Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерного магнитного резонанса спинов

    Ср( ди радиоспектроскопических методов большое значение имеют методы магнитной радиоспектроскопии — ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР). Эти методы основаны на том, что в веш,естве, помеш,енном в сильное магнитное поле, индуцируются энергетические уровни ядер (ЯМР) и электронов (ЭПР), отвечающие изменению спина ядра или спина электрона. Спиновые энергетические переходы соответствуют поглощению квантов радиоволн. [c.147]


    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]

    Ядерный магнитный резонанс (ЯМР). Много общего с ЭПР имеет явление резонансного поглощения электромагнитной энергии, обусловленное переориентацией магнитных моментов ядер, — ядерный магнитный резонанс. Явление это наблюдается на ядрах далеко не всех атомов. Ядра с четными числами протонов и нейтронов имеют спин / = О и, следовательно, не магнитны. Обычно ЯМР исследуют на ядрах Н , Р и спин которых / = /г. Магнитное квантовое число спина гП] в этом случае принимает два значения пц = Ч- /а и пц = —1/а. Этому отвечают в статическом магнитном поле две ориентации магнитного момента ядра— в направлении поля (т/ = = 1/2) и в противоположном (т/ — — /2), различающиеся по энергии на величину АЕ. При наложении слабого радиочастотного поля, перпендикулярного статическому, происходит резонансное поглощение, приводящее к переориентации спинов при частоте, определяемой условием резонанса V = АЕ/к. Обычно в поле порядка 10 ООО Э ([10 /4я]А/м) ЯМР наблюдается на частоте ч =42,57 мГц. Частота резонанса для ЯМР во столько же раз меньше частоты ЭПР (при одном и том же Н), во сколько раз масса ядра больше массы электрона. (Соответственно ядерный магнитный момент меньше электронного магнитного момента.) [c.149]

    Наряду с методами оптической спектроскопии для исследования органических соединений широко используется метод ядерного магнитного резонанса (ЯМР). Ядерный магнитный резонанс — избирательное взаимодействие магнитной компоненты радиочастотного электромагнитного поля с системой ядерных магнитных моментов вещества. Это явление наблюдается в постоянном магнитном поле напряженностью Но, на которое накладывается радиочастотное поле напряженностью Я , перпендикулярное Но- Для диамагнитных веществ, у которых спин атомных ядер равен 1/2 ( И, С, Р и др.), в постоянном [c.283]


    Физика полимеров в той части, которая рассматривает полимеры как конструкционные материалы, является сравнительно новым разделом физики твердого тела [15]. Физику твердого тела, и физику полимеров в частности, интересует связь между строением и свойствами веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов, фононы и др.). Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонанса, а также диэлектрическими и акустическими методами. [c.6]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Полимеры являются диамагнетиками, поскольку в них скомпенсированы электронные парамагнитные моменты (спины электронов). Но так как ядра имеющихся в полимерах атомов имеют магнитные моменты, оказывается возможным поглощение энергии электромагнитного поля. Это обеспечивает применение магнитных методов для исследования их строения и свойств. Наиболее распространенным является метод ядерного магнитного резонанса. [c.231]

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]

    Спектроскопия ядерного магнитного резонанса (ЯМР) основана на взаимодействии электромагнитного излучения с энергией 10 — 10 эВ с помещенным в постоянное магнитное поле веществом, содержащим атомы элементов, ядра которых обладают спином =4 . Такими ядрами являются ядра атомов водорода Н, углерода ЧЗ, фтора Р, фосфора и некоторых других элементов с нечетным массовым числом. Наибольшее распространение получила спектро- [c.283]

    Принцип получения спектров ядерного магнитного резонанса такой же, как при ЭПР спектроскопии. Изменение энергии в этом случае связано с магнитными свойствами ядер. Однако вследствие того что абсолютная величина ядерного спина в несколько раз меньше, чем электронного, при той же самой напряженности внешнего магнитного поля ядерный резонанс наблюдается при значительно более низкой частоте радиоволн, чем электронный. [c.65]


    Для частиц, имеющих не равный нулю электронный спин, т. е. для парамагнитных частиц, этот метод известен как электронный парамагнитный резонанс (ЭПР). Применительно к ядрам этот метод называют ядерным магнитным резонансом (ЯМР), причем в зависимости [c.157]

    Для частиц, имеющих не равный нулю электронный спин, т. е. для парамагнитных частиц, применяется метод исследования, называемый электронным парамагнитным резонансом (ЭПР). Этот метод, применяемый к ядрам, называют ядерным магнитным резонансом (ЯМР), причем в зависимости от того, на каких ядрах изучают резонанс, его обозначают как Н-ЯМР (часто ПМР — протонный магнитный резонанс), С-ЯМР, Р-ЯМР и т. п. Поскольку факторы Ланде для разных ядер отличаются, то ЯМР-спектрометры, предназначенные для работы с разными ядрами, имеют набор генераторов электромагнитного излучения, соответствующих разным ядрам и приспособленных для работы с одним источником постоянного магнитного поля. [c.179]

    Примерами ядер с / = Vj могут быть ядра I H, еС, N, gF, isP. Эти ядра наиболее удобны для экспериментов по ядерному магнитному резонансу. Наиболее важными для органической химии примерами ядер со спином больше /j могут быть ядра Н, jN (/= 1), вО (/ = %). Эти ядра менее удобны для наблюдения спектров ЯМР. [c.13]

    Насыщение. Как следует из уравнения Больцмана, система ядерных спинов в сильном однородном магнитном поле На при отсутствии радиочастотного поля содержит небольшой избыток ядер на нижнем энергетическом уровне. Под воздействием поля Н1 происходит переход ядер с нижнего энергетического уровня на верхний и в обратном порядке. Такие переходы называются стимулированными. При равной заселенности уровней = Л - а) не будет зафиксировано ни поглощение, ни излучение энергии, хотя переходы между уровнями в такой системе будут продолжаться. Такое состояние системы ядерных спинов называют насыщением. Это состояние может возникнуть при воздействии поля достаточно большой величины. После прекращения воздействия поля Я1 спиновая система возвращается в исходное состояние, которое отвечает распределению Больцмана, и ядерный магнитный резонанс можно наблюдать снова. Поэтому важно понимать, от каких факторов зависит насыщение системы ядерных спинов и какие процессы помогают системе выйти из состояния насыщения. [c.21]

    Ядерный магнитный резонанс дает возможность определять не только число различных типов протонов в молекуле органического соединения, но также и их взаимное расположение, т. е. химическое строение вещества. Это оказывается возможным благодаря явлению спин-спинового взаимодействия, которое проявляется в виде сверхтонкого расщепления линий в спектре ЯМР на компоненты. [c.75]

    Ядерный магнитный резонанс наблюдают в соединениях, молекулы которых имеют ядра, обладающие спином. К таким ядрам относятся протон, ядра обычных изотопов азота и фтора [c.220]

    Наличие таких характеристик, как химический сдвиг и константа спин-спинового взаимодействия, тесно связанных со строением молекулы и очень чувствительных к малым изменениям в ее структуре, объясняют большие возможности спектроскопии ядерного магнитного резонанса в исследовании структуры вещества в идентификации сложных соединений. Высокая разрешающая способность и чувствительность спектров к изменению структуры обеспечивает большие аналитические возможности метода, так как практически всегда позволяет найти аналитические линии даже для очень сложных смесей или соединений, близких по своему строению. Очень важным для аналитических целей является то обстоятельство, что взаимное влияние различных соединений в смеси обычно очень мало или вовсе отсутствует. Интегральная интенсивность сигнала данной группы зависит только от числа протонов в ней, что, конечно, широко используется как при исследовании структуры веществ, так и в аналитических целях. Все современные спектрометры ЯМР снабжены интеграторами, позволяющими быстро измерять интегральную интенсивность любого сигнала, даже сложного мульти- [c.344]

    Важнейшим методом исследования в органической химии вообще и в стереохимии в частности стал ядерный магнитный резонанс. Стереохимическую информацию можно получить как из величин химических сдвигов, так и из констант спин-спинового взаимодействия. [c.86]

    Ядерный магнитный резонанс. Ядро атома со спином / обладает магнитным моментом ш , который может быть представлен в виде [c.186]

    Измерение ядерного магнитного резонанса (ЯМР) — метод анализа, основанный на резонансном поглощении электромагнитных волн веществом, помещенным в постоянное магнитное поле. Ядерный магнитный резонанс использует явление ядерного магнетизма. Атомные ядра многих химических элементов имеют определенный момент количества движения, т. е. вращаются вокруг собственной оси (спин ядра). Спин ядра аналогичен спину электрона. Магнитный момент возникает потому, что каждое ядро имеет электрический заряд. Для наблюдения ЯМР ампулу, содержащую анализируемое вещество, помещают в катушку радиочастотного генератора. Образец может быть жидким, твердым или газообразным. Катушку с ампулой помещают в зазоре магнита перпендикулярно направлению магнитного поля Ни- Генератор создает на катушке слабое переменное магнитное поле Нх- Резонанс наступает при условии ф=фо= У о, где ф — скорость вращающегося поля Нх, фо — скорость прецессии ядер в поле На, 7 — гиромагнитное отношение у = т1Р (т — магнитный момент ядра атома, Р — момент количества движения ядра). При выполнении условия приемник регистрирует небольшое изменение напряжения на рабочем контуре в виде сигнала в форме гауссовой кривой. Кривая характеризуется высотой сигнала и шириной кривой (полосы), [c.452]

    Основная задача ядерного магнитного резонанса заключается в рассмотрении поведения ядерного спина, обладающего механическим (/Л) и магнитным ([ . = уЬ1) моментами в однородном магнитном поле. Здесь / — спин ядра у — гиромагнитное отношение, постоянное для каждого типа ядер й — постоянная Планка. [c.53]

    Наиболее удобным ядром для исследования ядерного магнитного резонанса оказалось ядро водорода Н. Так как спин ядра водорода равен /2, то резонансные линии его получаются узкими, а это повышает информативность спектров. Ядро водорода имеет [c.729]

    Ядерный магнитный резонанс. Характер спектра ЯМР прежде всего зависит от взаимного расположения магнитных моментов и расстояний между ними. Если они распределены равномерно и между ними существует слабая связь, будет наблюдаться одиночная зеемановская резонансная линия, ширина которой определяется дипольно-дипольным взаимодействием между спинами и рядом других причин [10, 11]. Однако часто ядерные спины образуют небольшие группы, внутри которых расстояния между спинами заведомо меньше, чем расстояния между соседними группами спинов. Так как диполь-дипольное взаимодействие быстро уменьшается с расстоянием [см. выражение (657)], то в первом приближении можно рассматривать такую группу [c.377]

    Спектры ядерного магнитного резонанса состоят из линий, каждая из которых отвечает переходу между определенной парой (т, п) уровней энергии ядерных спинов. Положение этих спектральных линий соответствует резонансному условию [c.77]

    Оценим чувствительность метода СПЯ для регистрации спектров ЭПР короткоживущих РП. При комнатной температуре в полях порядка нескольких тесла, которые применяются в современных экспериментах по ядерному магнитному резонансу, равновесная поляризация спинов протонов порядка 10 В этих условиях удается регистрировать спектр ЯМР, если в образце находится порядка 10 протонов. Значит, спектрометры ЯМР позволяют измерить поляризацию порядка = 10 - 10 = 10 . Пусть г - время жизни РП, оно порядка наносекунд, а Т, - время релаксации поляризованных ядер - это время порядка секунд. Если стационарная концентрация РП равна N, то стационарная концентрация поляризованных ядер равна [c.132]

    Например, предположим, дан ансамбль молекул. Пусть импульс света вызывает распад молекул на два диамагнитных фрагмента. Спин-гамильтонианы ядерных спинов в исходной молекуле и во фрагментах, вообще говоря, не должны коммутировать. Следовательно в спектрах ядерного магнитного резонанса фрагментов распада должны наблюдаться ХПЯ. Такая возможность химической поляризации спинов экспериментально еще не исследована. [c.138]

    ХПЭ - химическая поляризация электронных спинов ХПЯ - химическая поляризация ядерных спинов ЭПР - электронный парамагнитный резонанс ЯМР - ядерный магнитный резонанс [c.150]

    Состояния мол. систем, переходы между к-рыми проявляются в виде тех или иных М. с., имеют разную природу и сильно различаются по энергии. Уровни энергии иек-рых видов расположены далеко друг от друга, так что при переходах молекула поглощает или испускает высокочастотное излучение. Расстояние между уровнями др. природы бывает мало, а в нек-рых случаях в отсутствие внеш. поля уровни сливаются (вырождаются). При малых разностях энергий переходы наблюдаются в низкочастотной области. Напр., ядра атомов нек-рых элементов обладают собств. магн. моментом и электрич. квадрупольным моментом, связанным со спином. Электроны также имеют магн. момент, связанный с их спином. В отсутствие внеш. поля ориентации магн. моментов произвольны, т.е. они не квантуются и соответствующие энергетич. состояния вырождены. При наложении внеш. постоянного магн. поля происходит снятие вырождения и возможны переходы между уровнями энергии, наблюдаемые в радиочастотной области спектра. Так возникают спектры ЯМР и ЭПР (см. Ядерный магнитный резонанс. Электронный парамагнитный резонанс). [c.119]

    В последнее время большое число измерений диффузии выполнено импульсным методом ядерного магнитного резонанса ( спин-эхо ), Эти измерения позволяют оценить молекулярную массу протононосителя и, следовательно, делать выводы о степени ассоциации молекул (см. гл. VII). [c.81]

    Как известно, широкое применение для исследования свойств воды находит метод ядерного магнитного резонанса (ЯМР) на ядрах атомов водорода и кислорода ( Ю), имеющих ненулевой спин. Этот метод часто применяют для изучения состояния и свойств воды в пористых телах. Однако при этом возникают трудности интерпретации получаемых данных, что связано с существенным влиянием процессов, обусловленных гетерогенностью системы, наличием тонкодисперсной твердой фазы. Только правильный учет всех обсуждаемых в первом разделе многочисленных мешающих факторов позволяет получать надежную информацию о свойствах связанной воды толщине граничных слоев, параметрах ориентационного порядка и подвижности А10лекул. Обсуждается также и ряд еще нерешенных задач спектроскопии ЯМР. [c.228]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Спектры атомов. При сообщении атому энергии изменяется по крайней мере одно квантовое число. Появляющиеся при этом сигналы относятся к видимой (800—200 нм) и рентгеновской (1 —10 А) областям спектра. В рентгеновской области спектра для аналитических целей используют сигналы, связанные с изменением главного квантового числа п. Интересные для аналитиков оптические спектры связаны в основном с изменением побочного квантового числа I (наряду с изменением и или т ). Ввиду большего разнообразия переходов оптические спектры имеют значительно большее число линий, чем рентгеновские. Если вырождение спинового момента электрона /Пз снимается внешним магнитным полем, то становятся возможными энергетические переходы с изменением т , дающие сигналы в микроволновой области (10 —10 Гц). Эти сигналы образуют спектр электронного парамагнитного резонанса (ЭПР). Атомное ядро подобно электрону может обладать собственным вращательным моменгом, ядерным спином. Воздействие внешнего магнитного поля также снимает его вырождение, что делает возможным энергетические переходы в области радиочастот (10 —10 Гц). Получающиеся при этом спектры называют спектрами ядерного магнитного резонанса (ЯМР). Оба метода, ЭПР и ЯМР, относят к резонансной магнитной спектроскопии [c.177]

    Согласно принципу неопределенности Гейзенберга АхАЕ = Н, время жизни в данном энергетическом состоянии влияет на определенность значения энергии в этом состоянии. Следовательно, от величины Г] должна зависеть ширина резонансной линии. Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резонансе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным спином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Но, но и слабое локальное поле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле (х/г , для протона это поле равно 14 Э на расстоянии 1 А. С ростом г напряженность поля Ял( быстро падает, так как существенное влияние могут оказывать только ближайшие соседние ядра. По величине разброса локального поля Н ак при помощи уравнения резонанса можно найти разброс частот ларморовой прецессии  [c.256]

    Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резонансе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным спином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное поле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле —,  [c.118]

    Ядерный магнитный резонанс можно применить для исследования любого изотопа, у которого спин ядра не равен нулю. Однако в силу методических сложностей большинство изотопов, удовлетворяющих этому требованию, не были изучены методами ЯМР-спектроскопии высокого разрепшния. Чтобы наблюдение ЯМР было достаточно эффективным, желательно иметь ядро со следующими свойствами  [c.78]

    Баргон И., Фишер X. и Йонсен Ю., изучая спектры ядерного магнитного резонанса (ЯМР) диамагнитных продуктов сразу после их образования, впервые наблюдали химически индуцированную неравновесную поляризацию ядерных спинов [5] интенсивность линий в спектре существенно превосходила соответствующую величину в условиях термодинамического равновесия. Вскоре было показано, что химически индуцированная поляризация ядер может привести и к эмиссии на резонансных частотах ЯМР. В продуктах химических реакций спектры ЯМР обнаруживают два типа эффекта ХПЯ - интегральный и мультиплетный. Интегральный эффект характеризует суммарную интенсивность отдельных мультиплетов в спектре ЯМР, которые возникают благодаря спин-спиновому взаимодействию ядер. Мультиплетный эффект характеризует появление эмиссии и усиленного поглощения линий внутри мультиплетов. Для иллюстрации на рис. 2 приведены Фурье-образы спада сигнала свободной индукции, полученные после действия 7г/4 и 37г/4 импульсов (два верхних спектра, соответственно). Эти результаты получены для фотолиза ди-терт-бутил кетона. Их сумма дает интегральный эффект ХПЯ, в то время как их разность (нижний спектр на рис. 2) дает мультиплетный эффект ХПЯ. [c.6]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]


Смотреть страницы где упоминается термин Ядерного магнитного резонанса спинов: [c.210]    [c.18]    [c.240]    [c.330]    [c.141]    [c.355]    [c.491]    [c.400]    [c.521]    [c.26]   
Быстрые реакции в растворах (1966) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ сложных спектров ядерного магнитного резонанса Полный анализ спектров сложных систем ядерных спинов

Основы теории ядерного магнитного резонанса Ядерный спин

Резонанс г ядерный магнитный

Спин-эхо

Спины

Спины ядерные

Ядерного магнитного резонанса спектроскопия спин-спиновое взаимодействие

Ядерный магнитный резонанс спин-спиновая релаксация

Ядерный магнитный резонанс спин-спиновое взаимодействие

Ядерный магнитный резонанс спин-спиновое расщепление линий

Ядерный магнитный резонанс, спектры спин-решетчатая релаксация



© 2025 chem21.info Реклама на сайте