Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропная перегонка для разделения

    На фиг. 51 представлен ход азеотропической перегонки для случая разделения бинарного азеотропа с помощью третьего компонента, образующего с компонентами системы тройной азеотроп, кипящий при наинизшей в системе температуре. Азеотропную перегонку вообще удобно вести в периодически действующей ректификационной установке, так как все необходимое количество третьего све.чзо,- ) компонента может [c.150]


    Применение азеотропной перегонки для разделения бинарных систем близкокипящих веществ, характеризующихся отсутствием азеотропизма, ректификация которых затруднена вследствие небольшой величины коэффициента обогащения, может быть иллюстрировано упомянутым выше примером обезвоживания уксусной кислоты, В рассмотренном примере разделительным агентом являлся изопропиловый эфир. На фиг. 52 представлен способ нахождения фигуративной точки А тройной системы, перегонка которой в периодическом кубе [c.153]

    Перегонка и ректификация [5.14, 5.24, 5.31, 5.33, 5.55]. Метод основан на разделении и удалении через открытую жидкую поверхность соединений, имеющих разную температуру кипения. Для очистки сточных вод применяют перегонку, перегонку с водяным паром, перегонку с инертным носителем, азеотропную перегонку, ректификацию в присутствии перегретого пара и азеотропную ректификацию. [c.489]

    Выбор разделяющего агента. Азеотропная перегонка может основываться на разделении азеотропных смесей, имеющихся в углеводородных фракциях, получаемых обычным путем, иля она может состоять в образовании азеотропных смесей, чтобы облегчить разделение таких систем, которые обычно трудно разделить. В течение второй мировой войны было разработано несколько вариантов азеотропной перегонки второго типа некоторые из них используются в промышленности и в настоящее время. [c.124]

    Восстановление разделяющего агента путем азеотропной перегонки. Для образования новой азеотропной смеси с целью разделения фаз можно применить второй раз азеотропную перегонку. Подобные методы не использовались в нефтеперерабатывающей промышленности в заводских масштабах. [c.127]

    Экстракционная и азеотропная перегонки требуют введения вспомогательного агента для облегчения разделения в результате образований неидеальных смесей. В табл. 30 сравниваются те свойства растворителя, наличие которых желательно для каждого из зтих способов. Два существенных различия состоят в требованиях, предъявляемых к соотношению между температурой кипения растворителя и температурой кипения смеси, подлежащей разделению, а также к разделению н идких фаз. [c.133]

    Существует несколько схем разделения продуктов окисления, в основе которых лежит экстрактивная и азеотропная перегонка. Применяя различные растворители, можно изменить относительную летучесть компонентов и таким образом разрушить имеющиеся азеотропные смеси. Направление изменения летучести компонентов зависит главным образом от полярности растворителя. Высокополярные растворители дают возможность понизить летучесть более полярного компонента. Менее полярный компонент отбирается при этом в виде дистиллята. Применяя неполярный растворитель, наоборот, в виде дистиллята можно выделить компонент с высокой полярностью. Практически чаще применяют полярные растворители, которые или образуют азеотропную смесь с одним из компонентов смеси или снижают летучесть компонентов с более высокой температурой кипения. [c.94]


    Азеотропную перегонку применяют для разделения смесей близкокипящих компонентов, которые в большинстве случаев уже сконцентрированы обычной ректификацией, и для разделения азеотропных смесей, которые близки по составу к азеотропу. [c.304]

    Расчет условий азеотропной перегонки, необходимых для разделения, например, числа теоретических ступеней разделения и флегмового числа проводят в обычном порядке, как описано в гл. 4. [c.313]

    При выборе третьего компонента для азеотропной перегонки необходимо учитывать следующее 1) после его добавления температура кипения смеси третьего компонента с неароматическими углеводородами (новой азеотропной смеси) должна значительно отличаться от температуры кипения выделяемого ароматического углеводорода или его азеотропной смеси с третьим компонентом 2) желательно, чтобы новая образующаяся азеотропная смесь содержала максимальное количество неароматических углеводородов 3) третий компонент должен иметь низкую теплоту испарения, чтобы расход тепла на отгон был минимальным он должен также легко регенерироваться для дальнейшего использования в процессе, например путем водной промывки, разделения фаз при охлаждении и др., и быть химически инертным — не вступать в реакцию с разделяемыми углеводородами, не корродировать аппаратуру, быть термически стабильным, нетоксичным и доступным в промышленном масштабе. [c.41]

    Повышение производительности установок получения этанола из биомассы достигается применением непрерывных способов ферментации. Для этих процессов могут использоваться такие же или модифицированные реакторы. Подача субстрата осуществляется непрерывно, а высокая концентрация дрожжевых культур обеспечивается за счет их выделения из отходящего потока и возврата в реактор. Концентрация спирта поддерживается в пределах 4,5—7,0%. Для получения 95%)-го спирта выходящий из аппарата продукт проходит несколько ступеней разделения. На первой жидкость отгоняется от твердых остатков. Затем жидкость фракционируется и получается 50— 70%)-й этанол. На следующей ступени разгонки концентрация его повышается до 90—95%. Более высокая концентрация спирта может быть достигнута только азеотропной перегонкой. Дистилляция спирта — самая энергоемкая и технологически сложная стадия всего процесса получения этанола ферментацией. [c.123]

    Амилены нормального строения получают каталитическим дегидрированием н-пентана [42]. Кипящий при 30,1° пентен-1 можно отделить простой ректификацией от пентена-2 (т. кип. 36,4°) и н-пентапа (т. кип. 36,1°), Это разделение является одной из стадий синтеза пиперилена из н-пентана (гл. 12, стр. 222). Нормальный пентан и пентен-2 можно, безусловно, отделить друг от друга с помощью описанных выше методов, например азеотропной перегонкой с аммиаком. [c.133]

    Обычно в качестве вещества, образующего азеотропную смесь с ароматическим углеводородом, берут метилэтилкетон или метиловый спирт. Лэйк [9] составил список веществ, дающих азеотропные смеси с толуолом. Для азеотропной перегонки последнего, по-видимому, наиболее часто используют водный метилэтилкетон. Его применение для этой цели в промышленном масштабе описано в литературе [9, 10]. Этот кетон увлекает с собой в отгон парафины, а также нафтены, если последние присутствуют в разделяемой смеси. Для экономии греющего пара перегонке подвергают концентрат, содержащий 40% толуола. Даже в этом случае для хорошего разделения требуется брать на каждый объем неароматического углеводорода 2—3 объема метилэтилкетона. [c.246]

    Вторым законом Коновалова часто пользуются в технологической практике при выполнении специальных методов перегонки. Так, для разделения растворов, компоненты которых имеют близкие температуры кипения, широко применяется так называемая азеотропная перегонка. Принцип ее состоит в том, что в разделяемый перегонкой раствор вводят вещество, образующее с одним из компонентов азеотропную смесь с минимальной температурой кипения. В результате один компонент разделяемого раствора получается в чистом виде, а другой — в виде азеотропной смеси с третьим веществом, введенным специально. Например, при разделении м- и п-ксилолов (4ип = 139,1 и 138,35 °С) в разделяемый раствор вводят метанол, который образует с и-ксилолом азеотропную смесь с ип = 64,0 °С. При перегонке такой системы с дистиллятом уходит азеотропная смесь п-ксилола с метанолом, а кубовый остаток представляет собой практически чистый м-кся-лол. Для отделения п-ксилола от метанола в данном случае используют обычную водную отмывку, так как метанол хорошо растворяется в воде. [c.223]

    Осушение, т. е. удаление следов влаги (или какого-либо другого растворителя) можно производить физическими методами, обычно используемыми для разделения и очистки органических веществ (вымораживание, экстракция, высаливание, фракционная и азеотропная перегонка, выпаривание, сублимация), а также с помощью осушающих реагентов, которые удаляют влагу вследствие адсорбции, образования [c.22]


    В нефтехимической промышленности используются такие новые методы, как адсорбция, экстракция растворителями, экстрактивная и азеотропная перегонка, экстрактивная кристаллизация, термическая диффузия и др. Абсорбция жидкими поглотителями успешно используется и для разделения сырья (легких нефтезаводских газов) и для очистки продуктов реакции (например, ацетилена). [c.143]

    Так, при разделении смеси парафиновых и ароматических углеводородов расход третьего компонента при азеотропной перегонке растет при повышении концентрации парафиновых углеводородов в сырье. [c.207]

    В связи с отмеченным при разделении смеси парафиновых и ароматических углеводородов азеотропная перегонка обычно применяется при сравнительно невысокой концентрации парафинов в исходном сырье, тогда как экстракционная перегонка осуществляется при сравнительно небольшой концентрации в сырье ароматических углеводородов. [c.207]

    При разделении парафиновых и ароматических углеводородов азеотропной перегонкой в качестве третьего компонента используются метиловый и этиловый спирты, метилэтилкетон и другие подобные соединения. При экстракционной перегонке для разделения тех же смесей может быть использована большая группа соединений. В табл. IV. 7 [94] приведены некоторые из этих соединений и данные по величине коэффициентов относительной летучести при отделении толуола от парафиновых и нафтеновых углеводородов, кипяш их в пределах 99—113°. [c.208]

    В промышленности при разделении парафиновых и ароматических углеводородов большое распространение получил фенол, а при отделении бутанов от бутиленов — фурфурол. При получении абсолютного этилового спирта азеотропной перегонкой, как известно, в качестве третьего компонента используется бензол. [c.208]

    ПРИМЕНЕНИЕ АЗЕОТРОПНОЙ ПЕРЕГОНКИ ДЛЯ РАЗДЕЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.66]

    Применение азеотропной перегонки для разделения веществ 67 [c.67]

    Разделение некоторых смесей обычной перегонкой оказывается практически нецелесообразным или вследствие образования азеотропных систем (а = 1) или вследствие чрезвычайно низкого значения относительной летучести (а = 1,03- 1,10) в широком интервале концентраций. Разделение азеотропных систем невозможно без использования каких-либо специальных методов, позволяющ их обойти точку, соответствующую составу азеотропа. Этот вопрос подробнее рассмотрен дальше. Системы с весьма низкой относительной летучестью требуют для своего разделения чрезвычайно большого расхода тепла и охлаждающей среды кроме того, резко увеличиваются размеры фракционирующего оборудования. Для многочисленных смесей этого типа оказалось возможным изменить относительную летучесть исходных компонентов добавкой одного или нескольких дополнительных компонентов. Этот метод может быть подразделен на две группы процессов азеотропная перегонка и экстрактивная перегонка. [c.103]

    Для разделения или очистки углеводородов погредством азеотропной перегонки требуется введение в систему разделяющего агента (растворителя), дающего возможность удалить из системы один или несколько компонентов. Для этого образующаяся азеотропная смесь должна иметь температуру кипения, настолько отличающуюся от температур кипения других компонентов системы, чтобы можно было ее отгонять. Послс того, как будет произведена азеотропная перегонка, остается решить задачу удаления разделяющего агента. [c.124]

    Применение азеотропной перегонки. Селективный разделяющий агент определяется как вещество, образующее азеотропные смеси с ограниченным числом компонентов системы. Неселектииные разделяющие агенты образуют азеотропные смесн со всеми компонентами системы. При разделении путем азеотропной перегонки селективные разделяющие апшты применяются реже, чем неселективБые. Обычно разделяющий агент образует азеотропные смеси со всеми компонентами разделяемой смеси, температуры кипения которых близки к температуре кипения разделяющего агента. Это можно видеть из табл. 25, в которой дан перечень разделяющих агентов, применяющихся для разделения углеводородов. Метанол, например, образует азеотропные смеси с углеводородами, температура кипения которых ниже температуры кипения метанола на 70°, и с углеводородами, температура кипения которых выше температуры кипения метанола на 55°, а также со всеми углеводородами с промежуточной температурой кипения. Максимальное понижение температуры кипения получается в том случае, когда температура кипения разделяющего агента ра]ша температуре кипения вещества, подлежащего отделению [10]. Это показано иа рис. 23. [c.127]

    Процесс состоял из первичного разделения в колонне для азеотропной перегонки, регенерации аммиака в специальной установке, удаления диацетилена при помощи специальной системы и окончательного отделения бутадиена в перегонном кубе. Очищенный бутадиен получался в колонне для азеотропной перегонки в виде остатков с примесью небольшого Количества гомологов ацетилена. Другие углеводороды отгонялись в виде йзео-тропных смесей с аммиаком. При охлаждении погон азеотропной перегонки разделялся на две жидкие фазы, после чего фаза с большим содержанием аммиака поступала в виде орошения обратно в Колонну. Углеводородная фаза повторно перегонялась для получения оставшегося в ней аммиака. Если в исходном продукте находились пропаны, то при использовании этого метода восстановления разделяющего агента возникали трудности из-за высокой упругости пара пропанов. Другой метод восстановления разделяющего агента заключается в промывке отогнанного продукта водой. [c.133]

    Стереоизомеры олефинов С4—Се обычно разделяют азеотропной перегонкой с использованием эфиров и кетонов. При этом образуется азеотропная смесь с цис-томероы, имеющая максимальную температуру кипения. Применяется для этой цели также метод экстракции карбамидом. В последнее время для разделения структурных и стереоизомеров начали использовать адсорбционные методы, где сорбентами служат цеолиты СаА [44, 48], а также ка-тионзамещенные цеолиты типа X и V [48, 49]. [c.201]

    Азеотропная перегонка применяется для разделения узких фракций бензинов в тех случаях, когда перегонка в вакууме, судя по величинам упругостей паров данных углеводородов, не обещает хороших результатов. К пераздельпокинящей смеси угле-водорсдов прибавляют специальное вещество (из числа низкомолекулярных спиртов, кислот и др.), которое образует с одним из разделяемых углеводородов азеотроппую смесь и этим как бы освобождает второй углеводород. Образование азеотронных смесей вызывается отклонением свойств двух смешивающихся жидкостей от свойств идеальных растворов. Зависимость давления пара ог состава смеси в этом случае ие является линейной —кривая проходит через максимум или минимум. При максимуме давло ИЯ пара смесь кипит при более низкой температуре [c.81]

    Разделение смеси на компоненты путем ректификации затрудняется в системах, в которых компоненты в чистом состоянии обладз7от близкими давлениями насыщенного пара или в которых образуется азеотропная смесь. В таких случаях нередко применяют методы, называемые азеотропной перегонкой и экстракционной (экстрактивной) перегонкой. Они основаны на добавлении к системе из двух компонентов третьего, который обладает различной растворяющей способностью по отношению к основным компонентам системы и в соответствии с этим неодинаково изменяет летучесть последних. В качестве примера азеотропной перегонки можно привести обезвоживание этилового спирта путем перегонки при добавлении бензола, а в качестве экстракционной — разделение бутан-бутиленовой смеси путем перегонкн при добавлении водного раствора ацетона. [c.324]

    Согласно Хунсманну и Суммроку [39 ] при разделении тройной смеси вода—муравьиная кислота—уксусная кислота следует ожидать образования бинарного (В) высококипящего азеотропа 4ип = 107,65 °С, состоящего из 56,7% (мол.) муравьиной кислоты и 43,3% воды и тройного (Т) азеотропа (107,1 °С) состоящего из 39,3% (мол.) воды, 48,2% муравьиной кислоты и 12,5% уксусной кислоты. Весь интервал концентраций трехкомпонентной смеси можно разделить на четыре отдельных области перегонки (рис. 225). Смесь обезвоживают азеотропной перегонкой с одним из высших эфиров. [c.305]

    Обзор всех известных приемов азеотропной перегонки был бы слишком громоздким. Техническая литература, в том числе й патентная, по данному вопросу исключительно обширна. Уже приведенные примеры показывают, насколько велики возможности этого метода перегонки. Поэтому целесообразно указать лишь классы веществ, которые особенно выгодно разделять азеотропной перегонкой. Азеотропную перегонку широко применяют для обезвоживания органических веществ, таких как муравьиная кислота, уксусная кислота и пиридин, а также для выделения углеводородов из спиртов, очистки ароматических углеводородов, разделения моно- и диолефинов и т. д. Мэйр, Глазгов и Россини [41, 42], как и Берг [34], провели систематическое исследование процесса разделения углеводородов азеотропной ректификацией. [c.305]

    Основным преимуществом экст- рактивной перегонки перед азеотропной является меньший расход тепла, так как при экстрактивной перегонке не требуется испарять растворитель. Кроме того, для разделения одной и той же смеси экстрактивной перегонкой можно использовать различные растворители и регулировать процесс изменением количества вводимого растворителя. Азеотропную перегонку удобно применять при периодическом процессе, когда весь растворитель загружают в куб вместе со смесью. На установках непрерывного действия азеотропную перегонку целесообразно применять при невысоком содержании отгоняемого компонента в смеси, так как в этом случае расход тепла на испарение растворителя невелик. [c.710]

    При подготовке к выделению при помощи азеотропной перегонки зггле-водородов, содержащихся в любой фракции нефти, следует получить смеси углеводородов, хорошо разделенные путем систематической и эффективной перегонки на ряд фракций, кипящих при постоянной температуре. Это необходимо для того, чтобы не получать смесей углеводородов, в которых наряду с парафинами присутствуют низкокипящие циклопарафины, или смесей любых парафинов и нафтенов с низкокипящими ароматическими углеводородами. [c.246]

    Наличие таких смесей делает практически невозможным нормально достигаемое разделение при помощи азеотропной перегонки углеводородов, выкию аю-щих в тех же пределах. [c.246]

    Азеотропную перегонку этой смеси нужно проводить на колонке с хорошим погоноразделением (около 20 теоретических тарелок) или в две ступени сначала перегнать исходную смесь, а затем остаток первой разгонки с добавлением дополнительного количества уводителя (третьего компонента). О чистоте разделения можно судить по показателям преломления, которые очень различны для ароматических, неароматических углеводородов и метанола для толуола 1,4969 для бензина (деароматизирован-ного) в среднем 1,4000—1,4300 для метанола 1,3286. Характерна также высокая плотность ароматических углеводородов. [c.50]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]

    Клапанные тарелки (см. рис. 1.22, е) рекомендуется устанавливать в колоннах АВТ, ГФУ, АГФУ, установок четкой ректификации и азеотропной перегонки диаметром не менее 2,4 м. При больших колебаниях жидкостной и паровой нагрузок, как во времени, так и по высоте колонны, благодаря возможности изменять живое сечение. Их не рекомендуется применять для разделения загрязненных полимеризующихся жидкостей. Оптимальная область применения та же, что и у ситчатых тарелок [c.80]

    В системах с максимумом температуры кипения (рис. 17, в) кривые пара и жидкости совпадают в точке максимума М. Точка М соответствует составу азеотропной смеси. Разделение подобных систем па отдельные компоненты способом перегонки невозможно. Состав пара слева от точки М стремится к составу чистого компэ-пента А, а справа — к составу чистого компонента В. В обоих слу- чаях состав жидкости в колбе приближается к составу М с максимумом температуры кипения. Здесь также в чистом виде можно получить компонент, присутствующий в избытке по сравнению с составом азеотропной смеси. [c.73]

    В. Свентославскйм . В результате его работ стало возможным установит систематику азеотропов и создать научные основы разделения вещест с помощью азеотропной перегонки . [c.66]

    Затраты на разделение включают весьма многочисленные статьи. Помимо затрат на энергию, необходимо учитывать амортизацию требуемого оборудования, восполнение йотерь растворителя или адсорбента, расходы на эксплуатационный персонал, на ремонт и запасные части. Вследствие высокого совер-шества методов контактирования газа с жидкостью, легкости внутрицехового транспорта жидкостей но сравнению с твердыми материалами и высокой эффективности разделения наиболее дешевыми методами разделения являются методы, основанные на контакте газа и жидкой фазы, во всех случаях когда они применимы. Однако еслй для разделения с применением системы газ — жидкость необходим дорогостоящий растворитель, сложность процесса и затраты на него резко увеличиваютсй. В таких случаях может оказаться более целесообразным применение экстракции жидкости жидкостью. Часто она более экономична, чем экстрактивная или азеотропная перегонка. [c.50]


Смотреть страницы где упоминается термин Азеотропная перегонка для разделения: [c.437]    [c.96]    [c.13]    [c.50]    [c.264]    [c.393]    [c.69]   
Углеводороды нефти (1957) -- [ c.80 ]




ПОИСК







© 2025 chem21.info Реклама на сайте