Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционное от сорбента

    Адсорбция оксидов азота твердыми сорбентами (силикагелем, алюмогелем, алюмосиликатом, цеолитами, активным углем и др.). Из-за дефицитности и малой адсорбционной емкости адсорбентов, больших затрат тепла на регенерацию не нашла широкого применения. Для этой цели предложены природные адсорбенты (торф, лигнин, фосфатное сырье, бурые угли), которые не нуждаются в регенерации. Адсорбционные методы имеют определенные преимущества перед абсорбционными— компактность и простота конструкции аппаратуры, отсутствие жидких сточных вод. Недостатки методов — цикличность (адсорбция — десорбция), необходимость проведения регенерации при высоких температурах с последующей утилизацией оксидов азота, а также поглощение адсорбентом не только оксидов азота, по и других примесей, включая влагу. [c.67]


    Метод основан на различии адсорбционных свойств компонентов смеси, проявляющихся при движении их через слой какого-либо вещества — сорбента. Это влечет за собой различие в скоростях передвижения молекул индивидуальных соединений через сорбент п вследствие этого распределение их по отдельным зонам вплоть до полного их разделения. [c.250]

    Высокоэффективным методом адсорбционного разделения газов является процесс гиперсорбции. Этот метод позволяет проводить адсорбционное разделение газов непрерывно и имеет большую перспективность. Сорбент в этом процессе движется сверху вниз навстречу газовому потоку. Производительность отдельных установок гиперсорбции достигает 500 ООО м /сутки. [c.31]

    Расчет толщины слоя сорбента и длительности стадий адсорбции и десорбции с помощью профилей концентраций и выходных кривых довольно трудоемок. Поэтому (а также ввиду отсутствия данных для определения внутреннего сопротивления) расчет установок с неподвижным слоем твердой фазы часто проводят по эмпирическим зависимостям, полученным для конкретных адсорбционных систем (см. гл. IX). [c.75]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]

    Адсорбционный метод очистки уже нашел применение при обработке сточных вод производства различных органических продуктов, пластмасс, гербицидов и ядохимикатов, сульфатной целлюлозы, сточных вод нефтехимических и нефтеперерабатывающих предприятий, а также при очистке хозяйственно-бытовых сточных вод. Сфера применения этого метода постоянно расширяется, и в недалеком будущем он может стать одним из основных методов очистки. В настоящее время наиболее широко используются два основных режима адсорбционной обработки сточных вод адсорбция в неподвижном слое и адсорбция в движущемся слое сорбента. Выбор той или иной схемы очистки сточных вод с применением активного угля (порошкообразного или гранулированного) зависит от конкретных условий. [c.95]

    Одним из наиболее реальных способов утилизации оксидов азота, обеспечивающих санитарные нормы содержания оксидов азота в приземном слое после рассеивания их из выхлопной трубы, является адсорбционно-десорбционный метод, в котором используется непрерывно циркулирующий в системе адсорбер — пневмотранспорт — десорбер сорбент. [c.218]

    Самую высокую степень доочистки сточных вод обеспечивает адсорбционный метод (остаточное содержание нефтепродуктов 0,1—0,3 мг/л), внедренный на ряде зарубежных НПЗ. Стоимость адсорбционного метода очистки зависит в большой степени от стоимости сорбента и способа его регенерации. В этой связи представляет интерес создание дешевых активных углей из отходов — например, отходов производства пластмасс, нефтепереработки и т. п. Регенерацию активного угля можно проводить биологическим способом. Каждая колонна в течение суток 16 ч работает в режиме очистки сточных вод и 8 ч — в режиме регенерации угля. Для работы без сброса сточных вод в водоем циркулирующие воды необходимо обессоливать. Для деминерализации сточных вод может быть использован метод обратного осмоса или упаривание под вакуумом. [c.582]

    Обнаружение зон аномально высокой активности сорбентов может быть использовано для оптимизации адсорбционных процессов. [c.9]

    Основное преимущество адсорбционного способа очистки газов— возможность обрабатывать относительно небольшим количеством адсорбента огромные объемы газов, достигая при этом высокой степени очистки. Это преимущество обусловлено высокой поглотительной способностью промышленных сорбентов даже при низких парциальных давлениях извлекаемых примесей. Поэтому метод особенно целесообразен для удаления примесей, содержащихся в малых концентрациях, например для тонкой очистки от органических сернистых соединений, паров ртути, дезодорации газов. [c.236]

    Недостатки адсорбционных способов газоочистки заключаются прежде всего в периодичности процесса, низкой эффективности реакторов периодического действия, а также в высокой стоимости регенерации адсорбентов. Непрерывный способ адсорбционной очистки газов устраняет эти недостатки, но для него требуются высокопрочные сорбенты, которые для большинства процессов еще не разработаны. [c.237]

    Советский сорбент А-4 (на основе бентонита Черкасского месторождения) используется на промышленных установках. Оптимальные параметры его работы, найденные в процессе эксплуатации пилотной установки температура — 195—205 °С давление—2,8—3,2 МПа объемная скорость подачи сырья--0,5—3 4"J. В этих условиях адсорбционная активность сорбента по сырью, содержащему 0,5% (масс.) непредельных углеводородов, составляет 700— 1000 кг/кг, а при очистке сырья, содержащего 0,1% (масс.) олефинов, — 1000— 2000 нг/кг. Количество ароматических углеводородов в результате прохода [c.313]


    При адсорбции на углях веществ с крупными молекулами, а также частиц с коллоидной степенью дисперсности, для которых микропоры являются практически недоступными, основное значение приобретают мезопоры. Макропоры во всех случаях играют роль транспортных каналов. Параметры мезо- и макропор активных углей (удельную поверхность, объем и распределение объема пор по размерам) определяют обычными для катализаторов и сорбентов методами — адсорбционным, по вдавливанию ртути, пикнометрическим. [c.391]

    Абсорбционная осушка имеет ряд преимуществ по сравнению с адсорбционной низкие перепады давления в системе меньшие капитальные и эксплуатационные затраты возможность осушки газов, содержащих вещества, отравляющие твердые сорбенты. Однако следует отметить, что исполь ювание твердых поглотителей позволяет достичь более глубокой степени осушки, причем осушке можно подвергнуть газ, имеющий любую температуру, даже отрицательную. [c.211]

    Процесс адсорбционной очистки движущимся адсорбентом позволяет проводить глубокое обессмоливание гудронов. Для глубокой деметаллизации и деасфальтизации рекомендуется нефтяное сырье пропускать через стационарный слой адсорбента при 200— 500°С и давлении 30 МПа [231], при 300—800 °С и 0,2-3 МПа [232]. В последнем случае применен макропористый сорбент с нанесенными на его поверхность металлами- В качестве адсорбентов применяются гранулированная сажа [233], гранулированный шлам от производства алюминия [234], активные угли [235]. [c.99]

    Преимуществом адсорбционных методов является большая производительность, простота, наличие селективных сорбентов. К недостаткам относятся возможность новообразования асфальтенов из смол при адсорбции [245]. Однако несмотря на это результаты хорошо воспроизводятся. [c.103]

    Более дешевые и доступные сорбенты (силикагели и макропористые стекла) специально обрабатывают для того, чтобы их сделать адсорбционно пассивными — проводят этерификацию [246] или силанизацию поверхности [248]. [c.104]

    Групповой углеводородный состав керосино-газойлевых и масляных дистиллятов, определенный адсорбционным методом с применением двойного сорбента. [c.114]

    В мерных колбах готовят 10 растворов двух жидкостей, изменяв соотношение компонентов от чистой жидкости 1 до чистой жидкости 2. Из приготовленных растворов отбирают пипеткой по 25 мл, переносят и конические колбы и прибавляют в каждую колбу определенную навеску сорбента, например, 3 г активного угля на 25 мл раствора. Колбы закрывают притертыми пробками и оставляют на 1 ч, периодически набалтывая содержимое для установления адсорбционного равновесия. В исходных растворах и в растворах после адсорбции определяют показатели преломления и nf. [c.19]

    Метод газо-адсорбционной хроматографии (ГАХ) основан на различной адсорбируемости веществ на поверхности твердых неподвижных фаз. В газо-жидкостной хроматографии (ГЖХ) разделение основано на различной растворимости анализируемых веществ в жидкой стационарной фазе, нанесенной на твердый пористый носителЕ). Возможна также комбинация подвижная жидкая фаза — твердый сорбент — жидкостная адсорбционная хроматография (ЖАХ). Вариантами ЖАХ являются тонкослойная и бумажная хроматография. Прн использовании в качестве подвижной и неподвижной фазы жидкости реализуются различные варианты жидкостной хроматографии. [c.289]

    Хроматографический анализ высококипящих фракций. Для анализа высококипящих фракций применяется жидкостная адсорбционная хроматография. В качестве сорбентов используется силикагель марки АКС, активная окись алюминия и активированный уголь. На силикагеле метано-нафтеновая часть хорошо отделяется от ароматических углеводородов, а последние — от смолистых веществ. [c.69]

    До настоящего времени аффинный сорбент не использовали повторно, но если разработать метод элюирования белка без фотолиза, так чтобы сорбент можно было снова использовать, то это откроет путь широкому применению этому адсорбционному методу для очистки В12-зависимых ферментов. [c.395]

    В большинстве случаев адсорбционная очистка (контактная, или перколяция) позволяет улучшить цвет и запах масла, снизить его кислотное число и коррозионную агрессивность, повысить антиокислительную стабильность. Так, при очистке масла хохобы бентонитом или бокситом с расходом сорбента 5—15% мае., при температуре 100— 150°С и времени контакта 0,5 ч можно снизить кислотное число до 0,12—0,38 мг КОН/г. Последующая промывка очищенного воска 2%-ным раствором карбоната кальция позволяет получить значение 0,1 мг КОН/г. [c.230]

    Необходимо отметить, что адсорбционная очистка не всегда дает желаемые результаты, удаляя, по-видимому, вместе с нестабильными компонентами также и природные антиокислители типа токоферолов. Втабл. 4.24 представлены результаты оценки антиокислительной стабильности масла хохобы до и после адсорбционной очистки, свидетельствующие о нецелесообразности последней. Поэтому в каждом случае необходима дифференцированная оценка целесообразности использования сорбентов. Несмотря на это, адсорбционная очистка жиров остается одним из крупнейших, многотоннажных процессов. [c.231]

    Стереоизомеры олефинов С4—Се обычно разделяют азеотропной перегонкой с использованием эфиров и кетонов. При этом образуется азеотропная смесь с цис-томероы, имеющая максимальную температуру кипения. Применяется для этой цели также метод экстракции карбамидом. В последнее время для разделения структурных и стереоизомеров начали использовать адсорбционные методы, где сорбентами служат цеолиты СаА [44, 48], а также ка-тионзамещенные цеолиты типа X и V [48, 49]. [c.201]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    В качестве второго примера непгривиального решения можно привести решение задачи оптимизации адсорбционного процесса, показавшей, что не следует повышать до предела термостабильности сорбента температуру его регенерации, а целесообразно снизить эту температуру до оптимального уровня, при которой снижаются энергозатраты на регенерацию при некотором увеличении капитальных затрат и суммарные приведенные затраты на реализацию процесса минимизируются (рис.). [c.215]

    Четвертый пример -реализация адсорбционной стадии парофазного процесса при весьма высоких температурах, обусловленных спецификой телнологии смежных производств. Так, процесс денормализации бензиновых фракций цеолитами СаА может осуществляться при 280-330°С под высоким давлением (при таких параметрах выходят продукты реакции из реактора изомеризации алканов) с хорошими экономическими характеристиками, несмотря на низк)ю активность сорбента. [c.215]

    Адсорбционные методы очистки основаны на селективном извлечении примесей твердыми поглотителями — адсорбентами, Пре-имупцеством адсорбционных методов является высокая поглотительная способность адсорбентов, что позволяет обрабатывать относительно малым количеством сорбента огромные объемы газов и достигать при этом высокой стенени очистки. Недостатки адсорбцион-пых методов заключаются в периодичности процесса очистки, высокой стоимости регенерации адсорбентов и сравнительно низкой эффективности аппаратуры. Организация непрерывных процессов (адсорбция в движущихся слоях) связана с конструктивными и технологическими трудностями. [c.166]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]

    Процесс разделения легких углеводородов осуществляется в нисходящем плотном слое сорбента и по аппаратурному оформлению напоминает каталитический процесс Термофор . Схема установки гиперсорбции применительно к процессу разделения смеси, состоящей из водорода и углеводородов С1 —С3, изображена на рис. 5.18. В адсорбционной колонне / сверху вниз движется поток активного угля. В верхней части / имеется холодильник 2 для охлаждения сорбента (емкость сорбента возрастает при уменьшении температуры), а в нижней части — Аагреватель (десорбер 3). Скорость движения слоя [c.305]

    Разделение жидких и газообразных смесей с помощью синтетических цеолитов основано на особенностях кристаллического строения последних, т. е. на строго определенном, моноднсперсном размере наружных пор макрокристаллов в сочетании с наличием довольно значительных внутренних полостей, соединенных каналами с входными порами. При этом размеры пор цеолита соизме-шмы с размером молекул большинства органических веществ (10 —10" мкм). Лри соприкосновении смеси веществ с макрокристаллом цеолита молекулы с размером, меньшим диаметра пор, проходят внутрь полостей и задерживаются там за счет адсорбционных сил, в то время как молекулы больших размеров отсеиваются (в связи с этим цеолиты и некоторые другие аналогичные адсорбенты получили название молекулярных сит). Подавая затем к поверхности цеолита вместо исходной смеси соответствующий десорбент (элюент), также проходящий через поры цеолита и способный вытеснить ранее адсорбированные молекулы, можно с любой необходимой четкостью разделить исходную смесь. Поскольку цеолиты являются довольно дорогим сорбентом, применение их на практике рентабельно лишь при нахождении условий, обеспечивающих длительный срок работы (порядка года). [c.307]

    На два порядка сокращено время регенерации сорбента до величин порядка одной минуты, что привело к значительному уменьиинию количества загружаемого сорбента и габаритов адсорбционной установки. Эффективность новой технологии получения водорода определяется следующими слагаемыми  [c.172]

    При сравнении силикагеля и оксида алюминия было установлено, что на силикагеле достигается лучшее отделение алканоциклоалканов от аренов, а на оксиде алюминия — более четкое разделение аренов на моно-, би- и полициклические. Кроме того, оксид алюминия позволяет несколько лучше отделять углеводороды от сераорганических соединений, хотя четкого разделения не достигается. В связи с этим предложено применять двойной сорбент — оксид алюминия внизу, а силикагель АСК — вверху колонки при соотношении 1 1 [78]. Разделение нефтяных фракций проводилось при следующих условиях соотношение продукт сорбент =1 10 разбавление фракций деароматизированными алканами или фракцией алкилата (50—80°С) в соотношении 1 3 десорбция при разделении фракций, перегоняющихся до 350 °С, осуг ществлялась последовательно фракцией алкилата (2 1, считая на сорбент), затем бензолом (1 1) и спирто-бензольной смеськз (1 1). Для десорбции фракций, перегонящихся выше 350 °С, после фракции алкилата подавали смеси той же фракции алкилата с 5, 10, 15, 20 и 25% бензола (1 2, считая на сорбент), затем чистый бензол и спирто-бензольную смесь. Температура адсорбции и десорбции поддерживалась 25—40°С. Показано, что применение этой методики с двойным сорбентом при определении группового углеводородного состава 50-градусных фракций, перегоняющихся в пределах 200—400 °С, дает лучшие результаты, чем адсорбционная хроматография на индивидуальных сорбентах — силикагеле или оксиде алюминия. [c.61]

    Предлагаемый способ, в отличие от известного, предполагает использование только одного сорбента, что значительно упрощает операции по подготовке процесса (транспортировка, хранение и сушка сорбента) максимальное использование адсорбционной способности сорбента,, поскольку кислотноактивированный сорбент, используемый в известном способе, фактически не является отработанным. [c.203]

    В этом же РД указаны значения показателей масла, по которым состояние эксплуатационного масла оценивается как нормальное. При превышении этих значений должны быть приняты меры по восстановлению масла или устранению причины ухудшения показателя. Помимо этого даны значения показателей, при которых масло подлежит замене. В табл. 5.4 приведены требования к эксплуатационным маслам. Сорбенты в термосифонных и адсорбционных фильтрах трансформаторов согласно РД 34.20.501-95 Правила технической эксплуатации электрических станций и сетей Российс- [c.242]

    Хроматографические методы можпо различать по условиям проведения разделения газовый и жидкостный по механизмам разделения молекулярно-адсорбционный, ионообменный, распределительный. Существенное значение имеет форма проведения процесса и способ неремещення смеси вдоль сорбента. Перемещение смеси можно осуществить в проявительном режиме, когда вещество-носитель практически не сорбируется. Этот метод обычно используется в газовой хроматографии. Перемещение смеси может быть во фронтальном режиме, нри котором происходит последовательное выделение сначала наименее сорбируемого компонента. Распространен и вытеснительный режим, при котором исходная [c.288]

    Адсорбция. Метод адсорбции-десорбции в последние 15—20 лет стал наряду с ректификацией доминирующим приемом при исследовании состава нефти и ее отдельных узких и широких фракций. Сущность метода заключается в том, что отдельные компоненты смеси могут 1 збирателыю последовательно п с различной энергией сорбироваться на том или ином сорбенте п таким путем отделяться от общей смеси. В дальнейшем при десорбции эти компоненты выделяются в неизменном состоянии в виде отдельных фракций и могут исследоваться раздельно. Очевидно, что десорбция происходит в порядке, обратном адсорбции. Легче всего удаляются с поверхности адсорбента компоненты, обладающие наименьшей адсорбционной способностью. Современные адсорбционные приемы исследования и разделения базируются иа [c.57]

    Из традиционных процессов очистки масляного сырья в существенной степени удалить ПА способны лищь глубокая селективная очистка (130% фурфурола при 93"С, возможно также использование фенола, N-мeтилпиppoлидoнa, жидкого диоксида серы), гидроочистка жесткого режима (от 5,6 до 21 МПа, до 750"С), очистка олеумом (получение белых масел). В указанных случаях раковых заболеваний у животных не отмечено. При исследовании белых масел возникновение опухолей все же имеет место ( ), но только в случае многократной внутрибрюшной инъекции. Ни депарафинизация, ни адсорбционная очистка природными сорбентами полициклические соединения не удаляют [202, 82]. [c.32]

    Для придания рафинату необходимого цвета, запаха и удаления остаточных количеств примесей используют адсорбционную очистку (как правило, контактную), которая может являться как стадией рафинации (рис. 4.21), так и самостоятельным способом получения базовых масел. В качестве сорбентов во всем мире для указанных целей широко используют активированный уголь, бентониты (как в естественном состоянии, так и кислотноактивиро- [c.229]


Смотреть страницы где упоминается термин Адсорбционное от сорбента: [c.65]    [c.322]    [c.57]    [c.303]    [c.219]    [c.302]    [c.306]    [c.206]    [c.269]    [c.104]   
Хроматография полимеров (1978) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматография на полиамидных сорбентах

Адсорбционные установки с неподвижным слоем сорбента

В Т Быков В Г Герасимова, А А Грицюк П М И овен ко Н Е Щерба тюк Физико химические и адсорбционные свойства природных сорбентов важнейших месторождений Сибири и Дальнего Востока

Зависимость адсорбционного взаимодействия от химической природы сорбента, полимера и растворителя

Получение, свойства и условия применения сорбентов Неймарк. Изменение адсорбционных свойств минеральных сорбентов путем геометрического и химического модифицирования

Сорбент неподвижная жидкая фаза на адсорбционно-активном твердом носителе (адсорбенте)

Сорбент-носитель твердый сорбент адсорбционные свойства

Сорбенты

Структура адсорбционного слоя при адсорбции анионных ПАВ на углеродных сорбентах



© 2025 chem21.info Реклама на сайте