Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты анионные теории,

    Диазониевые соли с анионами сильных кислот в водном растворе имеют нейтральную реакцию еще Гольдшмидт установил криоскопическим путем, что они полностью диссоциированы. Ганч подтвердил эти данные измерениями электропроводности растворов. Если выше мы называли катион диазония кислотой (согласно теории Льюиса), то теперь мы можем сказать еще точнее диазониевый катион является сильной кислотой, и этим он отличается от иона аммония. [c.51]


    Большинство катионов являются Ь —кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно —основные комплексы. Как видно, электронная теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.90]

    Еще Оствальд заметил, что для этой и аналогичных реак-ций между каталитической активностью системы и ее электропроводностью имеется однозначная связь. Аррениус подтвердил это и, кроме того, обнаружил, что во-первых, при добавлении к катализирующей реакцию кислоте ее соли, что согласно классической теории электролитической диссоциации должно умень-шить концентрацию ионов водорода, каталитический эффект не только не уменьшается, но в некоторых случаях даже возрастает (например, при этерификации трихлоруксусной кислоты). З то явление получило название вторичного солевого эффекта. Так как при добавлении к раствору кислоты ее соли увеличивается концентрация анионов и недиссоциированной кислоты, то из наличия солевого эффекта следует, что и недис-социированная кислота, и ее анионы обладают каталитической активностью. [c.287]

    В соответствии с классическим определением Аррениуса (1887 г.) кислотами называют вещества, которые в водном растворе диссоциируют с образованием ионов водорода, а основаниями — вещества, диссоциирующие с образованием ионов гидроксила. Это определение было большим шагом вперед по сравнению с эмпирическими критериями, которые, правда, и до настояш,его времени используются на практике для оценки кислотно-основных свойств веществ. В соответствии с классической теорией для кислот и оснований характерна реакция нейтрализации, в результате которой образуется вода, а типичные свойства прореагировавших компонентов исчезают. При выпаривании раствора получается соль, катионы которой остались от основания, а анионы — от кислоты. Теория объясняет также электропроводность образовавшегося раствора соли, понижение температуры замерзания и осмотические явления. [c.375]

    Используя данные по энергии ионизации, сродства к электрону, ионные радиусы и энергию гидратации, Клопман рассчитал для ряда катионов и анионов энергии внешних орбиталей распределение этих ионов по мере убывания энергии поразительно хорошо совпадает с ходом изменения степени жесткости (мягкости) ионов в водной среде (табл. В. 10). Приведенные в таблице данные следует сравнивать отдельно в ряду катионов и анионов. Для катионов жесткие кислоты имеют положительное значение энергии мягкие кислоты — отрицательное. Это распределение в основном согласуется с активностью соответствующих соединений в реакциях. Единственным исключением является протон, который представляет собой более жесткую кислоту, чем это следует из данных табл. В.Ю. В то же время теория верно, предсказывает, что Т1 + — более мягкий ион, чем Т1+. Причиной этого является П52-конфигурация электронов Т1+ (наличие инертной пары электронов). В последовательности анионов энергия Е имеет только отрицательное значение (около —10 эВ). Область энергии около 10 эВ является границей между жесткими и мягкими соединениями. [c.401]


    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    Перхлорат тетрафениларсония используется в количественном анализе для определения СЮ4--иона, Благодаря своей малой поляризуемости ион СЮ4 стабилизирует высокие степени окисления, давая простые соли. Согласно теории жестких и мягких кислот и оснований, СЮ4 относится к жестким основаниям. В водных растворах он не образует анионных комплексов, так что в перхлоратных растворах можно, например, проводить точные измерения стандартных потенциалов катионных окислительно-восстановительных систем. Окислительный потенциал кислого раствора сульфата Се(IV) в присутствии ионов СЮ4 больше, чем в присутствии ионов NOa , S04 или 1 . [c.509]

    Ход изменения растворимости галогенидов серебра можно объяснить и в терминах теории жестких и мягких кислот и оснований. Фторид-ион — более жесткое основание, чем хлорид-ион свойства бромид-иона занимают промежуточное положение при переходе к типично мягкому основанию — иодид-иону. Поскольку ион Ag+ представляет собой мягкую кислоту, силы взаимодействия катиона и аниона возрастают от AgF к Agi, что имеет следствием уменьшение растворимости галогенидов в том же направлении. Различие в растворимости труднорастворимых соединений серебра можно качественно наблюдать а опыте 8. [c.648]

    Выведенные уравнения пригодны и для расчета равновесий Б растворах многопротонных оснований. Большое практическое значение имеют расчеты равновесий в растворах, содержащих анионы слабых многоосновных кислот. По протолитической теории анионы относят к основаниям, поскольку они могут присоединять протон. Например, в растворе карбоната щелочного металла протолитическое взаимодействие происходит по схеме [c.50]

    Теория мембранного равновесия Доннана позволяет объяснить седлообразную форму кривой, характеризующей зависимость осмотического давления раствора белка от pH среды. В самом деле, в изоэлектрической точке амфолита число ионизированных ионогенных групп минимально. Это и обусловит минимальное давление, Прн добавлении кислоты, например НС1, содержание анионов (хлорид-ионов) в растворе сначала растет быстрее, чем содержание ионов водорода (последние [c.475]

    По теории Аррениуса могут быть рассчитаны кривые нейтрализации, характеризующие изменение pH раствора при нейтрализации кислоты или основания. Рассмотрим кривые нейтрализации для буферного раствора, состоящего из слабой кислоты НА и ее соли с сильным основанием. Буферность такого раствора обусловлена тем, что добавляемые ионы водорода связываются анионами соли, а добавляемые ионы гидроксила удаляются за счет нейтрализации недиссоциированных молекул кислоты ОН -ЬНА НгО-рА". В результате при некотором соотношении концентрации соли и кислоты pH системы при добавлении кислоты или щелочи изменяется незначительно. [c.13]

    Таким образом, электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, согласно теории химической связи, во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная связь. Вещества, являющиеся донорами электрон] ых пар, часто называют основаниями Льюиса, а акцепторы электронных пар — кислотами Льюиса или L-кислотами. Большинство катионов является L-кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно-основные комплексы. Мы видим, что теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.241]


    Одним из наиболее важных доказательств соответствия модели Аррениуса с опытом оказались каталитические свойства кислот. То что кислоты обладают каталитическими свойствами, было найдено давно, но только теория электролитической диссоциации связала эти свойства с концентрацией ионов водорода. Вследствие большей подвижности ионов водорода по сравнению с подвижностью различных анионов изменение электропроводности раствора должно быть аналогичным изменению каталитической активности раствора, если действительно ион водорода является причиной каталитических свойств. Один из наиболее выдающихся примеров такого соответствия, найденный Гольдшмидтом, показан в табл. 9-1, в которой сравниваются относительная электропроводность и каталитическое действие ряда кислот в безводном этаноле. [c.327]

    Еще в большей степени в теории Аррениуса и теории Бренстеда отличаются понятия основания. По классической теории основания — вещества, диссоциирующие в водном растворе с образованием иона гидроксила. Поэтому щелочи являются основаниями по Аррениусу и не являются основаниями по Бренстеду — основанием в последнем случае считается ион 0Н , образующийся при электролитической диссоциации щелочи. Аммиак по Бренстеду в равной мере считается основанием при растворении в воде и бензоле, где он не может образовать никаких ионов гидроксила. Как и в случае кислот, понятие основание по Бренстеду применяется к частицам, в том числе ионам. Поэтому основаниями могут быть анионы кислот, которые могут присоединять протон, образуя исходную кислоту. Например, ацетат-ион [c.234]

    Соли рассматривают обычно как продукты замены атома водорода,в кислотах на атомы металлов или гидроксильных групп в основаниях на кислотные остатки. С точки зрения теории электролитической диссоциации солями называются сложные вещества, которые при растворении в воде (или при плавлении) дают в растворе катионы металлов и анионы кислот. [c.245]

    N320 — основание, так как отдает анион О -, а ЗЮг — кислота, так как присоединяет этот анион. Теория Усановича подводит под формулировку кислотно-основных реакций различные типы химических реакций реакции солеобразования, обмена, [c.312]

    Кислоты. Согласно теории электролитической диссоциации кислотами называют вещества, которые ири диссоциации в водных растворах образуют в качестве катионов только ионы водорода. Анионами в этих случаях становятся кислотные остатки. Число ионов водорода, образующихся при диссоциации одной молекулы кислоты, определяет ее основность. Так, НС1, HaS04 и Н3РО4 — пример одно-, двух- и трехосновных кислот. В муравьиной кислоте НСООН из двух атомов водорода, содержащихся в молекуле, способен отщепляться в виде иона только один атом, входящий в карбоксильную группу —СООН, поэтому муравьиная кислота одноосновна, [c.40]

    За исключением некоторых различий в физико-химических свойствах, три протонных растворителя, рассмотренные выше (вода, аммиак и серная кислота) имеют сходство в кислотно-основном поведении. Они подвергаются ав-тоионизированию, причем процесс происходит посредством переноса протона от одной молекулы растворителя к другой с образованием сольватированного протона (кислота по Брёнстеду. кислота по теории сольво-систем) и депрото-нированного аниона (основание по Брёнстеду. по Льюису и по теории сольво-систем). [c.230]

    Например, по этой теории лакмус содержит особунЬ (азолитми-новую) кислоту, неионизированные молекулы которой красного, а анионы — синего цвета. Условимся всякую индикаторную кислоту обозначать схематически через Hind, а анионы ее — через Ind". Тогда ионизацию лакмуса можно представить следующим уравнением  [c.239]

    Как уже было сказано, наличие вторичного солевого эффекта заставляет признать, что каталитическую активность проявляют также анионы кислоты и недиссоциированные молекулы кислоты. Эти факты были использованы в так называемой дуалистической теории катализа (Даусон, 1906). Согласно этой теории, при расчете скорости каталитического процесса необходимо учитывать, что каталитически активными являются ионы водорода и гидроксила, анионы, молекулы недиссоциироваиных кислот и оснований и недиссоциированные молекулы воды. Поэтому скорость реакции при данной концентрации реагирующего вещества равна сумме скоростей, обусловленных активностью всех катализирующих частиц. [c.288]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]

    Еще более общий характер, чем теория Льюиса, имеет теория Усановича. Кислотами он предложил называть вещества, способные отдавать любые катионы, в том числе протоны и другие электроположительные частицы, и присоединять любые анионы, а основаниями — вещества, способные отдавать анионы или другие электроотрицательные частицы, включая электроны, и присоединять протоны. Включение электрона в рассматриваемое определение сделало окислительно-восстановительные процессы частным случаем кислотно-основного взаимодействия и это явилось предметом критики. Например, по теории Усановича кислотно-основной реакцией является взаимодействие металлического натрия с газообразным хлором  [c.33]

    Следует заметить, что теория Доннана не только объясняет форму кривой, характеризующей изменение осмотического давления при изменении pH, но и позволяет предсказать, что при введении в систему кислоты с двухвалентным анионом кривая должна лежать ниже кривой для кислоты с одновалентным анионом. На рис. XIV, 15 изображены подобные кривые, полученные Лёбом при oбaвлeнии к раствору желатина НС1 и HaSO . Сплошными линиями показаны [c.475]

    Классическая теория кислот и оснований такие соли относит к группе негидролизующихся солей. С позиций же протолитической теории кислот и оснований нейтральный характер их растворов (pH 7) объясняется тем, что гидратированные ионы щелочных и некоторых щелочно-земельных металлов, например [Ыа+(Н20)п] [Са " (Н20)л] вследствие крайне незначительного ион-диполь-ного взаимодействия представляют собой весьма слабые кислоты, а анионы сильных кислот, обладая в разбавленных растворах весьма малым сродством к протону, являются исключительно слабыми основаниями. [c.55]

    Зторой недостаток теории Аррениуса был связан с игнорированием ион — ионного взаимодействия. Ионы рассматривались как частицы идеального газа, а следовательно, не учитывалось обусловленное кулоновскими силами притягательное взаимодействие катионов и анионов и отталкивательное взаимодействие одноименно заряженных ионов. Пренебрежение ион— ионным взаимодействием, совершенно непонятное с физической точки зрения, приводило к нарушению количественных соотношений теории Аррениуса. Так, например, строгая проверка уравнения (1.7) показывала, что константа диссоциации К не остается постоянной, а изменяется с концентрацией электролита. Наиболее отчетливо этот эффект проявляется в растворах сильных электролитов, истинная степень диссоциации которых а близка к единице (так называемая аномалия сильных электролитов ). Но даже в растворах слабой уксусной кислоты зависимость К от концентрации СНзСООН значительно превосходит возможные ошибки измерений. Ниже приведены константы диссоциации К для водных растворов КС1 и СНзСООН при 25 С  [c.16]

    В растворах камфары, оксигомоадамантана, адамантановой кислоты на капельном ртутном электроде при 0 1 скорость разряда анионов первой группы резко снижается во всей обла-сти потенциалов адсорбции 5-ПАОВ. При этом наблюдается вытекающая из теории замедленного разряда уравнение (5.45)] зависимость тока от потенциала и состава раствора при <7<0 скорость реакции возрастает, а при д>0 уменьшается с ростом концентрации. Точка пересечения поляризационных кривых в растворах с различной концен-, трацией электролита фона отвечает потенциалу нулевого заряда (рис. 5.16). [c.183]

    Сопоставим определение кислот и оснований по Бренстеду с классическим определением кислот и оснований по Аррениусу. Согласно последнему определению кислотой называется вещ,ество, которое в водном растворе диссоциирует с образованием ионов водорода. Это определение полностью вписывается в определение Бренстеда, т. е. любая кислота по Аррениусу одновременно является кислотой по Бренстеду. Действительно, диссоциация с образованием иона Н+ есть результат передачи протона молекуле воды, т. е. проявление свойств кислоты по Бренстеду. Обратное неверно. Определение понятия кислоты по Бренстеду шире, чем по Аррениусу. Кислотой по Бренстеду может быть не только вещество, но и частицы, не способные существовать в виде самостоятельного вещества, например ион аммония или анион НаРО Последние могут сосуществовать в виде вещества только с соответствующими противоионами, например ион аммония в виде хлористого аммония, а анион НаРОГ в виде однозамещенного фосфорнокислого натрия МаН2Р04. Оба последних соединения в теории Аррениуса рассматриваются как соли. [c.234]

    Во всех случаях мы рассматривали реакцию АН-Н -1-В= ВН++А- или АН+В-5г ВН+А- с участием нейтральных молекул АН-и ВН-кислот и анионов А и катионов ВН+, а все реакции сводились к переносу протона. Теория Бренстеда, называемая иногда протоли-тической теорией, позволяет более широко охватить различные явления кислотно-основных превращений и разграничить кислотные и основные свойства кислоты, теряют протон, основания его принимают, а процесс передачи протона подчиняется законам химического равновесия. [c.234]

    В последнее время И. А. Измайлов предложил количественную теорию диссоциации кислот и оснований, в которой учитывается многообразие химических и физических процессов в растворах и объясняется дифференцирующее действие растворителей на силу кислот. Особенности кислотно-основного взаимодействия как электрохимического процесса являются следствием особых свойств протона как элементарной заряженной частицы. Кислотой называется вещество, содержащее водород и участвующее в кислотно-основном взаимодействии в качестве донор. , протона. Основанием называется вещество, участвующее в кис-Л0ТН0-.0СН0ВН0М взаимодействии в качестве акцептора протона. В завершенном кислотно-основном процессе протон передается от кислоты к основанию, в результате чего образуется катион и анион кислоты. [c.79]

    С позиции теории электролитической диссоциапии можно дать следу ощие определения кислот, оснований и солей. Вещества, при диссоциащт которых в водном растворе образуются катионы водорода, называются кислотами вещества, при диссоциации которых образуются гидроксид-анионы ОН-, называются основаниями. Именно ионы Н + и ОН- обусловливают те обшие свойства кислот и оснований, которые они проявляют в водных растворах. [c.72]

    Имеется и другой подход к вопросам кислотно-основных взаимодействий, положенный в основу теории М. И. Усановича. Согласно этой теории вещества, способные отдавать катионы или присоединять анионы (а также электроны), следует относить к кислотам, а вещества, способные присоединять катионы или отдавать анионы, — к основаниям. Так, в реакции 2Ыа+С12 <=> 2Ма+- -2С1- натрий является основанием, так как он отдает электрон, а хлор — кислотой, так как принимает этот электрон. В реакции [c.312]

    Если посредством кислородных мостиков связывается большее количество моноядерных анионов, могут образоваться как циклические группы, так и бесконечно длинные цепи. При этом цепи могут простираться в одном направлении (цепочечные), в двух (ленточные), или в трех направлениях (пространственные структуры). Все перечисленные типы изополикислот встречаются, например, у кремния в различных природных силикатных материалах. Строение гетерополикислот еще сложнее. До сих пор еще нет единой теории, способной увязать опытные данные по структуре с характерными для гетерополикислот свойствами. Лучше других изучены додека-кислоты. Для них рентгеноструктурными измерениями установлено, что центральный атом металла тетраэдрически окружен более сложными группировками (например, [МозОюр" и [ШзОюР-. Каждая группа состоит из трех октаэдров, состыкованных по ребрам и вершинам. Благодаря этому атомы металла связываются друг с другом и с соседними группировками кислородными мостиками. Один из атомов кислорода каждой группы осуществляет одновременно связь со всеми атомами металла в группе и с центральным атомом неметалла. Молекулы воды, которые входят [c.149]

    Опыт показывает, что скорость реакции пропорциональна электропроводности, т. е. концентрации ионов Н+. Скорость возрастает также с прибавлением к реагирующей системе солей с тем же анионом, что и кислота. Это явление было названо вторичным солевым эффектом. Между тем добавление такой соли согласно теории электролитической диссоциации умень- нает константу диссоциации кислоты и, следовательно, концент-щию ионов водорода. Таким образом, вторичный солевой ффект показывает, что активны не только ионы Н+, но и анионы кислоты. Кроме того, оказалось, что каталитически активны и молекулы недиссоциированной кислоты. [c.331]

    Удерживать постоянным значение pH — это особое свойство буферных растворов. Объясняется оио с помощью теории электролитической диссоциации сильных и слабых электролитов. Прибавим, например, к ацетатному буферному раствору немного соляной кислоты другими словами, введем ионы водорода Н . В этом случае противодействовать изменению кислотности будет соль H.i OONa, которая как сильный электролит находится в растворе в виде анионов СНзСОО и катионов Na +. Аниоиы соли СН.зСОО взаимодействуют с ионами Н+, образуя молекулы слабой кислоты  [c.178]


Смотреть страницы где упоминается термин Кислоты анионные теории,: [c.356]    [c.517]    [c.669]    [c.401]    [c.460]    [c.40]    [c.460]    [c.25]    [c.38]    [c.171]    [c.331]    [c.336]    [c.192]    [c.112]   
Электрохимия растворов (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота анионная



© 2024 chem21.info Реклама на сайте