Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол использование

    В промышленности адсорбция осуществляется в аппаратах периодического и непрерывного действия. Интенсификация процессов адсорбции идет по пути использования псевдоожиженного слоя адсорбентов. Так, при очистке сточных вод от фенола в псевдо-ожиженном слое адсорбента 0,8—3 м достигнута производительность 9,2—15 м /(м -ч) при степени извлечения 99,9% и исходной концентрации 1 г/л. [c.487]


    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]

    Чем выше температура кипения сырья, тем выше величина его КТР и тем при более высокой температуре можно его очищать. Повышенное содержание асфальто — смолистых веществ и поли — циклических ароматических углеводородов понижает КТР и требует более низкой температуры экстракции. Практически температура очистки поддерживается на 10—25 °С ниже КТР сырья в зависимости от требуемого качества рафината и составляет 55 — 70 °С для дистиллятного сырья, 75 — 95 °С для деасфальтизатов при очистке фенолом, 60 — 90 и 95—115 °С соответственно при использовании фурфурола. [c.241]

    В табл. 1, в левом столбце, приведены ароматические углеводороды, представляющие в настоящее время наибольший интерес в нефтепереработке, и отмечаются соответствующие конечные сульфонаты (или химикалии, включающие в качестве промежуточных продуктов сульфонаты углеводородов), представляющие фактический или потенциальный интерес для потребителей, а также основные направления использования таких химикалий. Производство указанных выше ароматических углеводородов, а также перечисленных в таблице продуктов неуклонно растет. Конечно, углеводороды, получаемые из каменноугольного дегтя, применяются больше для многих других целей, а не для приготовления сульфонатов. В тех случаях, где сульфонат является нежелательным конечным продуктом (например, для фенола, крезолов или резорцина), приемлемы другие препаративные методы, позволяющие избежать сульфирования как промежуточной стадии. Замечательным примером этого типа методик является метод получения фенола из кумола, при котором ацетон (побочный продукт реакции) имеет значительно более высокую стоимость, чем побочный продукт, получаемый при процессе сульфирования (натрий бисульфит). [c.515]


    Таким образом, для анализа примесей в дифенилолпропане предложено большое число методик. Их разнообразие говорит о больших трудностях, связанных с необходимостью определения многочисленных примесей, содержащихся в микроколичествах. Следует также отметить, что вследствие большого разнообразия примесей ни одна из предложенных методик не является универсальной и для более полного анализа бывает необходимо проводить несколько определений. Так, например, при использовании методики встречаются трудности с определением трис-фенола, по методике не определяется фенол, использованная авторами методика " нг позволяет определять трис-фенол и т. д. Поэтому вопрос о методах определения примесей в дифенилолпропане нельзя считать полностью решенным. [c.195]

    Процент элиминирования существенно возрастает с основностью фенолов, использованных в качестве нуклеофилов. [c.82]

    Фенол, использованный для синтеза смолы Эта- нол Аце- тон Хло- ро- форм Толу- ол Уайт- спи- рит [c.359]

    Представляют интерес смолы на основе дифенилсульфона, обладающие высокой химической стойкостью . Ряд фенолов использован для получения эпоксидных смол с повышенной термостойкостью. К ним относятся фторированный дифенилолпропан  [c.158]

    В присутствии веществ, тормозящих окисление (ингибиторов), например фенолов или сернистых соединений, наблюдается инкубационный период, более или менее продолжительный в зависимости от количества ингибиторов. В течение этого периода ингибиторы разрушаются в результате окисления, и лишь затем реакция протекает так, как при использовании чистого парафина. [c.449]

    Полиэфиры дифенилолпропана и ароматических двухосновных кислот. Полиарилаты. Полиэфиры различных дикарбоновых кислот и двухатомных фенолов носят название полиарилатов. В качестве двухатомного фенола в синтезе полиарилатов может быть использован дифенилолпропан . Коршак, Виноградова и др. получили большое число полиарилатов взаимодействием дихлорангидридов дикарбоновых кислот с двухатомными фенолами, в частности с дифенилолпропаном  [c.47]

    В структуре мощностей селективной очистки масел за рубежом, особенно в США, преобладают процессы с использованием ЫМП (-45 %) и фурфурола (-35 %), а в бывшем СССР — главным образом фенола (>70 %). [c.240]

    Экстракционная перегонка применяется в нефтяной промышленности в заводском масштабе для получения индивидуальных химических веществ ВЫСОКО степени чистоты. Одним из наиболее ранних применений была очистка толуола с использованием фенола нли смеси крезолов н качестве растворителя. Видоизменения этого процесса применяются 1) настоящее время для получения бензола. [c.101]

    Исследования по алкилированию проводились не только с простейшими ароматическими углеводородами, но также с фенолами и производными пиридина. Таким образом, эта реакция к концу XIX в. уже была широко исследована и прочно утвердилась в области химического синтеза. Данный обзор не ставит своей целью ни охват всей имеющейся обширной литературы по этой теме, ни оценку огромных возможностей и технического использования применяемых катализаторов. Это уже сделано другими в прекрасных обзорных работах [20]. Здесь же задача ограничивается обсуждением тех отдельных реакций, которые применяются в нефтяной промышленности в значительных размерах. [c.488]

    Вторым направлением применения алкилированных фенолов является использование их в качестве антиокислителей для смазочных масел. [c.508]

    Для улучшения качества тяжелых газойлей коксования и продуктов, аналогичных им, характеризующихся более легким фракционным составом по сравнению с крекинг-остатком термического крекинга, может использоваться селективная очистка (с использованием фурфурола, фенола, [c.109]

    Было установлено - что в случае использования растворителей появляется еще одна возможность уменьшения расхода кислоты — путем повышения ее концентрации. Если обычно в синтезе используют 73%-ную кислоту, то в присутствии растворителей применение даже 85%-ной кислоты не приводит к увеличению доли нежелательных побочных реакций. При работе с такой концентрированной кислотой очень важно соблюдать порядок добавления реагентов, а именно, к смеси фенола, толуола и тиогликолевой кислоты добавлять раздельно (но одновременно) с определенной скоростью серную кислоту и ацетон. Способ позволяет снизить расход кислоты еще вдвое. Например, используя толуол и промотор — тиогликолевую кислоту — при указанном выше соотношении компонентов (кроме количества кислоты, которое берется примерно вдвое меньше), расход серной кислоты составил всего 0,9 моль на 1 моль ацетона (0,4 тяа т дифенилолпропана), а количество отработанной 25%-ной кислоты снизилось до 1,6 m на 1 m дифенилолпропана. Соответственно уменьшению расхода воды на промывку снижается количество фенол содержащих сточных вод — до 1,34 m на 1 т дифенилолпропана. [c.115]

    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]


    Однако попытки проведения такого синтеза показали что реакция протекает очень медленно и с невысоким выходом дифенилолпропана. В присутствии 72,5%-ной серной кислоты и этилмеркаптана за длительное время реакции (несколько дней) выход дифенилолпропана составил всего 31,6% (в расчете на гидроперекись), а без добавления этилмеркаптана дифенилолпропан не был получен совсем. При использовании безводного хлористого водорода с добавкой этилмеркаптана за 310 ч выход дифенилолпропана не превысил 35,2%. Невысокий выход дифенилолпропана, по-видимому, объясняется тем, что образование его протекает все-таки в две стадии разложение гидроперекиси на фенол и ацетон и последующая конденсация их в дифенилолпропан  [c.102]

    Несмотря на кажущуюся простоту метода получения дифенилолпропана из гидроперекиси изопропилбензола, экономические преимущества его и перспективность использования в промышленности не являются очевидными. Дело в том, что высокие выходы дифенилолпропана достигаются лишь тогда, когда к гидроперекиси добавляют фенол, поэтому полностью избежать стадии разложения гидроперекиси и выделения фенола из полученной массы невозможно. Кроме того, так как фенол берут в большом избытке по отношению к гидроперекиси, только небольшая часть ее не подвергается разложению и, следовательно, преимущества непосредственного синтеза реализуются мало. Недостатком способа является и то, что техническая гидроперекись, используемая для синтеза, содержит весьма реакционноспособные примеси а-метилстирола, ацетофенона, окиси мезитила, диметилфенилкарбинола и др. В присутствии кислотных катализаторов эти примеси конденсируются или реагируют с фенолом с образованием высококипящих продуктов, что приводит к потере фенола и к загрязнению дифенилолпропана. Вследствие этого фенол приходится очищать перед возвращением в цикл. [c.104]

    Для обезвреживания сточных вод от нефтяных продуктов, сернистых и цианистых соединений, фенолов, поверхностно-активных веществ, кремнийорганических соединений, пестицидов, красителей, соединений мышьяка, канцерогенных ароматических углеводородов и других соединений применяется озон. При действии озона на органические соединения происходят реакции окисления и озонолиза. Озон одновременно обесцвечивает воду и является дезодорантом, применение его не вызывает значительного увеличения солевой массы в воде. Озон подают в сточную воду в виде озоновоздушной или озонокислородной смеси с концентрацией озона в них до 3%. Для лучшего использования озона газовая смесь подается через диспергирующие устройства под слой обезвреживаемой воды. Учитывая высокую токсичность озона и малую поглощаемость его стоками, газы после прохождения через воду надо подвергать очистке от озона. Ввиду высокой стоимости озона го применение целесообразно в сочетании с другими методами — биохимическим, ионообменным, сорбционным. [c.494]

Таблица 12. Влияние мольного отношения фенол ацетон на выход дифенилолпропана при использовании хлористого водорода Таблица 12. <a href="/info/1701037">Влияние мольного</a> <a href="/info/595909">отношения фенол</a> ацетон на выход дифенилолпропана при <a href="/info/359804">использовании хлористого</a> водорода
    При проведении конденсации фенола с ацетоном в присутствии соляной кислоты или хлористого водорода исследовались самые различные промоторы. Действие их неодинаково. Например свободная и однохлористая сера, тиосульфат натрия и т/зет-бутил-меркаптан являются малоэффективными. Данные по действию сероводорода разноречивы по-видимому, он ускоряет реакцию, однако в значительно меньшей степени, чем при использовании серной кислоты как конденсирующего агента. Селенистая и теллуристая кислоты и их соли ускоряют процесс ) , но выход дифенилолпропана не превышает 80—90%. Вероятно, выход можно увеличить, если повысить мольное отношение фенол ацетон в исходной смеси или количество катализатора, г- [c.123]

    Так же, как и при синтезе дифенилолпропана с использованием серной кислоты, в описываемом способе кислоту можно отмыть водой, а остатки ее нейтрализовать щелочным агентом, например гидроокисью кальция. Однако при этом образуется большое количество фенолсодержащих сточных вод кислотного характера. Поэтому в некоторых способах перед промывкой водой рекомендуется добавлять в реакционную массу растворитель, не смешивающийся с водой (хлорбензол, бензол). Добавка растворителя способствует лучшей отмывке дифенилолпропана от кислоты, и, кроме того, при этом большая часть фенола остается в растворителе. Далее массу нейтрализуют и отгоняют от нее фенол, воду и хлорбензол. Полученный дифенилолпропан-сырец очищают известными методами. [c.126]

    При обработке сточных вод, содержащих фенолы, цикло-пеитан, тетраэтнлсвниец, цианиды, крезолы, иоверхностно-актив-иые вещества, нефть и др., эффективно применение озона. Солевой состав очищаемых сточных вод ири этом не расширяется. Однако из-за высокой стоимости повсеместного использования озон ие получил. [c.98]

    Большая часть фенолов гидрогенизации направляется со сре ней фракцией на форгидрирование и при этом разрушается, образования воды и углеводородов, однако в топливно-химичесю вариантах процесса возможно выделение всех легких фенолов использованием их для нужд химической промышленности [35 Их суммарный выход составляет 5,4% от всей продукции устано ки гидрогенизации угля. При этом благодаря массовому протек нию вторичных процессов гидрирования высококипящие фeнoJ практически полностью превращаются в низкокипящие или yrj водороды [33—35]. [c.85]

    Покажем сначала, в какой степени природа фенола, использованного при синтезе полимера, и тип феполо-альдегидной смолы (поволак, резол) оказывают влияние на технологические параметры (табл. 4) и на механические свойства (табл. 5) реактопласта после его отверждения. [c.43]

    Наряду с процессами деасфальтизации гудронов пропаном и селективной очистки деасфальтизатов фенолом (значительно реже фурфуролом) в производстве остаточных масел получил распространение совмещенный процесс деасфальтизации гудрона пропаном и селективной очистки смесью крезолов и фенола. Использование различных по характеру и свойствам растворителей основано на том, что жидкий пропан хорошо извлекает из сырья ценные компоненты и способствует осаждению асфальтенов, смол, полициклических углеводородов, которые растворяются в крезол-фенольной -смеси. Значительные различия в температурах кипения пропана и се-лекто позволяют последовательно регенерировать эти растворители из растворов. В результате очистки остаточного сырья парными растворителями получают очищенный рафинат, а также экстракт и асфальт. [c.106]

    Ны изучили также восстановление замещенных бензофв-новов в присутствии избытка фенола. Использование фенола в качестве донора протонов представляется наиболее целесообразным по следующим соображениям. Являясь довольно слабой кислотой в диметилформамиде, фенол не протонирует в заметной степени нейтральные молекулы бензофенонов, как это отмечалось для бензойной кислоты /9/, и, таким образом, можно не считаться с влиянием предшествующего протонирования [c.257]

    Эпоксидные полимеры обладают высокой адгезией, химической стойкостью, твердостью, эластичностью, высокими электроизоляционными показателями, вeтo тoйкo тью . На их основе готовят лаки и краски, клеи для различных материалов, заливочные и прессовочные материалы, смолы, слоистые пластики и др. Эпоксидные полимеры можно модифицировать, сочетая их с другими продуктами (феноло-формальдегидными полимерами, амидо- и аминосоединениями, с алкидными полимерами и др.), что обеспечивает широкие возможности варьирования свойств изготовляемых из них материалов. Одной из главных областей применения эпоксидных полимеров является изготовление покрытий для аппаратов, работающих в условиях большой влажности и действия концентрированных растворов щелочи и других химикатов, приготовление защитных лакокрасочных покрытий и др. Они применяются в электротехнике и электронике, в строительном и дорожном дел Пер-спективным направлением использования является изготовление коррозионностойких труб и резервуаров. [c.50]

    Использование метода азеотропной ректификации для обесфе-ноливания сточных вод с концентрацией фенолов 9300 мг/л позволило при применении в качестве разделяющего агента бутилаце-тата снизить концентрацию фенола до 30—90 мг/л. [c.489]

    При использовании в качестве растворителя фенола в результате реакции с небольшими количествами диенов, которые имеются в углеводородном сырье, образуется высококипящий, химически иеактипный осадок. Несмотря на то, что коррозия стали незначительна, небольшие количества солей железа все же образуются. Эти соли удаляются посредством непре-рытюй перегоики части циркулирующего растворителя или путем периодической нерсгоики всего растворителя. [c.117]

    В противоположность описанным результатам, получаемым с фенолом и антрахиноном и их производными [47, 51], такие катализаторы, как ртуть, оказывают незначительное направляющее влияние на вхождение сульфогруппы при сульфировании угловодородов [60]. Так, например, о-ксилол в отсутствие ртути дает исключительно 4-сульфокислоту, тогда как в присутствии ртути он дает от 20 до 25% 3-сульфокислоты. При сульфировании толуола Лоер и.Ода [62] обнаружили, что при использовании газообразного ЗОз совсем не образуется л -изомера (добавлялись РаОб или уксусный ангидрид для связывания воды), в то время как при применении серной кислоты всегда образовывалось около 5% лt-изo-мера. [c.519]

    Низкая температура кипения бензола делает его весьма подходящим для перегонки лри парциальном давлении для завершения сульфирования, так как образующаяся в реакции вода удаляется по мере того как избыток бензола, испаряясь, проходит сквозь реакционную массу и благодаря этому достигается почти количественное использование бензола и кислоты. Этот принцип положен в основу хорошо известного процесса Тайрера (или Гийо), по которому получается вся бензосульфокислота в США, используемая для производства фенола. [c.529]

    Относительно высокая стоимость высших жирных спиртов послужила основной причиной их более ограниченного использования для синтеза неиопогенных поверхностно активных веществ по сравнению с алкилированпыми фенолами. Согласно опубликованным данным, только высокой стоимостью алифатических спиртов, а не какими-либо иными соображениями технического характера объясняется то, что в США неионогенные поверхностно активные вещества, например полиоксиэтиленовые эфиры жирных спиртов, применяются реже, чем соответствующие эфиры алкил-фенолов [64]. [c.134]

    В настоящее время всеобщее распространение в промышленности различных стран получил способ производства ди( нилолпропана путем конденсации фенола с ацетоном в присутствии кислотных катализаторов (хлористый водород, соляная и серная кислоты). Однако большим недостатком этих способов является высокая агрессивность сред, что особенно относится к использованию хлористого водорода отсюда проистекает трудность подбора соответствующего коррозионностойкого материала для изготовления аппаратуры и трубопроводов. Поэтому в течение ряда лет привлекают внимание бескислотные способы получения продукта. Так, в СССР разработан способ получения дифенилолпропана конденсацией фенола с ацетоном в присутствии ионообменной смолы как катализатора. [c.6]

    Для получения дихлорзамещенных дифенилолпропана был использован в качестве галогенирующего реагента хлористый суль-фурил > с которым, как известно , -фенолы реагируют менее активно, чем со свободным хлором, и поэтому можно осуществить ступенчатое хлорирование и получить неполностью хлорированные продукты. Хлорирование дифенилолпропана хлористымхульфу-рилом в растворе четыреххлористого углерода протекает только в присутствии катализаторов — соединений, содержащих сульфгид-рильную группу (тиогликолевая кислота, сернистый натрий, ме-тилмеркаптан, однохлористая сера, тиомочевина, тиосульфат натрия наиболее активны первые три). По мнению авторов , сернистые соединения являются переносчиками хлора от хлористого суль-фурила к дифенилолпропану, например  [c.24]

    При мольном соотношении фенола и 2-хлорпропена 5 1, 52 °С и 2,5 ат в присутствии хлористого водорода и промотора — этилмеркаптана за время реакции 6 ч степень конверсии 2-хлорпропена в дифенилолпропан составила 30%, а в 2,2-дихлорпропан — 22% (без добавки этилмеркаптана эти величины соответственно равны 32,6 и 40,2%) . На катализаторах Фриделя — Крафтса удается значительно повысить выход дифенилолпропана с AI I3 выход продукта достигал 62% на израсходованный 2-хлорпропен. При использовании BFg выход дифенилолпропана был еще больше — 96% от теоретического  [c.101]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Описан синтез дифенилолпропана с использованием в качестве катализатора комплексного соединения ацетона или фенола с ВРз и в присутствии фторидов щелочноземельных металлов, например СаРд. В сочетании с хлористым водородом катализаторами могут быть ВРз, А1С1з, ЗпС] , 5ЬС15, ЗпР , 5ЬРз. Выход дифенилолпропана 88—90%. [c.64]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Способ осуществляется, например, следующим образом. К смеси —"4 моль фенола и 7 моль толуола при перемешивании добавляют. 4 моль 77,5%-ной серной кислоты и 0,02 моль тиогликолевой кислоты при 20 °С. После этого в течение 3 ч при 25 °С дозируют 2 моль ацетона. Затем смесь выдерживают еще 7 ч при 35 °С. После добавления 60 моль воды смесь подогревают до 82 °С. Водный слой отделяют, добавляют 20 моль свежей воды и доводят pH водного слоя до 4, прибавляя бикарбонат натрия. Этот слой спускают и добавляют еще 66 моль воды с температурой 80 С. Смесь медленно охлаждают (3 ч) до 25 °С при перемешивании. Кристаллы дифенилолпропана центрифугируют и сушат. По этим данным при использовании растворителей расход кислоты снижается втрое — с 6 до 2 моль на 1 моль ацетона (1 т H2SO4 на 1 т дифенилолпропана). Выход отработанной 25%-ной кислоты составляет 3,5 m на 1 /п дифенилолпропана, количество фенолсодержащих сточных вод 3,35 m на 1 т дифенилолпропана. [c.115]

    Мольное соотношение фенол ацетон заметно влияет на протекание реакции конденсации Экспериментальные данные (табл. 12) показывают, что ГНЬвышение соотношения фенола к ацетону до 3,7 увеличивает выход дифенилолпропана до 86%, а дальнейшее возрастание соотношения до 4 не дает заметного эффекта. Однако в случае использования промоторов, например этилмеркаптана более высокое мольное соотношение (10 1) значительно сокращает время реакции и повышает выход дифенилолпропана до 98%. Увеличение мольного соотношения благоприятно влияет не только на время реакции и выход, но и на чистоту дифенилолпропана - [c.121]

    В сочетании с рассматриваемыми конденсирующими агентами высокую эффективность проявляют и алкилмеркаптаны (рис. 9), однако промотирующая способность их снижается по мере роста углеводородной цепи. Из всех испытанных алкилмеркаптанов (мольное соотношение фенола и ацетона 10 Г, 65°С безводный НС1) исключительно высокой промотирующей способностью обладает метилмеркаптан использование его в количестве 0,5% от теоретического выхода дифенилолпропана за короткое время контактирования (0,5 ч) дает 98,8%-ный выход продукта. С хорошим выходом и в течение короткого времени может быть проведен синтез- с 2-оксиэтилмер-каптаном-1 и с 3-oк ипpoпилмepкaптaнoм-l J [c.126]


Смотреть страницы где упоминается термин Фенол использование: [c.156]    [c.163]    [c.121]    [c.97]    [c.99]    [c.103]   
Фенолы и основания из углей (1958) -- [ c.26 ]




ПОИСК







© 2025 chem21.info Реклама на сайте