Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол термическая

    Один из промышленных способов получения полистирола — термическая полимеризация стирола. [c.120]

    Интенсивному старению подвержены покрытия из полистирола термическая деструкция их начинается на воздухе уже при 130° С и резко возрастает с повышением температуры. При действии солнечной радиации в присутствии кислорода воздуха покрытия из полистирола желтеют, становятся хрупкими, на их поверхности появляются мелкие трещины. - [c.160]


    Зависимость температуры сте- стирола М = 200 ООО) от температуры клевания от скорости охлаждения можно видеть, сопоставляя температурную зависимость изменения объема полимера при различных скоростях охлаждения. На рис. 209 представлена эта зависимость для полистирола. Коэффициент термического расширения данного полимера неодинаков для твердого и высокоэластичного состояний. Поэтому на кривых, выражающих зависимость объема полимера от температуры, обнаруживается четкий излом, отвечающий температуре стеклования. Ломаная линия А B D отвечает результатам, наблюдаемым при резком охлаждении полимера, а линия A B D — результатам, полученным при охлаждении его со скоростью 0,2° в минуту. Легко видеть, что температура стеклования (излом кривых) в последнем случае ниже, чем в первом. Это объясняется тем, что при быстром охлаждении не успевает достигаться равновесное распределение частиц. [c.583]

    Для производства полистирола и его сополимеров используется несколько способов. Одним из таких способов является блочная термическая полимеризация, которая проводится при нагреве стирола от 80 до 200° С. В непрерывно действующей установке имеется два алюминиевых реактора, в которых при 80° С проводится предварительная полимеризация (рис. 130). Получаемый продукт подается в колонну из хромо-никелевой стали, состоящую из шести отделений. В каждом из них имеется своя температура (100—110 110—120° Сит. д.), увеличивающаяся по мере перехода из одного-отделения в другое. В последнем, нижнем отделении температура 120—200° С. Полимеризат из колонны поступает в вакуум-камеру, где при 250° С отгоняется оставшийся стирол. Расплавленный полистирол подается в воздушный холодильник и гранулируется. [c.343]

    Макромолекулы пептона содержат 45,5% хлора. Однако хлор-метильные группы полимера связаны с теми углеродными атомами основной цепи, при которых не имеется атомов водорода. При нагревании полимера это исключает возможность отщепления хлористого водорода, обычно ускоряющего дальнейшую термическую деструкцию таких полимеров, как поливинилхлорид, поливинилиденхлорид, и кроме того, придает пептону высокую термическую устойчивость. Расплав пентона имеет сравнительно низкую вязкость, что облегчает его переработку в изделия методом литья под давлением. Коэффициент термического расширения пентона значительно ниже, чем для полиэтилена, и примерно аналогичен коэффициенту расширения полистирола и полиами- [c.406]

    Масс-спектрометрическое изучение летучих продуктов, полученных механическим дроблением полиметилметакрилата и полистирола в специальной приставке вблизи ионного источника, показало, что их состав аналогичен составу продуктов термической деструкции [20]. На основании этого была подтверждена гипотеза о том, что механическое разрущение полимеров можно рассматривать как термическую деструкцию, активированную напряжением. [c.11]


    Следует выделить два момента в процессе плавления материала. Первый заключается в том, что температуру материала следует рассматривать как важный технологический параметр. Нижним пределом температуры формования является температура, при которой из листа можно сформовать квадратный ящик с прямыми углами без побеления на сгибах или каких-либо других видимых дефектов. Максимально допустимой температурой формования считают такую, при которой еще не происходит чрезмерное провисание листа в струбцине и термодеструкция полимера. Провисание происходит вследствие совместного влияния двух факторов — термического расширения и деформирования под действием силы тяжести. Здесь следует отметить, что обычно используемые для термоформования полимеры (АБС-пластик, ударопрочный полистирол) обладают высоким пределом текучести в нагретом состоянии, что и позволяет избежать провисания листа. [c.574]

    Чистый полистирол быстро стареет , имеет склонность к растрескиванию, характеризуется невысокой термической стойкостью, низкой прочностью и плохой бензостойкостью. Широкое применение находят сополимеры стирола с другими мономерами. [c.606]

    Таким образом, реакционноспособность радикала, образующегося при разрыве макромолекулы в процессе термической деструкции, и легкость отрыва атома водорода определяют дальнейшее направление деструкции. В случае полистирола образующийся [c.233]

    Это доказывается. составом продуктов термической деструкции полистирола, содержащих наряду с толуолом 1,3-дифенилпропан (I), [c.306]

    Опыт 8. Термическая деструкция полистирола или полиметилметакрилата [c.241]

    Нити строения ядро — оболочка, содержащие в ядре сополимер окиси этилена и окиси пропилена, а оболочку — из полиэтилентерефталата, имеют антистатические свойства [125]. Для изготовления нетканых материалов рекомендуют [126] производить нити с ядром из полиэтилентерефталата, найлона или полипропилена и с оболочкой из полимеров с низкой температурой размягчения — полистирола или полиэтилена. Оболочка служит связующим материалом после термической обработки нетканого материала. [c.241]

    Процессу деполимеризации с получением мономеров подвергают только те виды пластмасс, которые распадаются при сравнительно низких температурах (570—710 К). К таким полимерам относятся полистирол и его сополимеры, полиакрилаты. Пиролиз полистирола сопровождается получением 50-70% исходного стирола при термическом разложении полиметилметакрилата выход газообразного метилметакрилата достигает 91-96%. [c.434]

    Полистирол может быть также получен полимеризацией в суспензии [4], эмульсионной полимеризацией (5], полимеризацией в. растворе [6] и термической полимеризацией [7]. [c.15]

    Исследование термической деструкции полиэтилена (ПЭ). полипропилена (ПП), полистирола (ПС), полиметилметакрилата (ПММА), синтетических каучуков (СКБ) подтвердило высокую эффективность нефтяного стабилизатора (табл. 97). [c.139]

    Применение полярографии для качественной идентификации полимеров основано на изучении продуктов деструкции, образующихся при термическом воздействии на полимерные вещества [318] ИЛИ при их гидролитическом расщеплении. Многие из мономеров, а также другие продукты деструкции, получающиеся при сухой перегонке пластических масс, восстанавливаются на ртутном капающем электроде и характеризуются определенными значениями 1/2. На основании имеющихся данных по величинам 1/2 различных веществ (мономеров) можно идентифицировать такие полимеры, как полиметилметакрилат,. полистирол, полиизобутилен и др. Некоторые из продуктов деполимеризации непосредственно не восстанавливаются, но могут быть переведены в полярографически активные нитро-,. нитрозо- и галогенпроизводные. [c.209]

    Тип осколков, образующихся в процессе деструкции, зависит преимущественно от строения полимера и температуры его разложения. Так, при термической деструкции полиакрилатов мономер практически не образуется, в то время как он является основным лродуктом деструкции полиметилметакрилата в тех же условиях. До 250 ""С при деструкции полистирола получаются олигомерные осколки, такие, как димер, тример и более высокомолекулярные гомологи, однако при повышении температуры до 350 образуется уже заметное количество мономерного стирола. [c.247]

    Полимеризацией в массе получают полистирол, поливинилхлорид, полиметилметакрилат. Процесс полимеризации может проводиться по периодической или непрерывной схеме. Для инициирования полимеризации чаще всего применяют вещественные инициаторы при получении полистирола используют также термическое инициирование. [c.57]

    Примечания. I—6. Вырабатываются из силикагелей методами термической обработки в присутствии флюсов (сульфата натрия и др.) рекомендуются для разделения газов (№ 1 — 2), веществ со средней температурой кипения (№ 3—4) и высококипящих веществ (№ 5—6). 7—12. Для жидкостной хроматографии по механизму адсорбционной, распределительной или гель-проникающей хроматографии. Пределы эксклюзии и диапазоны фракционирования определены по полистиролам и дек-странам. 13—21. Твердые носители (см. № 3) с хими- [c.229]


    В аппарате совмещены три зоны слева от перегородки 6 - термическая, где нефть нагревается и крупные капли оседают между перегородками б и 7, где для коалесценции капель используется электрическое поле, и справа от перегородки 7 - зона механической коалесценции за счет фильтрации нефти через пакеты гофрированных пластин из полистирола (гофры под углом 30 - 60 ° расположены поперечно у смежных пакетов). Сочетание этих зон дает большой эффект как по производительности аппарата, так и по глубине обезвоживания. Температура нефти после зоны нагрева обычно 65 - 70 °С. При начальной обводненности нефти 9 - 10%(мас.) на выходе из такого аппарата содержание воды составляет не более 0,3% [обычно 0,1 - 0,25%(мас.)]. Размеры аппарата диаметр - 2,4 м, длина - 7,6 м. [c.350]

    Один из промьшшенных способов получения полистирола — термическая полимеризация стирола  [c.167]

    СбНоСНг) по сравнению с полиметилл1етакрилатным радикалом должна как будто способствовать реакции выделения мономера. В то же время известно, что полистирол термически более устойчив, чем полиметилметакрилат. При разложении полистирола получается меньщее количество мономера и, кроме того, наряду с небольшим количеством высокомолекулярных продуктов распада он образует около 30% высококипящих ди-, три-, тетрамеров и жирноароматических насыщенных углеводородов . [c.77]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Катионообменные смолы (катиониты)—гетерополикислоты, состоящие из высокомолекулярной матрицы и катионогенных групп (чаще всего 50зН, СООН, РО3Н2, АзОзНг) и обладающие каталитическими свойствами [17]. Основой в большинстве случаев является полистирольная матрица, которую получают суспензионной полимеризацией с последующим сульфированием серной кислотой (в случае присутствия сульфокислотной группы). В зависимости от условий образуются гелеобразные либо макропористые полимеры, а при использовании полистирола с полипропиленом — формующиеся катализаторы. Наряду с поли-стирольной основой применяют и другие, например, силоксано-вые и фторопластовые. Активность катализатора определяется как свойствами полимерной основы, степенью сульфирования, так и размерами зерна катализатора, степенью его пористости, термической стабильностью и кислотностью.  [c.26]

    Полимеризация стирола протекает легко при нагревании (не выше 300°, так как иначе наступает деполимеризация), фотокаталитически на свету или под действием активных лучей, а также в при сутствии различных катализаторов—особенно перекиси бензоила четыреххлористого олова, хлористого алюминия и т, п. Особенно активно четыреххлористое олово (1—3%), которое вызывает быструю полимеризацию стирола даже при —10°. Полистиролы каталитической полимеризации прозрачны и бесцветны, тогда как при термической полимеризации смола имеет более темный цвет. Твердые полистиролы химически стойки, в растворе их можно гидрировать, сульфировать, нитровать, хлорировать и т. д. за счет водородов фенильных радикалов. [c.613]

    Гвсрдос стекловидное состс яние гюлимера сохраняется до О . Выше этой температуры полимер постепенно переходит в .частичное состояние, причем эластические деформации увеличиваются с повышением температуры. Одновременно в полимере появляется пластичность, возрастающая с повышением температуры. При 145—155 полистирол можно перерабатывать в изделия прессованием, а при 180—220°—литьем под давлением. Выше 200° начинается термическая и окислительная десч рук-ция по, 1имера, ускоряющаяся с повышением температуры (рис. 93). При температуре около 300° полистирол разрушается, основным продуктом деструкции является мономер. В атмосфере азота деструкция иолимера происходит при значительно более высокой температуре при 300° полистирол де-пол имер изуется в азоте крайне медленно (рис. 94) и только при 375—400 скорость деполимеризации начинает приближаться к скорости деполимеризации полистирола на воздухе при 200 (рис. 95). [c.362]

    Исследование термической деструкции полиэтилена,полипропилена, полистирола,полиметшшетакрилата,синтетических каучуков также подтвердило высокую эффективность нефтяного стабилизатора. [c.124]

    Подпитка при литье под давлением. Используя данные, приведенные иа рис. 14.2, оиеннте скорость течения прн подпитке но перепаду давления Р, — P. или Р, - P i, полагая, что за период времени 1,5< / < 3 с в местах расположения датчиков давления Р,, Р, н Р. не произошло образования пристенного слоя затвердевшего полимера. Размеры распределителя н впуска те же, что и в Задаче 14.3. Можно считать, что ири таких малых обт.емных pa xoдa расплав ведет себя как ньютоновская жидкость с вязкостью, рассчитанной по реологическим данным, приведенным в Задаче 1 .3. Сравните полученный результат с расчетом соответствующего термического сжатия расплава в форме за время 1 с. Козффипнент термического расширения расплава полистирола равен 6- 10 К" . температура расплава на входе вформу 202 С, а температура формы 21 °С. [c.557]

    Известен еше один вид фазовых диаграмм, для которых НКТР находится выше ВКТР и выше температуры кипения, но ниже критической температуры перехода жидкость — пар для растворителя. Такие диаграммы характерны для систем, состоящих из компонентов, идентичных по химическому строению, но сильна различающихся по размерам. НКТР повышается с увеличением размеров молекул растворителя. Расслоение системы в данном случае обусловлено большой разницей в термических коэффициентах расширения компонентов. Диаграммы состояния типа изображенной на рис. П1. , г получены, в частности, для систем полиэтилен — алканы, полистирол — циклогексан, поливинилацетат — этилацетат, поливиниловый спирт — вода и др. [c.81]

    II. 2. Какое строение имеет полистирол, если одним из основных продуктов его термической деструкции является 1,4-дифе-нилбутан  [c.205]

    Для многих твердых пластических ыатерпалов термическая характеристика заключается в нахождении температуры, при которой имеет место определенпос изменение в структуре материала прн заданном давлении. Например, в методе Вика [4, 32, 47] игла (имеющая площадь острия I Ш1 ) при определенном давлении (обычно не превышающем I кг) вдавливается в поверхность стандартного образца (минимальная ширина 18 мм, толщина 3 мм), который нагревается с заданной скоростью (50° в час). Температура, при которой наблюдается погружение иглы на 1 нм, принимается за точку размягчения, или температуру пенстрации. Это испытание применено к полиэтилену, полистиролу и полиакрилатам с точностью до 2° Для мягких образцов поливинилхлорида, поливинилиденхлорида и некоторых других эластомеров область размягчения слишком велика, чтобы получить такую точность. [c.68]

    Рассмотрение реальных закономерностей медленного термического разложения выходило бы за рамки данной книги. Рассмотрим лишь сравнительные данные по суммарной скорости газификации различных веществ. Для полимеров подобные данные имеются в работах [99, 128] и др. Порядок, в котором располагаются полимеры по мере увеличения их стойкости, может зависеть от температуры (рис. 17). Однако многие полимеры можно однозначно расположить в ряд по их способности к газификании . легче всего газифицируется полиформальдегид, затем идет поли-метилметакрилат, затем идут полпизобутилен и полистирол п т. д. Наиболее термостойким является нолптетрафторэттглен (тефлон, фторопласт-4). [c.78]

    Еще в первых работах по пиролизу смол авторы отмечали, что при пиролизе углей и высокополимерных смол одновременно происходят химические реакции и физические процессы, причем химические реакции протекают параллельно и с наложением одна на другую. В данном случае можно говорить об энергии активации всего процесса в целом [20]. Ири этом важно правильно определить показатель скорости процесса, действительно отображающий процесс. С. Мадорский [29] скорость термического разложения полистирола определял по количеству образовавшегося мономера. Он получил энергию активации термического разложения полистирола, равную примерно 60 ккал1молъ. Авторы изучали пиролиз полистирола при температурах 800—1000" С сбрасыванием зерен крупностью 1—3 мм в нагретый реактор. Измерением скорости выделения суммарного газа энергия активации пиролиза полистирола была найдена равной 6 ккал молъ [20]. [c.148]

    Если формально рассматривать полистирол как зал1сщенный полиэтилен, в котором один атом водорода в каждом звене замещен на фенил, то можно сделать вывод, что такое замещение приводит к снижению 7 . Это снижение может быть настолько большим, что интенсивная термическая деструкция может начинаться до достижения температуры стеклования. Так ведут себя полимеры с объемистыми боковыми заместителями, содержащими полярные Фуппы. Одним из них является полиметилиденфталид.  [c.224]

    Для сопоставления Т. полимеров часто используют данные термогравиметрии, в частности т-ру начала потерь массы образца или т-ру, при к-рой потери массы составляют определенную долю от исходной массы образца. При использовании дифференциального термического анализа возможно более точное определение т-ры начала интенсивных хим. превращений в образце. За рубежом для оценки Т. используют т. наз. температурный индекс (Temperature Index)-т-ру, при к-рой прочностные и диэлектрич. характеристики полимерного материала изменяются на 50% приблизительно за 3,5 года эксплуатации. Эту величину находят экстраполяцией данных ускоренного термич. старения. Температурный индекс (°С) составляет, напр., для полистирола 50, полиацеталей 75-85, алифатич. полиамидов 65-80, поликарбонатов 110-115, полиимидов 240. [c.547]

    АЬОз (слева), хлопковые волокна (в центре), латексные сферы из полистирола (справа). Верхний ряд без покрытия, среднш ряд—покрытие из золота толщиной 10 нм. нанесено термическим испарением, нижниЛ ряд — покрытие из золота толщиной 10 нм, нанесечо катодным распылением маркер I мкм. [c.205]

    Таким образом, существуюш,ий выбор пористых полимерных сорбентов позволяет осуществить эффективное разделение ряда трудных систем. Однако изучение термического разложения сшитых полистиролов типа порапак [272] показало, что их можно использовать при температурах не выше 250—300° С. Основными продуктами пиролиза являются мета- и пара-изомеры диэтилбензола, дивинилбензола и главным образом этилвинилбензол и стирол. Следовательно, полимерные сорбенты на основе стирола и дивинилбензола могут использоваться для анализа веществ относительно низкого молекулярного веса (приблизительно до 200), т. е., например, для анализа алканов j — С12, спиртов и кислот i — С12, ароматических углеводородов Са — Сю- Время элюирования более тяжелых веществ становится очень большим, и наблюдается значительная асимметрия пиков. [c.143]

    Гомополимер глицидилметакрилата является одним из самых чувствительных негативных резистов (D Mw = 0,023). Его широкому использованию препятствует низкий коэффициент контрастности (v si 1,0), причиной чего является цепной характер сшивания, а термическая стабильность рельефа (Тс полимера 78°С) и стойкость к плазменному травлению у резиста удовлетворительные Добавки низкомолекулярных эпоксидов, например циклогексил-эпоксида, вводимые в концентрациях от 5 до 30 % в полистирол или полибутадиен, повышают чувствительность в 3 раза [франц. пат. 2250138 пат. США 3916035]. Сополимеры 2,3-эпптиопропил-метакрилата с эфирами акриловой и метакриловой кислоты, например метилметакрилатом, бутилметакрилатом, этилакрилатом, [c.250]

    Термическое инициирование заключается в самоинициирова-нии при высоких температурах полимеризации чистых мономеров без введения в реакционную среду специальных инициаторов. В этом случае образование радикала происходит, как правило, вследствие разложения небольших количеств перекисных примесей, которые могут возникать при взаимодействии мономера с кислородом воздуха. На практике таким путем получают так называемый блочный полистирол." Однако широкого распространения метод термического инициирования полимеризации не нашел, так как он требует больших затрат энергии, а скорость полимеризации в большинстве случаев невелика. Ее можно увеличить, повышая температуру, но при этом снижается молекулярная масса образующегося полимера. [c.41]

    Полимеры замещенных стиролов обладают повышенной теплостойкостью. Введение алкильных заместителей и атомов галогенов в бензольное ядро повышает термическую стойкость полимера. И. полимеров замещенных стиролов применение получили полихлор-и полиметилстиролы. Теплостойкость полидихлорстирола значительно выше, чем полистирола, но наличие двух атомов хлора в ядре снижает электрическую прочность и повышает тангенс диэлектрических потерь полимера. Полиметилстиролы менее теплостойки, чем полихлорстиролы, но сохраняют высокие диэлектрические свойства. Полифторстиролы обладают повышенной химической стойкостью, теплостойкостью и высокими диэлектрическими свойствами препятствием к их Широкому применению служит сложность синтеза и полимеризации фторстиролов, тогда как хлор-стиролы и метилстиролы получаются и полимеризуются легко. [c.95]


Смотреть страницы где упоминается термин Полистирол термическая: [c.62]    [c.362]    [c.236]    [c.476]    [c.461]    [c.409]    [c.154]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.22 , c.23 , c.24 , c.25 , c.38 , c.39 , c.40 , c.41 , c.42 , c.43 , c.44 , c.45 , c.46 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Полиолефины и полистирол термическая деструкция и стабилизация

Полистирол относительная термическая стабильность в вакууме

Полистирол сшитый относительная термическая стабильность в вакууме

Полистирол сшитый энергия активации термической

Полистирол термическая деполимеризация

Полистирол термическая устойчивость

Полистирол термического расширения

Полистирол энергия активации термической

Полистирол, термическая деструкция

Полистирол, термическая деструкция масс-спектрометрический анализ

Скорость термической деструкции полистирола

Сравнение теоретических и экспериментальных данных полистирол, полученный методом термической полимеризации

Термическое разложение полимеров полистирола



© 2024 chem21.info Реклама на сайте