некоторое дополнительное время. В качестве примера приведем время прохождения мениска жидкости через капилляр с радиусом 1 мк и длиной 4 мм при употреблении в качестве двух несмешивающихся жидкостей бутилового спирта и воды, а также время, необходимое для образования видимого пузырька жидкости на поверхности мембраны. Учитывая, что вязкость бутилового спирта и воды соответственно равна 0,03 и 0,01 пз, найдем по уравнению (28), что при давлении [c.69]

    По причине испарения нефтяных углеводородов и частично с растворением их в воде плотность и вязкость нефтяной пленки постепенно увеличиваются, поверхностное натяжение уменьшается - растекание прекращается. Волны и течения вызывают развитие турбулентных движений, и нефтяная пленка распадается на отдельные капли. Нефть быстро сорбирует воду (до 80% ее объема) и формирует эмульсию типа вода в нефти , это зависит от физико-химических свойств нефтепродукта и ветра, волнения, вертикальной турбулентности, температуры воды, наличия взвесей и твердых частиц. Помимо эмульсии вода в нефти получается и эмульсия типа нефть в воде , особенно при участии диспергирующих химических соединений. В этом случае происходит образование мельчайших капель нефти, что резко увеличивает поверхность раздела сред и способствует ускорению процессов разрушения нефтяных углеводородов. Размер агрегатов колеблется от [c.43]

    Важной индивидуальной характеристикой взаимодейст- ВИЯ капли со стенкой является скорость ее движения. Скорость капли перед взаимодействием определяется начальной скоростью капли в момент ее образования и процессом движения — динамическим взаимодействием капли с парогазовой средой, с другими каплями, тепловым взаимодействием капли со средой, другими каплями и стенкой (радиация) тепловое воздействие иа каплю, обусловленное ее движением, проявляется, в частности, через деформацию капли из-за температурной зависимости вязкости и поверхностного натяжения, а также через массообмен. Предположение о равенстве начальных скоростей всех капель и о детерминированном характере движения отдельной капли по уравнению движения ее центра масс равносильно утверждению о том, что все капли размера / имеют непосредственно перед стенкой одну и ту же скорость [c.39]

    После выхода из сопла частицы топлива летят по направлению суммарной скорости и образуют тонкую пленку в форме однополостного гиперболоида вращения. При малом давлении под действием поверхностного натяжения, аэродинамического сопротивления и веса топлива эта пленка постепенно сужается, затем распадается на отдельные капли (см. рис. 74, а). Такая форма струи получила название тюльпан . С повышением давления скорость топлива увеличивается и сужения пленки не наблюдается (см. рис. 74, б). Максимальное давление, при котором топливо распадается на капли без образования пленки, зависит от физических характеристик топлива (вязкости, поверхностного натяжения) и геометрических размеров форсунки. [c.165]

    Капли разл коацерватов обладают разной устойчивостью для них характерна высокая вязкость, способность менять свою форму при физ воздействиях На физ -хим св-ва коацерватов влияют в-ва, добавляемые в систему после образования коацервата Так, неэлектролиты уплотняют или разжижают коацерваты На св-ва нек-рых липидных коацерватов особенно сильно влияет холестерин, молеку 1ы к-рого располагаются между углеводородными радикалами фосфолипидов и жирных к-т Коацерватный слой способен накапливать проникающие в него в-ва (напр, красители) [c.414]

    При распылении жидкостей энергия главным образом затрачивается на а) образование новой поверхности, б) преодоление сил вязкости при изменении формы жидкости и в) потери, обусловленные неэффективной передачей энергии жидкости Энергия, необходимая для образования новой поверхности при разделении жидкости на капли радиусом г, равна Зу/гр на 1 г Для капечь воды диаметром 1 мк это составляет 0,43 дж (или 0,1 кал) Кроме того, требуется еще некоторое (вероятно, небольшое) добавочное количество энергии, обусловленное тем обстоятельством, что создавае мая в процессе распыления жидкости поверхность больше конечной поверхности образовавшихся капель Процесс образования капель протекает очень быстро, порой в течение нескольких микро секунд При этом скорость деформации жидкости очень ве тика и количество энергии, затрачиваемой на преодоление сил вязкости, должно быть значительным Если предположить, что вязкая жидкость вытягивается в тонкую нитку или пленку, которая распадается затем под действием поверхностного натяжения, образуя капли со средним диаметром равным толщине нити, то можно рассчитать минимальную работу необходимую для изменения формы жидкости По Монку , это можно сделать, приняв, что жидкость входит в широкий конец конической переходной области, равно мерно ускоряется в ней и покидает ее в виде нити Минимальная энергия, рассеиваемая в единице объема жидкости, равна [c.44]


    Варка мыла прямым методом с карбонатным омылением. Для этого в котел подают примерно /4 часть рассчитанного количества углекислой соды в виде концентрированного раствора (28— 30%-ный) или смеси раствора и сухой соды. Раствор соды подогревают острым паром до кипения и в него вводят жировую смесь пропуская ее через змеевик. Благодаря этому жировая смесь раздробляется на мелкие капли, что интенсифицирует реакцию и предупреждает образование кислых мыл. Рекомендуется вначале загружать смесь нефтяных кислот с канифолью, так как образующееся при этом мыло обладает малой вязкостью, что облегчает удаление из него углекислого газа. [c.93]

    В процессе полимеризации ВХ в каждой капле эмульсии образуются глобулярные частицы ПВХ. С увеличением конверсии их доля повышается и к р = 0,55 - 0,60 Б каждой капле возникает жесткая коагуляционная структура. Как видно из рис. 1,32, б наиболее резкое изменение вязкости соответствует области завершения процесса структуро-образования. [c.73]

    Подходы к анализу и расчету массообмена с твердыми телами, изложенные в разд. 10.16, могут оказаться полезными и при анализе процессов массообмена с каплями, пузырями, т.е. с дискретными образованиями с изменяющейся конфигурацией элементов. Однако в этом случае все процессы переноса протекают значительно сложнее, поскольку на молекулярную диффузию внутри элемента дискретной фазы (теплопроводности в случае теплопереноса, молекулярной вязкости при переносе импульса) накладывается внутренняя циркуляция жидкости, газа. Она вызвана взаимным перемещением сплошной и дискретной фаз — см. рис. 2.43. Эта циркуляция слабо выражена в случае мелких капель, пузырей (скажем, размером менее 1 мм), но ее интенсивность быстро нарастает при увеличении размера элемента дискретной фазы. Циркуляционный и диффузионный переносы протекают параллельно. Для мелких элементов превалирует диффузионный механизм переноса, так что здесь в значительной мере работают подходы и справедливы выводы и оценки, полученные в разделе 10.16. Для крутых элементов дискретной фазы доминирующим становится циркуляционный перенос, требующий особого анализа эти сложные вопросы — за пределами учебника. [c.884]

    Намного важнее и чаш,е всего встречается несамопроизвольное образование эмульсий в присутствии эмульгаторов. Эти эмульсии схожи с пенами, и причины их устойчивости следует искать глубже. Довольно широкое распространение получили идеи, подобные гипотезе Плато в отношении устойчивости пен, о роли механической прочности тонких Ьлоев жидкости, разделяющих капли дисперсной фазы в концентрированных эмульсиях. Понятие о механической прочности тонких слоев широко используется в работах Ребиндера и его школы. В простейшем случае, когда речь идет о повышении вязкости в пленке за счет введения в нее эмульгаторов, проблема сводится, как и в случае пен, к механизму замедленного утончения эмульсионных пленок, В эмульсиях оно обусловлено теми же факторами, что и в пенах. Мы уже убедились, что проверка этого механизма представляет собой довольно трудную задачу. Относительно этого вопроса поед еще трудно утверждать что-либо определенное, так как отсутствуют систематические модельные исследования процессов утончения эмульсионных пленок. Если, однако, исходить из аналогии с пенами, а также из имеющихся для них данных, то можно предположить, что указанный механизм не является решающим. Напротив, если под механической прочностью подразумевается вся совокупность механических свойств (в том числе и еще не уточненных механических свойств адсорбционного монослоя), которые противодействуют разрушению тонкого слоя, то, исходя опять же из аналогии с пенами и относящихся к ним априорных выводов, можно предположить, что скорость коалесценции в эмульсиях также регулируется подобными факторами. К сожалению, отсутствие данных по механизму утончения и разрушения эмульсионных пленок в настоящее время не позволяет идти дальше этих весьма неопределенных предположений. [c.244]

    Следует иметь в виду и влияние кинетики образования равновесных пленок. По порядку величины время установления равновесной формы капли 1=г г и, где т) — вязкость жидкости иг — радиус капли. [c.567]

    Струйный режим при диспергировании жидкостей начинается при значительно меньших скоростях истечения (0,1-0,2 м/с), чем при диспергировании газа. При некотором расходе диспергируемой жидкости капли начинают коалесцировать в непосредственной близости от сопла, и при дальнейшем увеличении расхода из сопла начинает вытекать сплошная струя, которая вследствие возникающих на ее поверхности возмущений дробится на капли. Переход к струйному истечению в системах жидкость—жидкость более ярко выражен, чем в системах газ—жидкость, однако все же существует заметный интервал скоростей истечения, в пределах которого происходит формирование развитого струйного режима. Этот факт дал основание некоторым исследователям [21] выделить в качестве самостоятельного переходный режим между динамическим и струйным. Его существенное отличие заключается в том, что в момент отрыва капля находится на конце шейки короткой струи, длина которой может в два раза превышать диаметр капли. Этот режим существует в наиболее широком интервале скоростей истечения в том случае, когда вязкость дисперсной фазы значительно превышает вязкость сплошной. Визуально начало переходного режима проявляется в заметном увеличении частоты образования капель и соответственно в уменьшении их объема. Скорость истечения в точке перехода может быть определена из уравнения [19, 20]  [c.711]

    Для выяснения роли зарядов на молекулах желатины и влияние их на прочность межфазного слоя и время жизни капель углеводорода до коалесценции исследовались растворы желатины при различных pH от 2 до 9. Максимальная прочность и время жизни капель наблюдаются в изоэлектрическом состоянии, затем прочность и устойчивость капель до коалесценции резко падают. Из литературы известно, что заряженные молекулы желатины адсорбируются хуже, особенно отрицательно заряженные. Электрический заряд играет отрицательную роль в образовании прочного адсорбционного слоя. Это, по-видимому, является следствием имеющегося высокого адсорбционного барьера. Подтверждением могут служить опыты по определению межфазной прочности при увеличении ионной силы раствора, при добавлении 0,5 н. КС1. Особенно велико влияние электролита при pH = 9,0, где прочность увеличивается на порядок (от 0,03 до 0,4 дин-смг ). Зависимость времени жизни капель бензола от pH не находится в полном соответствии с данными по прочности межфазных слоев. В щелочной области время жизни капли достаточно велико, хотя практически отсутствует межфазная прочность. В этом случае устойчивость капли бензола обеспечивается межфазной вязкостью (см. рис. 13). [c.402]

    Тонко раздробленные пигменты также мигрируют к границе раздела масло — вода и образуют защитный слой вокруг капель. Все водные окислы (напрпмер, гидратированные формы пятиокиси ванадия, окиси железа и алюминия) поверхностно активны. Поэтому, помимо некоторого увеличения вязкости свежеприготовленной эмульсии, происходящего в процессе их применения, может наблюдаться дальнейший ее рост во время хранения, вызванный прогрессирующей гидратацией окислов. В конце концов, вокруг каждой капли образуется слой геля. Примером могут служить концентрированные эмульсии В/М, в которых окись алюминия (глинозем) размешана в водной фазе (Шерман, 1955с). Когда к водной фазе добавляют пропиленгликоль до концентрации 20%, эти изменения замедляются в зависимости от концентрации пропиленгликоля. При более высоких концентрациях пропиленгликоля образование слоя геля полностью подавляется. Другие полиспирты оказывают тот же эффект. [c.298]

    Прежде чем закончить рассмотрение процессов, определяющих зарождение частиц, необходимо упомянуть специальный тип конденсационной полимеризации с участием эмульгированных мономеров (см. стр. 246). В этом случае истинный процесс образования частиц не протекает, поскольку эмульгированные капли мономера непосредственно превращаются в частицы. Процесс, следовательно, является по существу суспензионной полимеризацией. По аналогии с водными системами подобного типа размер капель и, поэтому, размер и число частиц полимера, определяются количеством и природой дифильного эмульгатора, вязкостью обеих фаз и интенсивностью перемешивания на стадии эмульгирования. [c.166]

    Естественно ожидать, что в быстрых процессах динамические свойства будут иметь большее значение, чем равновесные. В качестве примера рассмотрим мощность, необходимую для образования эмульсии. Допустим, что масло (межфазное натяжение а = 1 дин/см) должно быть заэмульгировано со скоростью —500 л/ч. Если капли имеют радиус порядка 1 мкм, то мощность, которая требуется для образования новой поверхности, составит 5-10 л. с. В более ранней литературе такие расчеты нередки, хотя в действительности требуется мощность порядка 2 л. с. Расхождение обусловлено пренебрежением работой, затрачиваемой на приведение жидкости в движение во время эмульгирования. Используя некоторые простые модели для описания процесса образования эмульсий, можно вычислить потери мощности на преодоление вязкости (Монк, 1952 Субрама-ньям, 1966). Эта величина оценивается от 0,1 до 10 л. с., что соответствует опытным данным. Таким образом, в большинстве случаев процесс разрыва поверхности, по-видимому, вызван явлениями, происходящими в жидкой фазе, с учетом электрических и диффузионных факторов. Объяснение механизма действия облегчается при использовании термодинамических параметров, таких как поверхностная энергия. Природа и концентрация компонентов оказывают косвенное влияние, как и природа поверхности и вязко-эластичные свойства. [c.10]

    Эмульсин бывают двух родов. Эмульсия масла в воде (м/в) и эмульсия воды в масле (в/м). В первом случае дисперсная фаза — какая-либо неполярная жидкость ( масло ), а дисперсионная среда полярная жидкость — вода. Во втором случае — наоборот. Природа эмульгатора определяет тип эмульсии. Для стабилизации эмульсии м/в требуется эмульгатор с преобладающими гидрофильными свойствами, например мыла щелочных металлов. Стабилизирующее действие мыла на эмульсии м/в связано как со структурно-механическим фактором, так и с образованием заряда на поверхности частиц. Адсорбируясь на поверхности капелек, молекулы мыла создают пленку, обладающую структурной вязкостью и прочностью. Молекулы мыла, накапливаясь на поверхности. раздела, своей гидрофильной частью обращены в воду. Таким образом, внешняя поверхность пленок, окружающих капли дисперсной фазы, гидратирована, что создает дополнительную устойчивость. Вследствие диссоциации молекул мыла, адсорбированных на частичках эмульсии, на последних создается заряд и образуется двойной электрический слой, как и на поверхности золей. Для эмульсий типа в/м эмульгатор должен обладать гидрофобными свойствами. [c.106]

    Использованная им установка показана на рис. 37. Некоторая часть небольших капелек масла, образованных распылителем, соединялась с ионами, возникавшими в воздухе в результате облучения его пучком рентгеновских лучей. Экспериментатор наблюдал через микроскоп одну из таких капелек масла и измерял скорость ее падения в поле земного притяжения. Вследствие большого сопротивления воздуха капли достигали некоторой определенной скорости, при которой сила трения точно равна силе земного притяжения. Эта вио.1не определенная скорость зависит от размера и массы капли, а массу можно вычислить, если известна плотность применяемого масла и вязкость воздуха. При наложении электрического поля пластинки, ограничивающие сверху и снизу пространство, в котором находились капли масла во взвешенном состоянии, приобретали заряд и часть капелек (не заряженных) продолжала падать как и раньше, другие же, несущие электри- [c.55]

    Для процессов коагуляции в капле особое значение приобретает точная дозировка растворов, так как от этого зависит не только качество получаемого продукта, но и возможность образования частиц определенной формы и размера. Поэтому дозировка реагентов обычно автоматизирована например, применяются автоматические электромагнитные ротаметры с регулирующими клапанами. Смешение реагентов осуществляется либо с применением механических мешалок, либо по струйному принципу в кислый раствор сульфата алюминия подается с высокой скоростью раствор жидкого стекла, что обеспечивает хорошее их смешение. Образовавшийся в результате смешения золь поступает на распределительный конус, имеющий ряд продольных желобков, по которым раствор стекает в виде отдельных струек в основной аппарат — формовочную колонну. Колонна представляет собой цилиндр высотой около 3 м и диаметром около 1 л, который в нижней части оканчивается коническим днищем с отверстием для выводной трубы. В верхней части (на высоте около 2 м) колонна заполнена циркулирующим минеральным маслом. Струйки золя с распределительного конуса попадают в масло, где и разбиваются на отдельные капли. Величина капель, определяющая величину готовых гранул катализатора, зависит от диаметра желобков, скорости струек и поверхностного натяжения, вязкости масла. Коагуляция геля должна протекать за время падения капли через слой масла. Слишком быстрая коагуляция, как указывалось, приводит к образованию непрочного меловидного геля при затяжке в коагуляции гель слипается под слоем масла в аморфную массу. [c.318]

    Вторичное расслаивание одной из фаз ликвировавшего стекла полностью определяется формой бинодальной кривой и имеет чисто ликвационное происхождение, что легко видеть из рис. 5. В результате прогрева при стекла, предварительно ликвировавшего при каждая из фаз должна в свою очередь подвергнуться фазовому разделению. Поскольку вязкость при больше, чем при Т , а степень пересыщения фаз, как правило, невелика, размеры ( вторичных фазовых образований много меньше, чем первичных . Последующий прогрев при еще более низкой температуре может вызвать третичную ликвацию и т. д. На рис. 6 приведены примеры структур с вторичным фазовым разделением в каплях или в матрице. [c.164]

    Эмульсии, обладающие защитной пленкой, в отличие от гидро-золе11, стабилизированных электрическим зарядом, имеют гораздо большее практическое значение. Пленка должна защищать частич-3 <и от слияния при столкновениях. Для этого, очевидно, необхо-дймо, чтобы пленка образовывалась в дисперсионной среде вокруг капелек, а не внутри их. Поэтому понятно, что пленкообразующие защитные агенты являются почти всегда веществами, растворимыми во внешней жидкой фазе и относительно нерастворимыми в жидкости, образующей диспергированные капельки. В некоторых случаях, например в водных эмульсиях углеводородов, защищенных сапонином, казеином и др., пленка вокруг капелек, предохраняющая их от слияния при столкновении, благодаря ее механической прочности может быть видима под микроскопом или даже простым глазом но даже если пленка совершенно невидима, она может предохранять капельки от соприкосновения друг с другом, если только она обладает достаточной жесткостью и механической прочностью. Поскольку внешняя жидкость сама по себе отличается низкой вязкостью, относительная жесткость пленки, покрывающей поверхность капельки, может быть приписана только адсорбции в поверхностном слое (с его внешней, по отношению к капле, стороны) вещества, способного в этих условиях приобретать гелеподобную структуру. Вообще необходима адсорбция в поверхностном слое какого-либо защитного агента, обычно являющегося высокомолекулярным веществом. Если все эти условия выполнены и капельки предохранены от аггломерации, то необходимо еще, чтобы защитная пленка не была липкой, т. е. если две окруженные пленками капельки придут в соприкосновение, чтобы они могли легко снова отрываться друг от друга. Этим последним свойством обладают только хорошо сольватируемые эмульсоидные вещества. Этим последним принадлежит исключительное значение, как защитным средствам при образовании эмульсий. Типичными представителями стабилизаторов эмульсий в воде являются желатина, казеин, лецитин, высшие алкилсульфокпслоты и, особенно, мыла. [c.261]

    В начале основного периода комплекс-сырец всегда имеет пластическую структуру. Находящаяся между нормально расположенными на поверхности капель масла кристаллами комплекса водная фаза является связанной. В пластическом комплексе-сырце дисперсной фазой является сумма масляная фаза + комплекс + связанная водная фаза , дисперсионной средой — свободная водная фаза. По мере комплексообразования объем дисперсной фазы растет, а объем дисперсионной среды уменьшается, что вызывает прогрессивное увеличение вязкости комплекса-сырца. Очевидно, что с увеличением М. В повышение вязкости происходит быстрее. На некотором этапе комплексообразования капли масла сблизятся вплотную друг к другу и комплекс-сырец потеряет подвижность. При дальнейшем комплексообразовании и связанной с ним иммобилизацией водной фазы между каплями создается разряжение, и капли прижимаются друг к другу избыточным внешним давлением — Др, которое в дальнейшем резко возрастает Это Ар стремится деформировать капли масла, а капиллярные силы, действующие в зазорах между торцами кристаллов комплекса, смоченными масляной фазой, препятствуют этому, придавая оболочкам некоторую жесткость. Капиллярные силы растут с уменьшением зазоров между кристаллами комплекса, а действие их на форму капель усиливается с уменьшением размера последних. Средняя величина зазоров между кристаллами комплекса обратно пропорциональна удельной скорости комплексообразования. Так как размер капель и удельная скорость комплексообразования уменьшаются с увеличением выхода комплекса, то по мере комплексообразования жесткость оболочек капель должна проходить через максимум. После того, как Др превысит капиллярные силы, капли начнут деформироваться, а их поверхность увеличиваться, обеспечивая условия для образования новых кристаллов комплекса. Если удельная скорость комплексообразования большая, то возникающая при деформации капель поверхность сразу же покрывается кристаллами комплекса и снижение жесткости оболочек не происходит. В этом случае деформация капель только способствует их самодис-пергированию. Если же удельная скорость комплексообразования мала, то возникающая при деформации капель поверхность не успевает покрыться кристаллами комплекса, поэтому зазоры между ними увеличиваются, что снижает жесткость оболочек капель. В итоге целостность оболочек нарушается и капли сливаются. Появление в комплексе-сырце макроскопических включений масляной фазы свидетельствует о переходе его структуры из пластической в промежуточную. Следовательно, для данного соотношения жидких фаз изменение структуры комплекса-сырца происходит при определенном соотношении размера капель и удельной скорости комплексообразования. Разрушение оболочек в первую очередь происходит у более крупных капель, т. к. они легче деформируют- [c.105]

    Слейчер показал, что скорость, межфазное натяжение, а также вязкость и плотность сплошной фазы являются наиболее важными параметрами. Тем не менее он сделал вывод, что уравнения Хинце — Колмогорова не могут применяться для описания дробления капель в потоке из-за существования градиента скоростей, исключающего саму гипотезу об изотропной турбулентности. По результатам высокоскоростной съемки Слейчер установил, что существует по крайней мере два механизма дробления. При определенных условиях капли вытягиваются и если соотношение их длины к диаметру не превышает 4 1, дробление идет с образованием двух новых капель приблизительно равного размера. Если это соотношение выше, капли утончаются в нескольких местах сразу. [c.308]

    Стаби.чизация обратны.ч эмульсий с помоидью ПАВ не ограничивается факторами, обуславливаюидими уменьшение поверхностного натяжения. ПАВ, особенно с длинными радикалами, на поверхности капелек эмульсии могут образовать пленки значительной вязкости (структурно-механический фактор), а также обеспечить энтропийное отталкивание благодаря участию радикалов в тепловом движении. Структурно-механический и энтропийный факторы особенно суш ественны, если для стабилизации применяют поверхностно-активные высокомолекулярные соединения тина полиэлектролитов. Структурно-механический фактор — образование структурированной и предельно сольватированной дисперсионной средой адсорбционной пленки — имеет большое значение для стабилизации концентрированных и высококонцентрированных эмульсий. Тонкие структурированные прослойки между каплями высококонцентрированной эмульсии придают системе ярко выраженные твердообразные свойства. [c.400]

    Отмеченная выше зависимость скорости растекания от вязкости подложки показывает, что пленки действительно сильно взаимодействуют с объемом жидкой фазы и их нельзя рассматривать просто как группу молекул, свободно движущихся в двумерно. пространстве, Это обстоятельство осложняет интерпретацию вязкости монослоев (разд. III-3B). Кроме того, существует так называемый эффект Марангони, заключающийся в переносе вещества из объема жидкой фазы, стимулированном градиентом поверхностного натяжения. Известный (кстати сказать, почерпнутый из библии) пример — образование винных слез в стеклянном бокале. Если по стенке бокала стекает капля воды, вино в этом месте начинает наползать на стенку. Испарение спирта из надменисковой пленки приводит к увеличению поверхностного натяжения, что в свою очередь вызывает появление поверхностного потока и сопровождающего его объемного потока по стенке бокала. В результате на стенке образуется винная капелька, которая стекает обратно в бокал. Когда летучий компонент увеличивает поверхностное натяжение раствора, наблюдается обратный эффект, т. е. отступание трехфазной границы раствора. Эти эффекты (а их известно очень много) рассматриваются в обзоре Штернлинга и Скривена [32]. [c.95]

    При распылении жидкости затраты энергии связаны с образованием новых поверхностей раздела фаз, с работой против сил поверхностного натяжения и вязкости. Энергия расходуется на работу по деформации жидкости, на сообщение каплям кинетической энергии, на преодоление гидравличёского сопротивления [77]. [c.27]

    Вязкость конечной обратно.й эмульсии можно повысить перемешиванием при помощи насоса или пропусканием эмульсии через щланг. Для применения с помощью обычной аппаратуры часто бывает необходимо разжижать эмульсию прибавлением масла, и это приводит, особенно при авиационном применении, к образованию мелких капель и увеличению сноса. Фирма Амкем разрабатывает опрыскиватель центрифужного типа для вертолетов и самолетов, который дает однородные капли при минимальном количестве тонких частиц. Опрыскивание с помощью этого аппарата при скорости ветра до 4,5 м/сек не сопровождалось заметным сносом ветром. [c.167]

    Использованная им установка показана на рис. 3.10. Некоторая часть j капель масла, образованных распылителем, соединялась с ионами, воз- пикавшими в воздухе в результате облучения его пучком рентгеновских i лучей. Экспериментатор наблюдал в микроскоп одну из таких капель масла j и измерял скорость ее падения в поле земного притяжения. Вследствие большого сопротивления воздуха капли достигали некоторой определенной скорости, при которой сила трения становилась точно равной силе земного притяжения. Эта вполне определенная скорость зависит от размера и массы капли, а массу можно вычислить, если известна плотность масла и вязкость воздуха. После наложения электрического поля на пластины, ограничивающие сверху и снизу пространство, в котором нахо- дились капли масла во взвешенном состоянии, часть капель (незаряженных) продолжала падать, как и раньше, другие же, несущие электрические заряды, изменяли свою скорость и под действием притяжения верхней противоположно заряженной пластины могли даже подниматься вверх. При этом измеряли скорость движения вверх тех капель, которые ранее наблюдали в процессе их падения. По величине скорости дви- [c.52]


Смотреть страницы где упоминается термин Вязкость образование пар капель: [c.75]    [c.92]    [c.10]    [c.121]    [c.120]    [c.134]    [c.494]    [c.89]    [c.291]    [c.121]    [c.402]    [c.182]   
Эмульсии (1972) -- [ c.239 , c.240 ]

Эмульсии (1972) -- [ c.239 , c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте