Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация электролитическая

    Поляризация электролитической сферической частицы [c.464]

    В открытых электрохимических системах применяются два метода устранения малорастворимых покрытий с электродной поверхности механическим путем и поляризацией электролитической ячейки знакопеременным напряжением специальной формы. В некоторых приборах используются оба метода. [c.97]


    Величины Аф обоих электродов складываются в электродвижущую силу концентрационной поляризации, направленную против приложенной к электролитической ванне разности потенциалов, поэтому последняя должна быть увеличена на э. д. с. концентрационной поляризации, чтобы была получена необходимая для электролиза сила тока. Так как в электрохимических производствах при электролизе применяют токи довольно большой плотности, возникают значительные э.д.с. поляризации, вызванные изменениями концентраций у поверхности электродов. Появление э. д. с. концентрационной поляризации увеличивает расход электрической энергии, поэтому устранение или уменьшение концентрационной поляризации является важной практической проблемой. Одной из основных мер уменьшения концентрационной поляризации является перемешивание растворов. Возникновение концентрационной поляризации снижает [c.610]

    I — электролитическая ячейка 2 — исследуемый электрод 3 — вспомогательный электрод с большой поверхностью для пропускания через ячейку переменного тока 4 — вспомогательный электрод для поляризации электрода 2 постоянным током 5 — генератор переменного тока 6 — нуль-инструмент переменного тока (осциллограф) [c.166]

    Процесс электролиза предполагает обязательное наличие двух электродов в одном растворе или в двух растворах различного состава, соединенных между собой электролитическим контактом. Если рассматривать процессы, происходящие во время электролиза, на поверхности каждого электрода в отдельности, то можно проследить за изменением тока как функции электродного потенциала. Графическое изображение зависимости I =((Е), представляющее собой кривую поляризации, приобретает для объяснения электродных реакций большее значение, чем величины равновесных электродных потенциалов. [c.13]

    Влияние поверхностно-активных веществ. Большое влияние на структуру электролитических осадков оказывают органические вещества и некоторые анионы, обладающие поверхностно-активными свойствами. В зависимости от природы и концентрации этих веществ осадки на катоде получаются мелкозернистыми, плотными, гладкими и блестящими или, наоборот, губчатыми — порошкообразными. В большинстве случаев изменение структуры осадков в присутствии органических веществ сопровождается повыщением катодной поляризации и замедлением процесса электроосаждения металлов. Механизм такого влияния органических добавок различен в зависимости от природы добавляемого вещества, состава и свойств электролита. [c.345]


    Для электролитического серебрения применяются исключительно растворы комплексных солей, так как из растворов простых солей (например, азотнокислого серебра) осадки получаются очень крупнозернистыми, потому что катодная поляризация в отсутствие специальных добавок практически равна нулю. Наибольшее распространение получили цианистые растворы. Разработаны также железисто-синеродистые, синеродисто-роданистые, пирофосфатные, иодистые, сульфитные электролиты, которые могут заменять токсичные цианистые растворы. [c.422]

    Пассивация анодов из двуокиси, нитридов и карбидов титана при анодной поляризации стала препятствием прп осуществлении процесса получения титана электролизом с растворимыми анодами, на первый взгляд казавшегося перспективным. Поэтому электролитическое получение титана проводят с нерастворимыми графитовыми анодами. [c.531]

    Железо, если оно присутствует в растворе, всегда осаждается на катоде совместно с кобальтом. Таким образом, близость потенциалов разряда ионов металлов группы железа, их высокая катодная поляризация дают возможность получать сплавы этих металлов электролитическим способом. По тем же причинам получение кобальта, не содержащего никеля и железа, возможно только из растворов, свободных от ионов этих металлов. [c.400]

    ТАБЛИЦА 103. ВЕЛИЧИНЫ АНОДНОГО перенапряжения, ПОЛЯРИЗАЦИИ НА КАТОДЕ, ОБРАТНОЙ Э. Д. С. в ЗАВИСИМОСТИ от плотности -ТОКА ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ОСАЖДЕНИИ ЦИНКА (стандартные условия) [c.478]

    Схема электролиза своеобразна (рис. 225, 226). Все ванны объединены общей циркуляцией раствора, как при электролитическом рафинировании меди. Циркулирующий раствор проходит холодильник, имеющий форму ванны, в которой чередуются свинцовые дырчатые аноды с алюминиевыми или свинцовыми змеевиками, через которые течет охлаждающая вода. Обычно на холодильниках осаждается шлам, уносимый из ванн. Этот шлам понижает теплопередачу, поэтому для снятия его на змеевики периодически дают катодную поляризацию. Выделяющимся водородом снимается налет шлама. Часть раствора, циркулирующего в электролизе, отводят на выщелачивание и заменяют эквивалентным объемом нейтрального. [c.487]

    Различают первичное и вторичное распределение тока. Первичное зависит только от соотношения геометрических параметров электролитической ванны. Оно наблюдается при отсутствии зависимости катодной поляризации от плотности тока и одинаково для геометрически подобных систем любого масштаба. Вторичное, или действительное, распределение тока отклоняется от первичного, как правило, в сторону большей равномерности. [c.5]

    Современные представления о механизме перераспределения тока в электролитах основываются на теории полей поляризации. Рассмотрим коротко ее основные положения. При прохождении тока через электролитическую ванну в ней возникает электрическое поле. Как и любое другое электрическое поле, поле в электролитической ванне может быть охарактеризовано функцией распределения в нем потенциала, т. е. математическим уравнением, связывающим значение потенциала и электрического поля в данной точке с координатами этой точки X п у  [c.6]

    В каждой данной электролитической ванне уравнение (1.2) имеет свой конкретный вид. Обычно функцию распределения потенциала в электрическом поле называют просто потенциалом данного поля. При отсутствии зависимости поляризации от плотности тока в электролитической ванне реализуется первичное поле, потенциал которого обозначается 71 и определяется только соотношением геометрических параметров ванны. Появление на электродах поляризации, зависящей от плотности тока, можно рассматривать как появление так называемого поля поляризации, потенциал которого обозначается и . На значение 1 а влияют геометрические параметры электролитической ванны и электрохимические характеристики электролита электропроводимость и поляризуемость. Это поле 7о, суммируясь с первичным полем, дает в результате реально существующее на практике вторичное поле, потенциал которого обозначается Г/г. Очевидно, что  [c.6]

    Для проведения процесса электролитического выделения вещества можно использовать следующую простую схему (рис. Д.85). Через регулируемое сопротивление R и амперметр А от источника постоянного тока подают на электроды постоянное напряжение, контролируемое вольтметром V (рис. Д.85) напряжение можно менять. Во избежание ошибок при разделении напряжение, фиксируемое на клеммах, не должно превышать допустимой величины. В конце выделения напряжение на клеммах падает вследствие резкого увеличения напряжения поляризации. [c.263]

    Как уже отмечалось, на практике энергетические затраты при электролизе бывают больше, чем это следует из второго закона Фарадея, в силу неполной обратимости процесса и протекания побочных реакций. Одной из главных причин повышения затрат энергии является поляризация электродов. Если мы станем пропускать через концентрированный раствор в электролитической ванне при платиновых электродах ток с разностью потенциалов на зажимах ванны в 1 В,, то заметим, что сила проходящего тока со временем уменьшается и практически сходит на нет. Согласно закону Ома I = E R + r), где R и г—-соответственно внутреннее и внешнее сопротивление в цепи. Поэтому уменьшение силы тока I может происходить или вследствие увеличения сопротивления или вследствие уменьшения электродвижущей силы Е. [c.267]


    На рис. 75 показана принципиальная схема экспериментальной установки для обнаружения э.д.с. поляризации. Поскольку в электролитической ванне А электроды одинаковы, то в отсутствие источ- [c.267]

    Полярографическая установка служит для получения поляро-грамм, т. е. кривых зависимости силы тока, протекающего через раствор, от потенциала, приложенного к рабочему электроду. Прибор состоит из трех основных узлов электролитической ячейки с рабочим электродом и электродом сравнения, источника напряжения для поляризации рабочего электрода и устройства для регистрации тока. Регистрация может быть визуальной, фотографической и автоматической. Принципиальная схема полярографической установки с ртутным капающим электродом представлена на рис. 22.2. В качестве неполяризующегося электрода сравнения используется слой ртути на дне ячейки. Применяются также и другие электроды сравнения каломельный, ртутно-сульфатный, хлорсеребряный и др. Рабочим электродом может быть также твердый микроэлектрод, изготавливаемый из платины, золота, графита, стеклоуглерода и других материалов. [c.271]

    Поляризацию можно осуществить включением электрода в цепь постоянного тока. Для этого необходимо составить электролитическую ячейку из э.лектро-лита и двух электродов — изучаемого и вспомогательного. Включая ее в цепь постоянного тока, можно сделать изучаемый электрод катодом или (при обратном включении ячейки) анодом. Такой способ поляризации называется поляризацией от внешнего источника электрической энергии. [c.286]

    Поляризация электролитического железа на катоде при плотности тока 4-10" а/см приводит к изменению величины потенциала Ае = —0,020в, что отвечает значению силы тока обмепа ц =1,6-10 а/см . [c.130]

    Из этой таблицы видно, что сила тока обмена иа отожженном железе выше, чем на неотожжениом. Опыты по аподпой поляризации электролитического и отожженного н елеза показывают, что электролитическое железо [c.131]

    Уравнения (14.4) и (14.5) согласуются с наблюдениями. Рациональная организация эл( ктрохимического процесса, при которой химический источник тока отдает максимум электрической э 1ергии, а электролитическая ванна потребляет ее минимальное количество, возможна в том случае, если известна причина возникновения э.д.с. поляризации и выяснена ее природа. Так как э.д.с. поляризации является результативной величиной, слагающейся из изменений электродных потетшалов, то прежде всего необходимо изучить зависимость электрг)дных потенциалов от силы тока. Эту задачу решает кинетика электродных процессов. [c.288]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]

    Математическая модель представляет трехмерную краевую задачу, областью расчета которой является электролитическая ячейка с локальным искривлением границы на одной из границ из-за пузырька. Стационарное распределение тока в случае однородной проводимости среды описывается уравнением Лапласа Дф = О, где ф - потенциал. Для корректной постановки задачи в каждой точке границы надо задать либо потенциал, либо гиютность тока, либо условия линейной или нелинейной поляризации. [c.118]

    Действие на покрытие физико-химических факторов связано с наличием почвенного электролита и воздуха. На химическую стойкость защитного покрытия влияют солевой состав и pH электролита, воздухо- и влагонасыщенность грунта, концентрации кислорода, углекислоты, жизнедеятельность микроорганизма и другое. Под действием окружающей электролитической и биологической среды происходит так называемый процесс старения, который проявляется, например, в снижении электросопротивления покрытия. Замеры переходного сопротивления битумного покрытия толщиной 3 мм 31а газопроводе Дашава — Киев показали, что за семь лет эксплуатации оно составило 200—9000 Ом м , при начальном сопротивлении 10 ООО Ом м . Аналогичным образом влияет на процессы старения и катодная поляризация изолированного трубопровода. В процессе эксплуатации прежде всего наблюдаются насыщение влагой и механические повреждения покрытия, в то время как физико-механические свойства изоляционного материала существенно не изменяются. [c.51]

    Пузырьки разных размеров образовывались на платиновом микрокатоде электролитически, путем поляризации этого электрода в течение определенного времени слабым импульсом напряжения. Затем после нескольких минут ожидания для насыщения поверхности пузырька NaLS вторым, очень коротким, но более интенсивным импульсом напряжения пузырек отрывался от электрода и всплывал к поверхности, наблюдаемой в отраженном свете в микроскоп. [c.266]

    Порошок свинца электролитически легко получают из щелочных плюмбитных растворов, для которых так же, как и для цинкатных растворов, характерна преимущественная концентрационная поляризация и хорошо выраженная пропорциональная зависимость предельного диффузионного тока от концентрации свинца в растворе. [c.328]

    Большое влияние на структуру осадков оказывает комплексообразование йонов. Как правило, при выделении на катоде металлов из растворов некоторых комплексных солей получаются мелкозернистые осадки, особенно при избытке комнлексообразующего лиганда. Характерным примером таких растворов, применяемых для электролитического покрытия металлами, являются растворы цианистых солей меди, серебра, золота, цинка, кадмия и др. Мелкозернистую структуру осадков, получаемых из этих растворов, обычно связывают с величиной катодной поляризации, которая в цианистых растворах при достаточном содержании свободного цианида значительно больше, чем в кислых растворах солей тех же металлов. [c.340]

    Электролитическое йикелирование. Применяют сернокислые, борфтористоводородные, сульфаминовые, хлористые" электролиты. Как указывалось ранее (глава XI), процесс осаждения никеля на катоде при комнатной температуре сопровождается высокой катодной поляризацией. Несмотря на это, рассеивающая способность никелевых электролитов невелика и мало отличается от кислых растворов солей других металлов (Zn, Сё, Си), не содержащих ингибирующих добавок. Это объясняется тем, что при тех плотностях тока, при которых обычно проводится никелирование (более 0,5 A/дм ), катодные потенциалы мало изменяются с повышением плотности тока (см. рис. ХИ-13 и ХП-14). Кроме того, при повышении плотности тока до некоторого допустимого предела выход металла по току возрастает, что также неблагоприятно сказывается на рассеивающей способности электролита. [c.406]

    Характерная поляризационная кривая анодного пассивирования электролитического никеля (твердый раствор водорода в N1), снятая в 1-н. растворе N 504 с учетам не только силы тока и потенциалов, но и количества электричества, показана яа рис. 72 . На участке аЬ происходит образование ионов никеля, при этом поляризация достигает +0,25 в. Далее следует падение силы тока и дальнейшие подъемы потенциала до 0,4 в (участок Ьс). На этом участке начинается адсорбция ионов гидроксила и повышение емкости анода. По количеству затраченного электричества и по приросту потенциала на участке Ьс, принимая приближенно, что истинная повержность свежераство-ренного металла равна десятикратной геометрической поверхности, получаем прирост емкости электрода, равный 900 мкф1см . [c.116]

    Разряд ионов свинца из растворов двухвалентных его солей совершается с высокой скоростью значительные плотности тока достигаются при незначительных величинах поляризации (см. рис. 16, а). Столь малая поляризация при электролизе, наблюдаемая на аноде и атоде, облегчает электролитическое отделение свинца как от электроположительных, так и от электроотрицательных примесей (см. табл. 4). Электродный потенциал олова очень близок к потенциалу свинца, поэтому олово практически целиком переходит в раствор и попадает в катодный свинец. [c.262]

    На рис. 129, а и б пЬказаны анодные и катодные кривые образования и разряда ионов сурьмы, олова, меди, мышьяка во фторидных растворах. Из рис. 129, а видно, что олово будет переходить в раствор, а медь — в шлам. Что касается мышьяка, то он переходит в раствор, так как потенциал начала ионизации мышьяка во фторидных растворах лежит около 0,15 в (на рис. 129, а не показано), при сравнительно незначительной плотности тока поляризация возрастает до - -0,3 в. Анодные поляризационные кривые для сурьмы свидетельствуют о высоких скоростях анодного процесса. Разряд ионов сурьмы связан с заметной поляризацией, и ионы мышьяка практически будут восстанавливаться совместно с ионами сурьмы (рис. 129, б), но со значительно меньшей скоростью. При электролитическом осаждении сурьмы мышьяк обязательно будет переходить на катод. [c.273]

    На величину катодной поляризации влияют присутствующие в растворе добавки йульфатов натрия, аммония, фторидов, уксуснокислых солей 2. При электролитическом рафинировании никеля следует избегать добавок солей, увеличивающих поляризацию. [c.313]

    Затем через генераторный электрод пропускают постоянный ток и одновременно включают счетчик времени. При прохождении тока через генераторный электрод происходит образование титранта ионов серебра при электролитическом растворении анода Ag - е -> Ag , брома из бромида калия на платиновом электроде 2Вг - 2е Вг2 и т, д. При появлении в растворе свободного титранта (после достижения к.т.т.) наступает либо поляризация, либо деполяризация индикаторных электродов, в результате чего в цепи последних резко изменяется ток. Это вызывает срабатывание релейной системы, которая разрывает цепь питания генераторных электродов и останавливает электросекундомер. Процесс титрования прекращается. Снимают показания счетчика времени и рассчитывают количество определяемого вещества, используя закон Фарадея. [c.284]

    При обработке воды серебром его доза для каждого водоисточника должна устанавливаться пробным обеззаражшзаннем, так как она зависит от солевого состава воды. Примеси, содержащиеся в воде, приводят часто к изменению потенциалов электродов в связи с физико-химическими изменениями у нх поверхности (гальваническая поляризация). Например, при концентрации ионов хлора в воде до 250 мг/л на электродах образуется осадок Ag i, который препятствует переходу ионов серебра в раствор. Процессу электролитического растворения серебра также мешают соли с кислородсодержащими анионами— S04 , в присутствии которых гидроксил разряжается у анода с образованием воды и кислорода по уравнению [c.162]

    А — ценлральная часть ячейки, в которую на шлифе Ш помещен капилляр (i) /С—капля 2 и 2 — ртутный или платиновый аноды для поляризации В — боковой сосуд для освобождения раствора от кислорода воздуха Я —сосуд с насыщенным раствором K I 5 — электролитический ключ (капилляр Луггина) 5 —зажим Г —резиновая груша Р —ртуть Л — трубка со ртутью, к которой припаян капилляр (/) и платиновый контакт (77) Г] —трубка q ртутью, смбженная краном (Кр) для перекрывания вытекания ртути из капилляра КЭ — каломельный электрод [c.237]

    В электролитической ванне (электролизере, электролитической ячейке) под влиянием приложенного внешнего электрического поля и в замкиутом гальваническом элементе нарушается равновесие, изменяются электрические характеристики системы. Катод (анод) и раствор электролита обмениваются заряженными частицами. Частные токи, отвечающие анодному и катодному процессам, не равны току обмена — количеству электричества, проходящему в е(Диницу времени в условиях равновесия от раствора к электроду и обратно. Состав системы количественно и во многих случаях качественно изменяется. Плотность заряда двойного электрического слоя и потенциалы электродов не равны равновесным значениям и зависят не только от активности веществ, участвующих в электрохимическом процессе, температуры и давления, 1Но и от силы тока. Напряжение на электролизере лри данном токе больше, чем равновесная э. д. с. гальвап ического элемента, в котором осуществляется обратная электрохимическая реакция. В замкнутом, генерирующем ток гальваническом элементе (аккумуляторе) напряжение на клеммах меньше, чем равновесная э. д. с. Если система под током достигает стационарного состояния, не зависящего от времени, то неравновесные потенциалы устанавливаются и принимают стационарные значения. Оцениваются эти поляризационные явлеиня поляризацией электродов и э. д. с. поляризации. [c.200]

    Аналогично устанавливается анодная поляризация при ионизации металла. Электролитическую ячейку собирают с анодом и двумя катодами. Расчеты fpn.a и Дфа проводят ПО уравнениям (XIII.8) и (XIII.10). [c.213]

    Другим методом получения чпстого безуглеродисто-14J железа является электролитический, позволяющий н(), 1учить продукт 99, 95-процснтной чистоты. Поскольку от п1дартный потенциал равен 0,44 В, т. е. бли юк к равновесному потенциалу водородного электрода, и железо выделяется со значительной химической поляризацией, [c.252]

    Схема установки для поляризации одного или двух индикаторных (рабочих) электродов при потенциометрическом титровании под током представлена на рис. 5. Из внешнего источника постоянного тока 1 с большим выходным напряжением с помощью переменного мегомного сопротивлений 2 добиваются в замкнутой цепи небольшой, но постоянной величины тока (от 3—-10 мка), измеряемой микроамперметром 3. В цепи последовательно с микроамперметром 3 находится переключатель тока 4 и электролитическая ячейка 5 с электродами Э1 и Эг. При катодной поляризации индикаторный электрод, находящийся в цепи потенциометра (см. рис. 4), с помощью переключателя 4 дополнительно подключают к отрицательному полюсу установки для поляризации, [c.53]


Смотреть страницы где упоминается термин Поляризация электролитическая: [c.318]    [c.132]    [c.448]    [c.252]    [c.346]    [c.294]    [c.204]   
Практические работы по физической химии (1961) -- [ c.237 ]

Инструментальные методы химического анализа (1960) -- [ c.14 , c.70 , c.75 , c.101 ]

Инструментальные методы химического анализа (1960) -- [ c.14 , c.70 , c.75 , c.101 ]




ПОИСК







© 2025 chem21.info Реклама на сайте