Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиотропные свойства

    Добавляя вещества, модифицирующие поверхность (ПАВ, электролиты), можно изменять ее лиотропные свойства и тем сЯ мьш способствовать или препятствовать образованию структур, т. е. влиять на их свойства. Так, в системах с водной средой электролиты частично дегидратируют поверхность, способствуя структурообразованию при некоторой оптимальной концентрации. При более высоких концентрациях электролита дегидратация происходит по всей поверхности и вследствие полной коагуляции структура не образуется. [c.269]


    В гелях гребнеобразных полимеров и блок-сополимеров обычно образуются лиотропные жидкокристаллические структуры следующих типов нормальные, обращенные (гексагональные и кубические), ламелярные и складчатые [58]. Структура геля блок-сополимера при изменении его состава может меняться в пределах одной и той же морфологии, а при изменении соотношения блоков происходит переход от одной морфологии к другой (сфера — цилиндр — ламель). Термотропные жидкокристаллические полимеры, характеризующиеся самопроизвольно возникающей анизотропией физических свойств, образуются только при их нагревании или охлаждении. [c.31]

    Жидко-кристаллическое состояние наблюдается как в однокомпонентных, так и в двух- и многокомпонентных системах. Однокомпонентные жидкие кристаллы образуются при плавлении твердых кристаллов. Поэтому их часто называют термотропными мезофазами. Двух- и трехкомпонентные жидкие кристаллы образуются при растворении твердого кристалла в жидкости. Такие растворы называют лиотропными жидкими кристаллами. Их примером может служить раствор олеата калия в смеси спирта с водой. Физико-химические свойства жидких кристаллов зависят от природы молекул. Значительное влияние на [c.244]

    Коагулирующая способность ионов одной и той же валентности может быть выражена рядами, в которых ионы расположены по их убывающей или возрастающей коагулирующей активности. Эти ряды совпадают с так называемыми лиотропными рядами, в которых ионы располагаются также по изменению их адсорбционной активности (см, гл. III, стр. 69) и по другим свойствам (см. гл. IV, стр. 96). Определенная последовательность расположения ионов в этих рядах связана с их энергией и степенью гидратации, которые зависят, в свою очередь, от величины радиуса и поляризуемости ионов, т. е. от деформируемости электронных оболочек атома (см. табл. 5). [c.114]

    Эти ряды называют лиотропными рядами Гофмейстера. Лиотропное действие связано с гидратацией ионов чем больше требуется воды для гидратации иона, тем меньше воды остается на растворимость ВМС и тем легче происходит высаливание. Первые члены лиотропных рядов наиболее сильно гидратируются и оказывают повышенное высаливающее действие. Гидратация иона зависит от плотности заряда, приходящегося на единицу поверхности нона. Чем больше заряд, тем выше степень гидратации. Так, Ь и Сз — однозарядные ионы, но радиус у цезия почти в два раза больше, чем у лития, и, следовательно, при одном и том же заряде плотность заряда на единицу поверхности будет больше у лития. Вследствие этого литий сильнее притягивает диполи воды и сильнее проявляет дегидратирующие свойства. [c.369]


    Жидкокристаллическое состояние занимает промежуточное положение между аморфным (жидким) и настоящим кристаллическим состоянием. Жидкие кристаллы обладают одновременно свойствами жидкостей (текучестью) и кристаллов (анизотропией свойств), но в отличие от твердых кристаллов дальний трехмерный гю-рядок у них отсутствует. Различают термотропные жидкие кристаллы, образующиеся при термическом воздействии на вещество, и лиотропные, существующие в растворах некоторых веществ при определенных концентрациях и температуре [c.133]

    Для углеводородных растворов мыл характерен непрерывный переход от истинных (гомогенных) растворов к мицеллярным (гетерогенным) системам при повышении концентрации или понижении температуры. При этом происходит резкое изменение физико-хи-мических свойств растворов. Особенность этих систем состоит в том, что в процессе такого перехода при высоких температурах система проходит через жидкокристаллическое состояние, т. е. образует лиотропные жидкие кристаллы. [c.300]

    Коагулирующая сила ионов одинаковой валентности зависит от их радиуса и степени гидратации. По возрастанию коагулирующих свойств ионы одинаковой валентности можно расположить в лиотропные ряды. В частности, для золя гидроокиси железа по Думанскому [6J  [c.108]

    Большинство экспериментальных данных свидетельствует о капиллярном течении жидкостей в набухающих мембранах. Селективность таких мембран объясняется особыми свойствами, приобретаемыми жидкостями в капиллярах, связанными с полной или частичной потерей растворяющей способности. Капиллярная модель полупроницаемой мембраны хорошо объясняет снижение селективности с ростом концентрации раствора, а также изменение задерживающей способности ацетатцеллюлозных мембран в водных растворах в соответствии со следующими лиотропными рядами  [c.675]

    Вообще нематические жидкие кристаллы делятся на два больших класса - термотропные и лиотропные нематические жидкие кристаллы. Термотропными нематическими жидкими кристаллами назьшают вещества, которые при нагревании, их кристаллов обладают двумя точками плавления . В первой точке плавления кристалл переходит в мутную жидкость, которая и является жидким- кристаллом. Эта мутная жидкость, обладающая анизотропными свойствами (оптическими, магнитными, вязкими и др.) при дальнейшем нагревании до некоторой температуры испытывает второе фазовое превращение - в точке, которая называется точкой просветления, нематический жидкий кристалл переходит в обычную изотропную жидкость. Физика термотропных жидких кристаллов подробно рассмотрена в монографиях [1-3]. [c.37]

    Соотношения, аналогичные (3.11), имеют место и для других характеристик нематических лиотропных жидких кристаллов для показателя преломления, диэлектрической проницаемости, вязкостей. Экспериментальный материал, относящийся к этим свойствам нематических лиотропных жидкокристаллических фаз, относительно невелик. Подробный обзор вопросов, связанных с анизотропией свойств термотропных жидкокристаллических фаз, приведен в монографии [3]. [c.43]

    Свойства основных лиотропных жидкокристаллических фаз приведены в табл. 3.2 [7]. [c.50]

    В последнее время пристальное внимание привлекает лиотропный мезоморфизм концентрированных растворов ароматических полиамидов [7] в связи с их важным значением в производстве синтетических волокон [8]. Этот тип полимерных жидких кристаллов весьма интересен также и потому, что в них наиболее отчетливо проявляется специфика структуры полимерных молекул, обеспечивающая возможность возникновения на их основе надмолекулярной организации с отчетливо выраженным ориентационным порядком. Изучение конформационных свойств молекул ароматических полиамидов в разбавленных растворах показало, что для этих молекул характерно наличие внутримолекулярного ориентационного порядка с высокой степенью организации [9]. Это значит, что в рассматриваемом случае оправдывается общий принцип, известный в области низкомолекулярных термотропных жидких кристаллов в мезоморфном состоянии могут находиться лишь те вещества, молекулы которых имеют палочкообразную форму, что обеспечивается наличием в них сопряженных связей и ароматических циклов, включенных в молекулярную цепь в пара-положении [10]. [c.58]

    ЦИИ — диэлектрические свойства среды являются важным фактором в установлении как направления закрученности, так и величины Р лиотропного холестерического жидкого кристалла. [c.193]

    Атом азота в гетероциклическом ядре проявляет лиотропные свойства, что приводит к увеличению растворимости конечного продукта реакции и к понижению чувствительности реакции осаждения. Действительно, чувствительность реакции на висмут увеличивается при переходе от гетероциклических соединений к их иодалкилатам, как показывают следующие-примеры (табл. 65). [c.190]


    Примером применения соотношения (VIII, 16) для растворов служат зависимости растворимости солей от диэлектрической проницаемости растворителя [110], теплоты гидратации от радиуса иона [111], лиотропных свойств анионов в растворе от их спектральных свойств [112]. [c.228]

    Как уже упоминалось в начале этой главы, существуют и так называемые кристаллические жидкости или жидкие кристаллы, которые, будучи жидкостями, обладают, как и кристаллические вещества, анизотропными свойствами. Различают термотропные и лиотропные жидкие кристаллы. Термотропные — индивидуальные вещества, которые существуют в мезоморфном состоянии в определенном интервале температур. Ниже этого интервала вещество является кристаллом, выше — жидкостью с обычными свойствами. Примером термотропного кристаллического вещества являются параазоксианизол (в интервале температур 387,16—393,16 К)  [c.39]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    ЛИОТРОПНЫЕ РЯДЫ — ряды, в которых ионы последовательно располагаются по величине их влияния на свойства растворителя в растворе или дисперсионной среды в дисперсной системе. Например, Л. р. ионов, размещенных по их возрастающему влиянию на вязкость и поверхностное натяжение Еодных растворов, на растворимость в воде, на набухание высокомолекулярных веществ (белков, пектинов, агар-агара, крахмала и др.), на застудневание водных растворов таких веществ, а также их высаливание из растворов и т. д. Расположение ионов в Л. р. зависит от их способности связывать воду, которую они отнимают от гидратированных молекул, растворенного вещества или частиц дисперсной фазы. Наиболее изучен ряд неорганических анионов SQ2-, F-, 107, Br0 , l-, 10J-, Вг- <0 и т.д., менее четко выражено отличие в Л. р. однозарядных Li+, Na+, К" , Rb+ и двузарядных Mg +, a +, Sг , Ba + катионов. Впервые Л. р. по высаливаншо яичного альбумина натриевыми солями различных кислот был установлен R 1888 г. Г. Гофмейстером. Процессы ьысаливания имеют большое практическое значение в технологии многих производств. [c.148]

    Мезоморфные состояния. Вещества, состоящие из цепных молекул, могут быть переведены в состояние, промежуточное (мезоморфное) между твердым и жидким. При плавлении или растворении таких веществ получают жидкие (по агрегатному состоянию) системы, но характеризующиеся анизотропией свойств, что является признаком кристаллического состояния вещества. Поэтому такие системы называют жидкими кристаллами. Различают жидкие кристаллы термотропные, полученные нагреванием твердых кристаллов, и. лиотропные, образовавшиеся в результате растворения вещества. По структуре (рис. 31) жидкие кристаллы могут быть нематическими (от греч. nema — нить) и смектическими (от греч. sme ta — мыло). В последнем случае кроме продольной ориентации молекул явно выражено их [c.87]

    Впервые установлено наличие в полимерно-солевых композициях свойств, присущих лиотропным мезоморфным или жидкокристаллическим объектам. За концентрационной границей существования гомогенных изотропных растворов обнаруживалась опалесценция, а турбидимет-рический анализ указывал на возможность существования анизометрии [c.126]

    Переход раствора полимера в состояние студня при той же концентрации называется застудневанием, например, при охлаждении 5%-ного раствора желатины он превращается в студень. Застудневание отчетливо проявляется в прекращении броуновского движения в студне, оно не сопровождается заметным тепловым эффектом или изменением объема, что объясняется малым числом образующихся межцепных связей. Влияние электролитов на скорость застудневания зависит от их положения в лиотропном ряду (см. стр. 185), начиная от сульфатов, которые наиболее сильно ускоряют застудневание. Напротив, лиотропный ряд влияния электролитов на плавление студней имеет обратную последовательность, так как наиболее сильное расплавляющее действие оказывают ро-даниды и йодиды (см. стр. 208). Ввиду замедленной скорости установления равновесия в растворах полимеров (см. стр. 171), их нагревание и охлаждение может сопровождаться гистерезисом ряда свойств — вязкости, оптического вращения (мутаротация) и др., изменение которых обычно отстает от скорости изменения температуры растворов. Интересно, что слишком сильное охлаждение не ускоряет, а тормозит процесс застудневания, благодаря замедлению скорости образования межцепных связей. Например, по Хоку, 1,5%-ный раствор желатины в глицерине застудневает при комнатной температуре в несколько дней, а при 0° остается в течение нескольких недель в жидком состоянии. В эластичных гелях при определенной концентрации полимера и электролитов застудневание раствора может происходить в изотермических условиях, по типу тиксотропных превращений. Разбавленный студень желатины можно получить тиксотропным, подобно гелю гидроокиси железа тиксотропными свойствами обладает также протоплазма при некоторых клеточных процессах — во время деления клеток, при возбуждении клетки, при действии наркотиков и др. [c.209]

    Лиотропные реды — ряды ионов, располагающиеся последовательно по их способности влиять на свойства растворителя (например, влияние, заключающееся в усилении или ослаблении таких свойств, как вязкость, поверхностное натяжение, растворяющая способность), а также на скорость и полноту протекания химических реакций. Например, в ряду 1Г, Ма, МН/, К, РЬ, Сз, Т1, Ад. Ве , Мд , С(1 , Сг , Ва последовательность катионов соответствует уменьшению энергии гидратации. [c.180]

    Такие ряды, называемые лиотропными рядами Гофмейстера, важны для рассмотрения свойств гидратированных эмульсоидов. Вообще ионы высокой степени гидратации оказывают высаливающее действие на эмульсоиды растворимость соли имеет второстепенное значение. Так, в вышеприведенном примере, хотя хлористый магний более растворим, чем сернокислый, но ионы последнего более гидратированы. Поэтому сульфат в большей степени дегидратирует агар вязкость понижается быстрее, и золь флоку-лирует при HHSiiHx концентрациях сернокислого магния. Хлористый магний не дегидратирует золь в такой степени, и золь остается устойчивым до четырехмолярной концентрации. Действие ионов зависит, однако, не только от их гидратации, но, вероятно, также и от того, как они влияют на известную ассоциацию молекул воды друг с другом. Ионы, повидимому, смещают равновесие в сторону образования простых молекул HjO. [c.186]

    В монографии обсуждаются физические свойства жидких растворов. Наряду с растворами веществ, состоящих их молекул-шариков, современная физика изучает свойства растворов веществ, молекулы которых имеют форму палочек (лиотропные жидкие кристаллы), и растворов полимеров, молекулы которых по.хожи на длинные гибкие нити. [c.2]

    Появились первые монографии по термотропным жидким кристаллам (Де Жен Физика жидких кристаллов , %ндрасекар Жидкие кристаллы , Де Жё Физические свойства жидкокристаллических веществ ) и по растворам и расплавам полимеров (Де Жен Идеи скейлинга в физике полимеров ). В то же время по лиотропным жидким кристаллам в мировой литературе монографий пока нет. [c.5]

    В последние годы, однако, обнаружено и исследовано большое число растворов, которые можно назвать микрогетерогенными (микронеодно-родными). В таких растворах фаза, являющаяся макроскопически однородной, характеризуется некоторым микроскопическим пространственным масштабом /, который может быть различным - от десятков ангстрем до нескольких микрометров. Существование этого характерного масштаба проявляется, в частности, в том, что на кривых рентгеновской дифракции от такого раствора видны четкие рефлексы, соответствующие отражениям от брегговских плоскостей, отстоящих друг от друга на расстояние /. Многие микрогетерогенные растворы обладают модулями упругости (и в этом отношении они похожи на твердые тела) для них, кроме того, характерно существование анизотропии ряда физических свойств (показателя преломления, магнитной проницаемости, вязкостей и др.). Такие микронеодно-родные растворы называют лиотропными жидкими кристаллами (см. гл.З)  [c.7]

    Одно замечание общего характера следует сделать относительно воды, являющейся очень распространенным растворителем, особенно в живых системах. При комнатных температурах вода довольно близка к своей точке замерзания. В концентрированных водных растворах, особенно в коллоидальных растворах и в растворах анизотропных молекул в воде (лиотропные жидкие кристаллы), влияние растворенного вещества на структуру воды может оказаться таким, что она приблизится к структуре льда. В воде могут появиться кристаллики (кластеры), имеющие структуру льда. Количество этих кристалликов, или кластеров, увеличивается с увеличением концентрации растворенного вещества и приближает структуру воды в растворе к структуре льда. Вязкость воды увеличивается, у раствора появляется пластичность, и он постепенно приобретает свойства твердого тела. Постепенное появление свойств твердого тела у раствора по мере увеличения его концентрации иллюстрируется рис. 2.21, на котором приведена найденная экспериментально зависимость величины мёссбауэровского поглощения (присущего твердому состоянию вещества и отсутствующего в жидкостях) от концентрации растворенного в воде вещества (см. также раздел 3.6). [c.35]

    Лиотропные нематические жидкие кристаллы, представляющие" собой концентрированные растворы молекул-стержней, обладают те№ же основными свойствами, что и термотропные жидкие кристаллы, подробно описанные в монографиях [1 -3]. Некоторые из этих озойств аналогачны свойствам обычных жидкостей, однако. в случае жидких кристаллов эти свойства анизотропны. Анизотропия магнитной восприимчивости, по- [c.40]

    Свойство, присущее только жидким кристаллам (в отличие от обычных жидкостей), — это статическая упругость кручения. При наличии напряжения кручения (момента кручения) в жидком кртсталле возникает не течение с конечной скоростью, кж в обычной жидкости, а конечная деформация. Энергия деформации в нематическом лиотропном жидком кртсталле (как и в те жютропном жидком к[жсталле) описьшается тремя постоянными упругости - модулями Франка. [c.41]

    Д )угое свойство, присущее нематическим жидким кристаллам и отличающее. их от обычных изотропных жидкостей, - это специфические коэффициенты вязкости, так называемые коэффициенты кручения в градиенте скорости. В ламинарном потоке с градиентом скорости (типа куэттовского или пу йлева течения) направление директора составляет конечный угол с направлением течения. Такая картина регулярного течения с определенной ориентацией директора имеет место только при определенных соотиойениях между коэффициентами кручения. При нарушении этого соотношения картина меняется и наблюдается хаотическое движение директора. Специфические (зойства нематических лиотропных жидких кристаллов будут рассмотрены ниже в этой главе. [c.41]

    Некоторые свойства лиотропных систем, состоящих нз амфифипьного вещества и воды [c.48]

    Иицука [68, 69] изучал структурные свойства жидкокристаллических растворов и высушенных пленок поли- -бензилглутамата при действии электрического и магнитного полей. Для анализа структуры Иицука использовал методы дифракции рентгеновских лучей и светорассеяния [70]. Он занимался изучением ориентации атомных групп при действии приложенного поля, а также ориентации роев палочкообразных молекул в этих системах. Свойства лиотропных жидких кристаллов поли- у-бензилглутамата описаны в гл. 5. [c.37]

    МЬШ свойствам, в обоих случаях являются сходаыми. Эти механизмы сводятся к взаимодействиям длинноцепных боковых групп молекул, приводящим к их параллельной ориентации как внутри молекулы, так и на надмолекулярном уровне. В этом проявляется тесная взаимосвязь между конформационными свойствами гребнеобразных макромолекул и лиотропной мезофазой, возникающей в их растворах. [c.114]

    После открытия анионного инициирования и межфазной поли-конденсации было обнаружено, что мезоморфное поведение, помимо полипептидов, характерно еще для двух других классов полимеров. Были синтезированы блок-сополимеры и привитые сополимеры с длинными последовательностями мономерных звеньев различной полярности и установлено существование разнообразных лиотропных мезофаз, сходных с классическими низкомолекуляр-ными дифилами [3, 4]. Это открытие привело к получению новых важных материалов — микрофазовых композиций, сочетающих предельные свойства, недостижимые при статистической сополиме-ризации. Примерно в то же время с целью повыщения термостабильности материалов в соответствии с требованиями технологии методом поликонденсации был создан класс жесткоцепных макромолекул — ароматические полиамиды. Было установлено, что в соответствии с предсказаниями Флори [2] некоторые из этих жесткоцепных полимеров об(разуют анизотропные растворы. [c.118]

    В настоящей главе дан обзор последних достижений в изучении свойств лиотропных жидкокристаллических полипептидов, т. е. концентрированных растворов а-спиральных синтетических гомополипептидов. Хотя конформацию а-спирали, в данном случае спирали синтетических полипептидов, можно рассматривать скорее как явление ограниченного значения по отношению к известным промышленно важным полимерам, критерии и принципы, обусловливающие жидкокристаллическое состояние в растворах полипептидов, могут быть использованы для углубления понимания жидкокристаллического состояния в полимерах, включая термотррпную фазу (жидкокристаллический полимерный расплав). Роль растворителя в лиотропных жидких кристаллах примерно эквивалентна тепловой энергии для термотропных жидких кристаллов опецифические межмолекулярные силы ослабляются в обоих случаях. Кроме того, закономерности упаковки макромолекул с высокоасимметричной формой аналогичны для обоих типов жидких кристаллов. [c.183]

    Рассмотрим свойства растворов одного синтетического гомополипептида — поли-у-бензил-Ь-глутамата (ПБГ) R = =—СН2СН2СООСН2С6Н5. Растворы ПБГ, вероятно, наиболее полно охарактеризованы среди лиотропных жидкокристаллических полимеров. ПБГ хорошо растворим во многих растворителях. Он производится промышленностью с 1950 г. Исследования других полипептидов показали, что свойства жидкокристаллического ПБГ типичны для всего класса спиральных полимеров. [c.184]

    Жидкокристаллическая фаза может быть легко обнаружена. Она характеризуется двойным лучепреломлением и обладает оптическими свойствами холестеричеокого жидкого кристалла. Наблюдается также заметное изменение вязкости при переходе изотропного раствора в жидкокристаллический. На рис.1 представлена зависимость относительной вязкости ПБГ от концентрации полимера в дихлорметане [8]. Фактически именно это резкое изменение свойств раствора привело к заключению о существовании лиотропного жидкокристаллического состояния в полипептидах. Эллиот и Амброз [9] открыли жидкокристаллическую фазу в процессе испарения растворителя из раствора ПБГ, который использовался для получения ориентированной пленки-препарата с целью изучения конформации синтетических полипептидов методом ИК-спектроскопии. [c.185]

    Поскольку а-спиральная макромолекула хиральна, не удивительно, что в лиотропных жидких кристаллах реализуется холестерическая фаза. В то же время они обнаруживают особое свойство — аномальную компенсацию, которая показывает, что в лиотропном жидком кристалле направление холестерической закрученности зависит от нехирального растворителя. Направление холестерической закрученности, т. е. право- или левозакрученность. [c.191]


Смотреть страницы где упоминается термин Лиотропные свойства: [c.366]    [c.345]    [c.353]    [c.146]    [c.38]    [c.42]    [c.42]    [c.13]    [c.69]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.91 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия свойств лиотропных жидких кристаллов

Лиотропный ряд



© 2025 chem21.info Реклама на сайте