Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты образование свойства

    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]


    Все дисахариды являются многоатомными спиртами, для них характерны свойства многоатомных спиртов (образование простых и сложных эфиров), они дают качественную реакцию на многоатомные спирты  [c.621]

    В реакции образования алкоголята спирт проявляет свойства кислоты, хотя ионов водорода в спирте не удается обнаружить обычными индикаторами, [c.141]

    Выше отмечалось, что алифатические диолы не проявляют каких-либо свойств, которые отличались бы от свойств, установленных масс-спектрометрическим анализом различных спиртов. Образование осколочных ионов в ряду диолов происходит по следующей схеме  [c.37]

    В спиртовой среде могут существенно изменяться свойства комплексов [13, 14, 99—104]. Так, например, Турьян [14] показал, что в абсолютном этиловом спирте образование комплексов ионов кадмия с хлоридами, бромидами и роданидами начинается при значительно меньших их концентрациях, чем в воде. Он приводит следующие константы устойчивости комплексов в этиловом спирте  [c.438]

    Наличие гидроксильной группы оказывает существенное влияние на физические свойства спиртов Образование водородных связей с участием группы -ОН в результате ориентационного взаимодействия делает молекулярные кристаллы спиртов и фенолов более прочными, что приводит к повышению температур плавления и кипения по сравнению с углеводородами и галогенуглеводородами с близкой молекулярной массой Чем меньше углеводородный радикал, больше гидроксильных групп, тем значительней такое повышение Все эти закономерности прослеживаются в табл 17-2 [c.490]

    В качестве примера на рис. 1 приведены инфракрасные спектры продуктов хемосорбции этилового спирта на двуокиси титана (анатазе), полученные в Институте катализа СО АН СССР Ю. М. Щекочихиным. Сравнение со спектром паров этилового спирта указывает на появление новых полос поглощения и значительное смещение ряда полос. Анализ этих изменений позволяет сделать вывод об отщеплении воды при сорбции молекул спирта, образовании двойных связей С = С, связей Т1 — О — С и др. Таким образом, рассматриваемый метод позволяет непосредственно наблюдать и даже оценить некоторые свойства тех продуктов промежуточного поверхностного взаимодействия катализатора с реагирующими веществами, об образовании которых раньше можно было только догадываться. Современные приборы позволяют обнаруживать до 10 молекул на 1 см сечения образца, т. е. при навеске 50 мг и внутренней поверхности образца порядка 10 л г можно при благоприятных условиях исследовать свойства частиц, заполняющих поверхность на 2%. Метод быстро прогрессирует, и, можно думать, в дальнейшем возможности расширятся. [c.10]


    Е. Отличие фенолов от спиртов. Образование простых и сложных эфиров является общим как для фенолов, так и для спиртов. В отличие от спиртов, фенолы обладают довольно резко выраженными кислотными свойствами образующиеся с едким натром феноляты не разлагаются водой, в отличие от алко-голятов (стр. 88). Кроме того, спирты при окислении образуют альдегиды или кетоны и далее переходят в кислоты. Фенолы же при окислении не образуют ни альдегидов, ни кислот, а дают серию окрашенных продуктов окисления сложного строения (индофенолы) [c.298]

    В реакции образования алкоголята спирт проявляет свойства слабой кислоты. [c.192]

    Растворимость белков в воде, несомненно, определяется их химической структурой, т. е. природой и числом аминокислот и их расположением в молекуле белка.Естественно предположить, что большое количество положительно или отрицательно заряженных ионных групп будет увеличивать как сродство белков к воде, так и их растворимость. Такая зависимость, действительно, наблюдается, однако ионные группы могут оказывать и обратное действие, легко соединяясь с ионными группами противоположного знака и образуя солеобразные связи как внутри белковой молекулы [34], так и с примыкающими белковыми молекулами. Образование солеобразных связей всегда ведет к дегидратации [34], а возникновение этих связей между молекулами способствует образованию крупных нерастворимых белковых агрегатов. По этой причине многие белки нерастворимы, несмотря на наличие в них большого количества анионных и катионных групп. Мы в настоящее время не можем, исходя из аминокислотного состава белка, предсказать, какова будет его растворимость в воде. Мы не можем также объяснить, почему растительные проламины растворимы в спирте. Это свойство обычно объяснялось высоким содержанием в них пролина, который растворим в спирте. Коллаген, однако, несмотря на еще более высокое содержание в нем пролина, в спирте нерастворим. [c.112]

    Будучи по своей химической структуре вторичным спиртом, поливиниловый спирт обладает свойствами, характерными для низкомолекулярных вторичных спиртов. Так, при окислении поливинилового спирта наряду с деструктивными процессами (см. стр, 154) наблюдается также характерное для вторичных спиртов образование кетонных групп. [c.160]

    На реакции образования и гидролиза полиэфира влияют те же факторы, что и на обычные реакции этерификации и гидролиза. Если доступ к спиртовой или кислотной части макромолекулы пространственно затруднен, то эти реакции протекают очень медленно. Известно, что третичные спирты подвергаются дегидратации гораздо легче, чем этерификации, а вторичные спирты по свойствам занимают промежуточное положение между первичными и третичными. [c.35]

    Спиртовые свойства. Спиртовая гидроксильная группа может давать все характерные реакции спиртов (см. стр. 158) замещение водорода на металл (образование алкоголятов) образование простых эфиров при взаимодействии со спиртами образование сложных эфиров при взаимодействии с кислотами окисление первичной спиртовой группы до альдегидов, а вторичных — до кетонов и т. п. [c.295]

    Меркаптановая (тиольная) группа формально напоминает гидроксильную группу спиртов, но свойства их сильно различаются. Например, она не способна этерифицироваться, но легко окисляется. Важным аналитическим свойством меркаптанов является их способность реагировать с ионами некоторых металлов с образованием нерастворимых меркаптидов металлов. Это свойство роднит их с сероводородом. [c.504]

    Соединения, которые содержат получающуюся при этом комбинацию атомов, носят название сложных эфиров, а сама реакция их образования называется этерифика-цией. Соединяясь таким способом, и кислота, и спирт теряют часть той группы атомов, которая определяла их свойства. Сложный эфир — это уже и не кислота, и не спирт при соединении их свойства взаимно уничтожились. [c.185]

    Присоединение серной кислоты к высокомолекулярным олефинам с образованием соответствующих сульфатов не ставит целью последующее их омыление для получения спиртов. Его целью является получение натриевых солей алкилсуль-фатов, которые, если алкильный остаток содер>] ит от 12 до 18 углеводородных атомов, обладают хорошими капиллярными свойствами и могут применяться как вспомогательные, моющие и эмульгирующие средства. Особенно большое число синтетических моющих средств на [c.213]

    Так как реакция восстановления сольватированными электронами происходит ие непосредственно на поверхности электрода, то его каталитические свойства перестают играть заметную роль. Исключается также или сводится до минимума возможность образования металлоорганических соединений с участием металла электрода, изменяется природа промежуточных продуктов и т. д. Вопрос об изменении природы промежуточных продуктов рассматривался в литературе довольно подробно в связи с реакцией выделения водорода. Речь шла о водных средах, где, по указанным выше причинам, восстановление через промежуточное образование сольватированных (гидратированных) электронов не очень вероятно, хотя и возможно. Эти рассуждения имеют, однако, более общее значение, так как могут быть отнесены практически к любым протонным средам, а также к апро-тонным, содержащим протонодонорные добавки (вода, спирты и т. д.), необхо- [c.444]


    Некоторые вещества, будучи растертыми в тонкий порошок, имеют свойство плавать по поверхности воды, не смачиваясь. Перед растворением такие порошки следует растереть в ступке с небольшим количеством воды до образования однородной кашицы, которую затем смывают водой в стакан и далее растворяют как обычно. Иногда перед растворением смачивают порошок несколькими каплями спирта. [c.51]

    В результате изменения структуры при переходе из индивидуального состояния в раствор, а также в результате происходящих при этом взаимодействий изменяются свойства системы. На это указывает, в частности, наличие тепловых (ДЯ) и объемных (Д1/) эффектов при растворении. Так, при смешении 1 л этилового спирта с 1 л воды объем образующегося раствора оказывается равным не 2 л, а 1,93 л (25° С). В данном случае уменьшение объема (на 3,5%) обусловлено в основном образованием водородных связей между гидроксильными группами спирта и воды, а также разрушением льдоподобных структур последней. [c.135]

    Природа радикала существенно влияет и на кислотные свойства фенолы гораздо более сильные кислоты, чем спирты. Основные свойства спиртов определяются их способностью протонироваться с образованием алкил оксони ев ого иона. Фенолы Основными свойствами не обладают. [c.330]

    Основные научные работы посвящены изучению строения ароматических соединений. Открыл (1870) реакцию замещения диазогруппы этоксигруппой, обнаружил при диазотировании 2-амино- и 3-амино-4-хлортолуолов и кипячении продуктов реакции с этиловым спиртом образование соответствующих фенэтолов. Исследуя строение производных толуола, доказал (1876) правильность циклической структурной формулы бензола, предложенной Ф. А. Кекуле. Установил равноценность атомов водорода в бензольном ядре. Описал (1878) состав и свойства кавказских минеральных вод. [c.119]

    Другие химические свойства у-пиронов, кроме образования солей, также не отображаются удовлетворительным образом обычной формулой I. Так, у-пироны не взаимодействуют с такими характерными реактивами на карбонильную группу, как гидроксиламин и фенилгидразин, и не присоединяют брома по двойным связям, а образуют с бромом (в случае 2,6-диметилпиропа) продукты замеш ения в положениях 3,5. Поэтому была принята во внимание формула И с разделенными зарядами, сох ласно которой соединение не обладает карбонильной группой и содержит ароматическую систему тт-электронов, вследствие чего оно естественно не может вступать в приведенные выше реакции. Но и эта формула не вполне удовлетворительна, так как по отношению к некоторым реактивам у-пироны ведут себя так, как если бы их строение соответствовало формуле I, Так, например, нри каталитическом гидрировании поглощаются четыре атома водорода, причем иолучается тетрагидропирон, вступающий в нормальные реакции кетонной группы. Аналогично 2,6-диметил-у-пирон реагирует нормально с магнийорганическими соединениями, давая спирт со свойствами псевдооснования (см. выше) последний при действии кислот превращается в пирилиевые соли [c.689]

    Реакция образования алкоголята иллюстрирует сходство спиртов с водой. Низшие спирты (СН3ОН, jHgOH) реагируют с натрием бурно, средние — слабо, а высшие реагируют лишь при нагревании. Алкоголяты образуются при действии на спирты и других активных металлов, нанример магния, алюминия. В реакции образования алкоголята спирт проявляет свойства слабой кислоты. [c.217]

    Основные усилия органиков направлены на подробное исследование физических свойств молекул и способов их взаимодействия. Эти сслвдо вания можно разделить на три тесно примыкающие общие группы. Во-первых, это изучение структуры молекул их формы и размера, направления и напряжения связей, электронных и спектральных эффектов, присутствия или отсутствия резонанса и эффекта стабилизации резонансом. Во-вторых,. это изучение кинетики скоростей взаимодействия молекул и влияния на них структурных факторов и внешнего окружения. В-третьих, это исследование механизмов реакций — область, в значительной степени охватывающая две предыдущие. Во всех описанных в этой главе сложных превращениях — окислении спиртов, образовании амидов, ангидридов и сложных эфиров, а также при всех реакциях, представленных ка рис. 21.27, должно происходить определенное число сложных атомных перегруппировок при переходе одних соединений в другие. Важная задача органической химии состоит в разработке теорий, позволяющих понять детали многостадийных процессов, посредством которых молекулы сталкиваются и взаимодействуют с образованием новых веществ. Мы рассмотрим некоторые из них в гл. 22 и 23. [c.168]

    Этот метод известен уже много лет. Еще в 1933 г. Хоуц и Адкинс [10] для получения полистирола высокой степени полимеризации применили в качестве инициаторов озониды диазобутилена, пинена и др. Они установили, что полученный продукт обладает высокой вязкостью. Альфрей и сотрудники [И] прививали к сополимеру винилиденхлорида и стирола (соотношение 80 20 мол. %) винилацетат, а затем полученный продукт подвергали гидролизу. Было установлено, что основная цепь этого соединения обладает гидрофобными, а ветви (боковые цепи), состоящие из винилового спирта,— гидрофильными свойствами. При проведении реакции между полимером А , инициатором К и мономером В первоначально под влиянием инициатора происходит образование свободного радикала. [c.126]

    Преимущество хроматографического определения с стантив-ности заключается в его быстроте и возможности прямого сравнения субстантивных свойств большого количества красителей. Этим способом была определена субстантивность прямых красителей [12, 19] и индигозолей [24]. Кроме того, БХ оказалась полезной при изучении взаимодействия активных красителей с аминокислотами, полисахаридами и спиртами. Образование соответствующих связей доказывали хроматографически [51—53, 55—62, 66]. БХ использовали также при изучении гидролиза активных красителей [35, 36, 44—49, 54, 63]. Даусон в 1960 г. сообщил о хроматографическом исследовании гидролиза дихлортриазиновых красителей, в котором выяснил его кинетику [48]. [c.95]

    Химики давно обратили внимание на то, что значения температур кипения и плавления спиртов ненормально высоки по сравнению со значениями для других органических соединений, которые по своему строению и молекулярному весу близки к спиртам. Например, хлористый метил H3 I, фтористый метил H3F, метиламин H3NH2 кипят на 70—140° ниже метилого спирта. В этом отношении спирты похожи на воду, которая кипит тоже при значительно более высокой температуре, чем другие сходные соединения водорода, например сероводород H2S, аммиак NH3, хлористый водород H 1. Своеобразны и другие свойства спиртов образование азеотропных смесей, несовпадение температур плавления и застывания спиртов i3 и выше, различная степень растворимости высших и низших спиртов в воде и углеводородах и т. д. [c.27]

    Таким образом, гликозиды являются эфирообразными соединениями, получающимися в результате замещения атома водорода в полуацетальном гидроксиле циклической формы моносахарида радикалом спирта. Образование гликозидов аналогично образованию ацеталей (стр. 113). Ацетали можно рассматривать как продукты взаимодействия полуацеталей со спиртами. Точно так же и гликозиды получаются при взаимодействии циклических полуацеталей (циклических форм) со спиртами. По своим свойствам гликозиды очень похожи на ацетали. Как и ацетали, гликозиды довольно стойки к щелочам и легко гидролизуются разбавленными кислотами. [c.205]

    Бактерии группы кишечной палочки ие разжижают желатин, способны сбраживать целый ряд углеводов — лактозу, глюкозу, мал >-тозу, маннит, сахарозу с образованием кислоты и газа, и не всегда — многоатомные спирты. Биохимические свойства кишечной палочки непостоянны в отпошен1П1 сбраживания углеводов, поэтому при дифференциации их учитывают не самостоятельно, а в комплексе с другими тестами. [c.61]

    Наиболее важными в промышленном отношении путями переработки высокомолекулярных парафиновых сульфохлоридов до сих пор являются омыление щелочами с образованием растворимых в воде солей сульфокислот, обладающих прекрасными смачивающими, моющими и эмульгирующими свойствами далее получение эфиров при взаимодействии фенолов с алифатическими спиртами с образованием лрильных или алкильных эфиров сульфокислот, являющихся очень хо- [c.407]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Другое свойство коллоидальных растворов — образование хлопьевидных осадков (коагуляция) также подвергалось исследованию. Здесь также получались зачастую противоречивые результаты. Следует впрочем отметить, что противоречия особенно значительны-в истолковании наблюдаемых фактов. Так например Гольде наблюдал, что при добавлении к оналесцируюпщм бензольным растворам минеральных масел, содержапщх асфальтены, значительных количеств спирта, появляются видимые в ультрамикроскопе частицы, тогда как первоначально таковые не наблюдаются. Отсюда весьма трудно заключить, -чтр первоначальный раствор является коллоидальным, и можно принять, что он становится таковым после обработки спиртом... [c.117]

    Азеотропная перегонка применяется для разделения узких фракций бензинов в тех случаях, когда перегонка в вакууме, судя по величинам упругостей паров данных углеводородов, не обещает хороших результатов. К пераздельпокинящей смеси угле-водорсдов прибавляют специальное вещество (из числа низкомолекулярных спиртов, кислот и др.), которое образует с одним из разделяемых углеводородов азеотроппую смесь и этим как бы освобождает второй углеводород. Образование азеотронных смесей вызывается отклонением свойств двух смешивающихся жидкостей от свойств идеальных растворов. Зависимость давления пара ог состава смеси в этом случае ие является линейной —кривая проходит через максимум или минимум. При максимуме давло ИЯ пара смесь кипит при более низкой температуре [c.81]


Смотреть страницы где упоминается термин Спирты образование свойства: [c.86]    [c.14]    [c.253]    [c.31]    [c.197]    [c.1653]    [c.232]    [c.231]    [c.463]    [c.52]    [c.133]    [c.382]    [c.231]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.425 ]




ПОИСК





Смотрите так же термины и статьи:

Спирты образование



© 2025 chem21.info Реклама на сайте