Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавление звеньев

    Конденсационные статистические и блоксополимеры отличаются по свойствам. Свойства блоксополимеров зависят от массовой доли и расположения различных повторяющихся звеньев в сополимере. Это позволяет регулировать свойства блоксополимеров способность к кристаллизации, эластичность, температуру стеклования, плавления и др. Для статистического сополимера такой зависимости свойств не наблюдается [3, с. 123]. [c.173]


    ЯМР [16], электронно-микроскопического [17]. Установлено, что даже незначительная доля структурных неоднородностей в каучуке оказывает большое влияние на скорость и степень кристаллизации полимера. Полупериод кристаллизации возрастает почти на порядок с уменьшением содержания ис-1,4-звеньев от 98 до 95%, а температура плавления кристаллов изменяется пропорционально изменению содержания 1,4-звеньев в этих пределах [14]. Скорость образования кристаллов в полимерах, содержащих 10% гранс-звеньев, на три порядка меньше величины, характерной для полиизопрена, состоящего исключительно из цис- [c.204]

    Формальдегид (метаналь, муравьиный альдегид) НСНО — бесцветный газ с острым раздражающим запахом, с температурой кипения -19,2°С, температурой плавления -118°С и плотностью (в жидком состоянии при -20°С) 0,815 т/м . С воздухом образует взрывчатые смеси с пределами воспламеняемости 5,5 и 34,7% объемн. Формальдегид хорошо растворим в воде, спиртах, ограниченно растворим в бензоле, эфире, хлороформе, не растворим в алифатических углеводородах. Легко полимеризу-ется, особенно при нагревании и в присутствии полярных примесей, образуя твердый полимер линейного строения (параформ) с оксиметиленовыми звеньями  [c.294]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Присутствие алифатических заместителей в метиленовых звеньях диаминов и дикарбоновых кислот затрудняет кристаллизацию полимера и ориентацию его макромолекул. Плотность упаковки в полимере нарушается, при этом снижается температура плавления полимера и уменьшается его механическая прочность. Например, температура плавления полиамида, полученного из метиладипиновой кислоты [c.450]


    Сочетание неполярного мономера с более полярным дает возможность изменить температуру стеклования или плавления сополимера. С повышением содержания звеньев полярного мономера В в макромолекулярной цепи, содержащей неполярные звенья [c.511]

    Следующей структурной характеристикой, определяемой химическими методами, является расположение мономерных звеньев, которое может носить линейно-регулярный и пространственно-регулярный характер. Пример структуры первого типа, в которой мономерные звенья упорядоченно расположены в полимерной цепи, приведен на рис. 2.1, а. При этом различают варианты присоединения голова к хвосту (рис. 2.1, а слева) и голова к голове (рис. 2.1, а справа). Полимерные молекулы, которым присуща пространственная упорядоченность, называют стереорегулярными. Эта особенность строения имеет большое значение в случае полимеров (а-олефинов), таких, как полипропилен. Так, изотактический полипропилен — это жесткий полукристаллический полимер с температурой плавления 165 °С, в то время как атактический полипропилен аморфен, мягок и липок уже при комнатной температуре. [c.37]

    Так как органические полимеры являются менее жесткими по сравнению с неорганическими кристаллами или стеклами, для них существенными могут оказаться процессы миграции зарядов. Они состоят в том, что при разогреве облученного полимера часть глубоких ловушек разрушается или начинает мигрировать в его объеме еще до того, когда из них освобождаются захваченные электроны. Миграция ловушек и их разрушение сопровождаются рекомбинацией связанных зарядов в отличие от рекомбинации электрона с дыркой . Миграции ловушек со стабилизированным зарядом становятся все более вероятными по мере размораживания подвижности отдельных звеньев, сегментов и макромолекул как целого. Таким образом, скорость высвечивания образца полимера при некоторой фиксированной температуре будет определяться временем релаксации определенной группы атомов макромолекул. Так как спектр фотолюминесценции полимера, облученного при 77 К, практически не меняется во время его нагревания вплоть до размягчения (или плавления), можно сделать вывод, что его РТЛ происходит за счет рекомбинации зарядов, захваченных в [c.238]

    Полистирол (ДЯ = 80,26 Дж/г, Д5м = 16,3 Дж/моль-К) где ДЯ — теплота плавления, отнесенная к 1 г полимера, Д5м — энтропия плавления в расчете на 1 г-моль мономерного звена. [c.215]

    В ряду полиамидов, содержащих наряду с алифатическими ароматические звенья, сохраняется известная для алифатических полиамидов зависимость температуры плавления и других свойств не только от числа метиленовых групп в алифатических звеньях, но и от четного или нечетного числа этих групп. [c.386]

    Присутствие кислородного атома придает полимерной цепи большую гибкость, что увеличивает эластичность полиуретана и снижает температуру его плавления по сравнению с эластичностью и температурой плавления полиамида аналогичного состава. Полиуретаны выгодно отличаются от полиамидов меньшей гигроскопичностью, снижающейся по мере увеличения содержания звеньев —СНг— в радикале, что особенно ценно в производстве пластических масс, лаков и резин. [c.731]

    Оксикарбоновая кислота (II) является мономером типа АВ и получается к виде смеси изомеров (6- и 7-изомеры). В то время как полиэфир, полученный из чистого изомера (не установлено какого — G- или 7-изомера), обладает т. пл. выше 300° и плавится с разложением, полиэфир из смеси изомеров (синтез которой приводится ниже) устойчив выше температуры его плавления (210 ). Это является еще одним примером влияния строения цепи на свойства в ряду сополимеров с хаотическим распределением звеньев в макромолекулах. [c.147]

    Силиконы можно полимеризовать до молекул, содержащих 2000 и более звеньев (СНз)2510, затем размолоть с неорганическими наполнителями (например, с окисью цинка или газовой сажей, применяемой при получении обычной резины) и вулканизовать нагреванием. В результате такой обработки между молекулами образуются поперечные связи, связывающие их в пространственную решетку, не изменяющуюся в процессе растворения и плавления. [c.536]

    Сохранить высокую стереорегулярность и высокую температуру плавления образующегося сополимера, существенно изменив при этом условия фазового перехода второго рода, можно путем введения в макромолекулу мономерных звеньев с заместителями, не очень сильно отличающимися от пропилена. Наглядно это можно показать на сополимере пропилена с бутеном-1 (табл. 3.5) [57]. [c.59]

    Для статистических сополимеров Р = мольной доле данных звеньев в сополимере. Подобные расчеты для плавления пропиленовых блоков в сополимере (Т = 170 °С, АЯ = 9,9 кДж/моль) свидетельствуют о резком снижении температуры плавления звеньев в хаотически построенном сополимере по мере уменьшения содержания пропилена при гп2 = 0,9 Тпл = = 155°С при Ш2 = 0,8 Тпл=135°С при /И2 = 0,7 Тпл=120°С. Реальное снижение температуры плавления пропиленовых блоков в сополимере су-шественно замедлено по сравнению с ожидаемым для хаотически построенных сополимеров, что указывает на наличие элементов блочной структуры, при котором Р>ГПх- [c.143]


    Помните задачу 3.1 о пайке золотых цепочек Она решается по тому же стандарту. Припой — он содержит и фосфор — замешивают на касторовом ма ие и окунают в него золотую цепочку. Припой покрывает поверхность цепочки, заполняя и зазоры звеньев. Тепець надо убрать избыток припоя (вспомните правило 3, использованное при решении задачи 6.9). Цепочку обваливают в тальке, избыток припоя очищается, припой остается только в зазорах звеньев, где его удерживают силы поверхностного натяжения. Остается пропустить цепочку сквозь пламя горелки. Одна за другой происходят ми-кровспышки припоя (сгорает фосфор), звенья спаиваются, точнее — свариваются (температура вспышек выше температуры плавления золота). [c.108]

    Увеличение площади поперечного сечения парафиновых цепей при плавлении и ее дальнейший рост с повышением температуры, вероятно, вызываются вращением вокруг простых связей С—С. Благодаря наличию этой степе1[и свободы цепь углеродных атомов может занять больший объем, даже если в самой цепи не меняются действительные расстояния между соседними углеродными атомами. Другими словами, наличие свободы вращения вокруг связи С—С создаст возможность для колебаний отдельных звеньев цепи углеродных атомов. Эта область, где в результате таких колебаний усиливаются боковые перемещения цепи, была названа также областью либрации [60]. [c.230]

    Температуры плавления полиалкенамеров зависят от длины мономерного звена и конфигурации двойной связи. Для ряда незамещенных гранс-полиалкенамеров (80—90% гранс-звеньев) установлена эмпирическая линейная зависимость Гпл от величины, обратной числу углеродных атомов в мономерном звене [18]. Влияние относительного содержания геометрических изомеров на температуру плавления было исследовано для полипентенамера [6] и полиоктенамера [5]. [c.322]

    Температура стеклования определялась методом ДТА для чыс-полиоктенамера— методом ТМА. Для полипентенамера, содержащего 100% транс-звеньев, экстраполяцией получена температура плавления 34 °С. Для 1005<-ного ч с-полиоктенамера экстраполяцией получена температура плавления 38 °С.  [c.322]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Температура плавления полиангидридов терефталевой кислоты около 400°. Если между звеньями остатков терефталата поместить несколько метиленовых звеньев [c.428]

    По свойствам полиуретаны имеют много общего с полиамидами. Линейным полиуретанам, как и полиамидам, свойственна нысокая прочность, обусловленная большим количеством водородных связей, возникающих между карбонильными и иминнымп группами соседних макромолекул. По мере увеличения длины углеводородных цепей, разделяющих полярные группы в макромолекулах полиуретана, уменьшается его жесткость и прочность и снижается температура плавления кристаллитов. Температуря плавления полиуретанов (и полиамидов) с нечетным числом метиленовых групп между полярными звеньями ниже температур плавления ближайших полимергомологов. содержащих четное число метиленовых групп в углеводородных цепочках (рис. 119). [c.456]

    Присутствие атомов серы между углеводородными звеньями не изменяет заметно гибкость цепей и не оказывает в.лияния па межмолекулярное взаимодействие. Это подтверждается приведенными ниже данными, из которых видно, что температуры плавления политиоэфиров с различной длиной углеродных цепочек между атомами серы (при одинаковой степени полимеризации) мало отличаются  [c.460]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    На рис. 146 приведены результаты измерения температуры плавления полиэфиров, полученных совместной поликонденсацией терефталевой кислоты с этилен- и диэтиленгликолем. При увеличении содержания в сополимере звеньев диэтиленгликоля снижается концентрация полиэфирных групп, нарушается регулярность структуры макромолекул и снижается температура плавления сополимера. [c.534]

Рис. 146. Зависимость температуры плавления сополимеров терефталевой кислоты, этиленгликоля и диэтиленгликоля от содержания звеньев диэтиленглнко-ля в полиэфире. Рис. 146. <a href="/info/1225651">Зависимость температуры плавления</a> <a href="/info/370393">сополимеров терефталевой кислоты</a>, этиленгликоля и диэтиленгликоля от <a href="/info/949866">содержания звеньев</a> диэтиленглнко-ля в полиэфире.
    При кристаллизации вблизи температуры плавления благодаря повышенной подвижности. молекулярных цепей образование пластин сразу сопровождается их упорядочением и утолщением, т. е. ростом длины складок. В этих условиях длительная кристаллизация приводит к образованию кристаллитов, размеры которых оказываются соизмеримыми с длиной цепи. Тогда образуются кристаллы с выпрямленными цепями (КВЦ), которые приближаются к термодинамически равновесным и имеют максимальную температуру плавления (Т л). К образованию КВЦ приводит, например, медленная (в течение нескольких часов) кристаллизация полиэтилена при переохлаждении в Г или при больших степенях переохлаждения под высоким давлением, а также полимеризация некоторых мономеров в условиях, обеспечивающих встраивание каждого последующего звена растущей цепи в кристаллическую решетку непосредственно погле присоединения молекулы мономера и возникновения очередной ковалентной связи. [c.175]

    Поскольку отрезки разнородных по химическому составу звеньев в блок- и привитых сополимерах достаточно велики, то эти сополимеры проявляют свойства обоих исходных компонентов. Например, прививка поливинилацетата к политетрафторэтилену придает последнему адгезионные свойства и опоообность к окрашиваиию (свойства, характерные для поливинилацетата), сохраняя при этом высокую температуру плавления исходного полимера. Химическое соединение аморфных и кристаллических полимеров, гидрофильных и гидрофобных полимеров и т. п. позволяет получать материалы с новыми свойствами, которыми не обладают механические смеси гомополимеров. [c.90]

    Введение в состав основной цепи макромолекул полиэфира ароматических групп снижает гибкость макромолекул, а следовательно, повышает температуры стеклования и плавления полиэфира. Так, температура плавления полиэтиленгликольтерефталата, как уже указывалось, составляет 260—265°, а температура плавления полиэтиленгликольадипината всего 50°. Введение в состав макромолекул кислотных или спиртовых звеньев, в которых сочетаются ароматические и алифатические группы,, дает возможность еще больше варьировать свойства полиэфиров от твердых, жестких и высокоплавких материалов до высокоэластичных или низкоплавких воскоподобных. Например, полиэтиленгликолевый эфир п, га -дифе-нилендикарбоновой кислоты [c.709]

    Новый полимер в настоящее время вырабатывается на полузаводской установке фирмы Геркулес и выпускается под маркой пептон [92]. Особенность структуры этого нового полимера заключается в том, что хлорметиль-ные группы в нем связаны с атомом углерода, у которого нет незамещенных водородных атомов, поэтому исключается возможность образования хлористого водорода при повышенной температуре. Кроме того, через каждые три углеродных атома в цепи макромолекул пептона имеется атом кислорода. Это заметно повышает гибкость макромолекул, что внешне выражается в повышении эластичности полимера. Одпако это не ухудшает теплостойкости материала, не снижает его механической прочности и не придает ему хладотекучести, так как строго симметричная структура звеньев способствует кристаллизации полимера. Выше температуры плавления полимер приобретает высокую текучесть, позволяющую формовать из него изделия любой сложности. При охлаждении наблюдается сравнительно малая усадка пептона, что облегчает формование изделий строго заданных размеров. [c.800]

    Эффект смешения имеет место в продуктах поли-коиденсации в том случае, когда в реакцию вступают более двух бифункциональных молекул с образованием сополимера с хаотическим распределением звеньев [11]. Вообще говоря, для сополимеров с хаотическим распределением звеньев изменение таких свойств, как температура стеклования и температура плавления при переходе от одного гомополимера к другому, проходит через минимум, а растворимость — через максимальное значение. Исключение представляют сополимеры, построенные из так называемых изоморфных структурных элементов. т. е. элементов, способных взаимно заменять друг друга в одной н той же кристаллической решетке. Изменение физических свойств сополимеров последнего типа в зависимости от состава происходит линейно. В качестве примера можно назвать сметанный полиамид из 6w -(З-аминопропилового) эфира, пентаметилсндиамииа и адипицовой кислоты [24], который изоморфен гомополиамидам из адипиновой кислоты с каждым из названных диаминов. [c.100]

    Политиоэфиры были количественно окислены до соответствующих полисульфонов в смеси муравьиная кислота — перекись водорода [56, 57] Температуры плавления полисульфонов значительно выше, чем исходного полимера. Когда углеводородное звено состоит из шести метиленовых групп, полнсульфон плавится при температуре 212°, по сравнению с 75° для тиоэфира. Температура плавления линейно увеличивается с уменьшением длины углеводородного звена цепи. Был приготовлен ряд полисульфонов и прядением из расплава были получены волокна, способные к холодной вытяжке и обладающие достаточной прочностью. При этом углеводородная часть цепи имела не менее 4 атомов углерода. Поли-сульфон из пропилена н двуокиси серы (см. гл. 4), имеющий только 2 атома углерода в структурной единице, разлагается ниже температуры плавления. [c.160]


Смотреть страницы где упоминается термин Плавление звеньев: [c.54]    [c.58]    [c.59]    [c.201]    [c.404]    [c.457]    [c.511]    [c.512]    [c.517]    [c.533]    [c.534]    [c.208]    [c.214]    [c.214]    [c.225]    [c.29]    [c.30]    [c.133]    [c.202]   
Кристаллизация полимеров (1966) -- [ c.49 , c.52 , c.53 , c.96 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Звенья



© 2025 chem21.info Реклама на сайте