Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция двуокись

    Вместе с сероводородом из потока газа может быть удалена также двуокись углерода изменяя продолжительность адсорбционного процесса, можно получить любую. заданную степень извлечения СО 2- В процессе совместной адсорбции газа от двуокиси углерода и сероводорода в первый период происходит полное удаление обоих компонентов, затем СО а вытесняется сероводородом. Содержание СО., в выходящем потоке газа резко возрастает, причем вследствие вытеснения оно превосходит содержание СО в исходном газе. В то же время количественно сорбируется сероводород. На основе десорбции газов осуществлено производство серы и твердой двуокиси углерода. [c.112]


    Потеря таллия с осадком обусловлена адсорбцией на основных сульфатах, гидроокисях, арсенатах и арсенитах железа и меди, причем степень адсорбции увеличивается с повышением pH и понижением температуры [200]. Раньше для окисления железа пользовались марганцовой рудой (пиролюзитом). Это нежелательно, так как двуокись марганца частично окисляет таллий, вызывая большие потери. [c.351]

    Для примера рассмотрим систему двуокись серы — вода (рис. 13). Двуокись серы из газовой фазы адсорбируется поверхностью воды. Адсорбция здесь определяется уравнением адсорбции Генри. Адсорбируясь, двуокись серы реагирует с водой. [c.40]

    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]

Рис. Х1-15 Изотермы адсорбции двуоки Рис. Х1-15 <a href="/info/3644">Изотермы адсорбции</a> двуоки
    Адсорбция на молекулярных ситах. Этот метод широко используется для выделения индивидуальных углеводородов и разделения газовых смесей. Его применяют и с целью выделения водорода из газов, содержащих углеводороды С — С5, окись и двуокись углерода, сероводород и пары воды. Ниже показана температура адсорбции и типы молекулярных сит при разделении различных газов [42]  [c.109]

    Для очистки водорода употребляются адсорбенты, поглощающие окись и двуокись углерода, водяные пары, углеводороды, сероводород, органические сернистые соединения [8]. Такая избирательная адсорбция основана на образовании поверхностных химических соединений или на капиллярной конденсации. Наибольшее значение для очистки водорода имеет адсорбция на цеолитах, размер пор которых соизмерим с размерами молекул. Через поры проходят, не задерживаясь, только молекулы, имеющие размер меньше размера пор цеолита более крупные молекулы остаются на их поверхности. Водород по сравнению с другими газами имеет наименьший размер молекул и на цеолитах не задерживается. На поглощение вещества цеолитом еще большее влияние, чем размер, может иметь форма молекулы, ненасыщенный характер молекул. [c.51]


    Как сернистый газ, так и двуокись углерода обладают квадрупольными моментами, и поэтому возникает вопрос о том, что в первую очередь определяет теплоту адсорбции — неполярные силы Ван-дер-Ваальса или электростатические силы. Активные центры для этих двух типов поверхностных сил не совпадают друг с другом (см. раздел V, 12). Участки, активные ПО отношению к силам Ван-дер-Ваальса, остаются неактивными в отношении электростатических эффектов и наоборот. [c.112]

    Для предотвращения вредного влияния избытка вводимых посторонних соединений на процесс электролиза их удаляют адсорбцией. В качестве адсорбентов используют активированный уголь и ионообменные смолы, глины, гидроокиси железа и алюминия, двуокись марганца. [c.241]

    Вместе с тем некоторое количество ионов марганца оказывается полезным, так как осаждающаяся на аноде двуокись марганца защищает свинцовые аноды от разрушения и адсорбция понижает содержание в растворе некоторых примесей (Аз, 8Ь, Си). [c.451]

    Это число равно трем и не зависит от условий адсорбции. Так как конечным продуктом окисления адсорбированного метанола является двуокись углерода, то отсюда следует, что адсорбированные частицы имеют средний состав НСО. [c.135]

    Методы сорбции и ионного обмена. Активная двуокись марганца сорбирует галлий, так же как и железо (III), из сернокислых растворов алюминий же практически не сорбируется. Оптимальная кислотность раствора отвечает pH 3. При увеличении кислотности адсорбция галлия падает, при повышении pH начинает осаждаться гидроокись галлия. При расходе 25—50 г/л двуокиси марганца можно сорбировать 90—95% галлия из производственных растворов. Десорбция галлия происходит при обработке марганцового осадка 12%-ным раствором щелочи [3]. [c.253]

    Агрегаты, кроме координационно связанной воды, удерживают определенное число ее молекул за счет физической адсорбции. При старении агрегаты укрупняются, теряют воду и постепенно превращаются в аморфную двуокись. [c.283]

    Адсорбция этой смеси осуществляется на активированном угле марки АГ, а в качестве газа-носителя применяется двуокись углерода, получаемая в аппарате Киппа. Газ-носитель вытесняет из колонки компоненты анализируемой смеси в следующем порядке водород, воздух, окись углерода и метан. В приемной газовой бюретке, наполненной раствором щелочи, двуокись углерода поглощается, что дает возможность замерять объемы газов, выходящих последовательно из колонки. Зная объем каждого компонента, порядок и время его выделения, строят ступенчатую хроматограмму, по которой и устанавливают количественный состав анализируемой газовой смеси в объемных процентах. [c.47]

    Очистка азота, применяемого в качестве защитной атмосферы. Инертный газ Д.Т1Я создания защитной атмосферы можно получать, связывая кислород воздуха сжиганием углеводородного топлива в этом воздухе. При процессе сгорания неизбежно образуется значительное количество двуокиси углерода и воды. Для многих областей применения, когда требуется практически чистый азот, эти компоненты необходимо удалить. Так, чистый азот может использоваться как инертный газ в химической и нефтеперерабатывающей промышленности для создания защитной подушки или для операции продувки. Чтобы удалить двуокись углерода и воду из такого генераторного азота, можно применить промывку моноэтаноламином с последующей осушкой твердыми осушителями.- Но предпочтительно удалять обе примеси одновременно адсорбцией на молекулярных ситах типа 5А. [c.88]

    Для проведения классической хроматографии по методу Цвета активированный уголь мало пригоден, так как при этом нельзя следить за передвижением адсорбированных полос. Другой недостаток активированного угля состоит в том, что при его использовании сравнительно редко удается достигнуть достаточно хорошего разделения веществ, так как процесс адсорбции на угле выражается изотермой типа изотермы Фрейндлиха (см. стр. 323). Отрицательным качеством активированного угля является также то, что адсорбция на нем зачастую необратима. Наконец, многие органические вещества легко окисляются кислородом, который активированный уголь поглотил из воздуха. Это окисление особенно легко протекает в том случае, когда оно катализируется следами тяжелых металлов. Каталитическое действие последних можно устранить обработкой угля небольшим количеством цианистого водорода. Окисления кислородом, адсорбированным на поверхности активированного угля, можно избежать путем предварительного нагрева активированного угля в инертной атмосфере и удаления выделяющихся при этом газов. Обработанный таким образом уголь следует предохранять от контакта с воздухом, т. е. при работе с ним все операции необходимо проводить в инертной атмосфере (азот, двуокись углерода и т. п.). [c.349]


    Технологическая схема. Технология адсорбционного извлечения жидких парафинов включает две основные стадии I) адсорбцию — селективное поглощение цеолитом н-алканов 2) десорбцию — удаление из слоя цеолита поглощенных углеводородов. На промышленных установках чаще всего применяется вытеснительная десорбция через слой цеолита пропускают вещество, которое способно, проникнув в пары цеолита, адсорбироваться в них и вытеснить парафины в качестве вытеснителя используются низкомолекулярные н-ал-каны и алкены, двуокись углерода, аммиак и др. [c.142]

    Сущность одной из них состоит в том, что конвертированный газ направляется на разделение методом короткоцикловой адсорбции на молекулярных ситах [37]. В результате получают отдельно окись и двуокись углерода и технический водород. Применение такой схемы предпочтительно, когда наряду с водородом требуется получить окись углерода. К недостаткам ее следует отнести сложность управления, снижение выхода водорода, а также то, что водород получают при давлении, близком к атмосферному (так как десорбция осуществляется сбросом давления). Перечисленные недостатки отсутствуют при получении водорода по схеме III, которая заключается в поглощении углекислоты окисью кальция на стадии конверсии углеродов. Поглощение углекислоты позволяет сдвинуть равновесие реакций (5) и (8) вправо, что дает возможность получить конвертированный газ с малым содержанием окислов углерода и направить его на стадию метанирования, минуя другие стадии. Другим преимуществом этой схемы является более высокая равновесная степень превращения метана, достигаемая вследствие вывода углекислоты из зоны реакции [38]. [c.249]

    Из 4 цеолитов группы шабазита левинит изучен меньше других. Хотя авторы работы [97] предложили модель его алюмосиликатного каркаса, полное рентгеноструктурное исследование леви-пита пока пе выполнено. Как предполагают, структура каркаса построена из 6-членных колец, расположенных в последовательности из 9 слоев (см. табл. 2.6). В результате получается каркас, изображенный на рис. 2.45. Результаты определения величины физической адсорбции показали, что наиболее крупными молекулами, которые адсорбируются левинитом, являются ОгИ N5 с диаметрами около 3,6 А. Легко адсорбируется двуокись углерода. [c.88]

    Цеолит NaA (4А) не адсорбирует углеводороды, начиная с пропана и выше, позтому его используют для предварительной очистки природного газа. Перед сжижением газа из него необходимо удалить такие примеси, как вода и двуокись углерода. В этом важном процессе широко применяется цеолит NaA, обладающий высокой селективностью при адсорбции воды и СО2- Если эти при- [c.719]

    При таком способе десорбции обеспечивается полнота удаления адсорбата и достигается высокая активность адсорбента в стадип разделения. В качестве десорбента применяют нормальные парафины, нормальные олефины [54, 551. различные углеводородные фракции [56, 57]. Кроме углеводородов, для десорбции используют вещества, обладающие значительной дополнительной специфической энергией адсорбции двуокись углерода, аммиак [58], сероводород [59], вода [11]. Последние два компонента не нашли широкого применения в промышленности сероводород вследствие своей агрессивности, а вода вследствие разрушающего действия на структуру цеолита в условиях высоких температур и высоких концентраций водяного нара [60]. В качестве десорбента могут быть применены также ЗОз, СНзМНа, СаН С , СгНзР [61]. [c.449]

    Гидрогенизация сероуглерода крекинг сероуглерода может происходить с образованием сернистого никеля и углерода при 350° образование углерода устраняется применением избытка водорода сероуглерод сильно адсорбируется на N 382, но конверсия происходит медленно в тех же условиях на N13 адсорбированное количество равно небольшой величине при низкой температуре адсорбция сероуглерода на N 8 значительна и обра- тима (вандерваальсовская адсорбция) двуокись серы не адсорбируется на N 8 (выше 300°, активиро- ванная адсорбция) на N 382 активированная адсорбция происходит приблизительно при 200° сероуглерод адсорбируется, но немного при всех температурах опытов [c.340]

    Каталитический риформинг дает как экономическую, так и техническую возможность получать бензол, толуол, ксилолы и этилбензол из нефтяного сырья. Из реформата эти углеводороды извлекаются либо путем селективной экстракции (экстрагент-смеси воды с диэтиленгликолем или же жидкая двуокись серы), либо путем экстрактивной или азеотропной дистилляции, либо путем адсорбции [343—345]. В газойлях каталитического крекинга содержатся значительные количества нафталина и метилнафталинов, однако основным поставп] иком этих углеводородов пока по-прежнему остается коксохимическая промышленность. [c.588]

    Химические реакции на поверхности раздела жидкость — газ [4, 13]. Многие газы, такие, как аммиак, хлористый водород, двуокись серы, двуокись углерода и др., вступая в контакт с поверхностью воды и адсорбируясь ею, химически реагируют с водой. При этом образуются соединения, диссоциирующие на ионы. Подобного рода процессы протекают в несколько стадий. Сначала происходит адсорбция газа поверхностью воды, подчиняюи аяся уравнению (18), затем идет химическая реакция, далее образующееся новое вещество диссоциирует на ионы. [c.40]

    Адсорбция первых порций кислорода на активированном угле сопровождается выделением очень большого количества тепла. Последующие порции адсорбируются с меньшим выделением тепла. При откачке угля, насыщенного кислородом, сначала десорбируется кислород, а затем двуокись и окись углерода, что свидетельствует об окислении угля первыми порциями сорбирующегося кислорода (химическая адсорбция). [c.174]

    Берман и Смола изучали процесс адсорбции паров ртути углеродными адсорбентами без применения химических реагентов. Очистке подвергались газы переработки сульфидных ртутных руд ртутного комбината. В технологических газах, кроме соединений ртутп, представленных в виде металлической, окисной в сульфидной форм, содержатся пары воды, окислы серы, кислород, двуокись углерода и азот. [c.482]

    Очистка редких газов от некоторых сопровождающих примесей (кислород, азот, двуокись углерода, водяные пары) может быть проведена химическими методами и не вызывает затруднений. Вазделеаие смеси редких газов друг от друга в оановном осуществляется с применением физических методов адсорбции и фракционированной конденсации и дистилляции. При этом а каждом отдельном случае необходимо учитывать относительные количества индивидуальных газов в смеси и другие условия. Вследств-ие этого существующие методы очистки и разделения редких газов в основном разработаны для частных случаев в других случая , требуется изменение методики работы.. [c.294]

    Так, например, по принципу одновременного анализа смеси N2, О2 и СОз могут быть разделены гораздо лучше и за более короткое время, чем при проведении двух последовательных, протекающих независимо друг от друга анализов на двух колонках, содержащих силикагель, активированный уголь илп молекулярные сита. При раздельных анализах N2 и О2 разделяются на силикагеле или активированном угле лишь неполно, а колонка с молекулярными ситами хотя п обеспечивает полное разделение, по адсорбирует двуокись углерода. Одновременный анализ смеси на расположенных параллельно колонках, напротив, позволяет полностью разделять три компонента за время всего лишь 9 мин. При этом самописец регистрирует N2 и О2 одним пиком, а также в виде отдельных пиков. Кроме того, по причине частичной адсорбции детектор определяет лишг. часть СО2. [c.229]

    В 1874 г. журнал Русского физико-химического общества сообщил о работах Мельсана, который установил, что древесный уголь поглощает равную ему массу хлора, причем в процессе поглощения температура в адсорбенте повышается на 30 °С. Была продемонстрирована также способность угля поглощать такие газы, как сероводород, двуокись серы, аммиак, бромистый водород, хлористый этил и синильная кислота. Мельсан отметил, что летучие жидкости (спирт), поглощенные углем, не выделяются из него при температурах их кипения. Таким образом, зародилась идея об удерживающей способности адсорбента в цикле адсорбция — десорбция. [c.15]

    Практически все промышленные активные угли содержат в том или ином количестве зольные примеси. Зола и ее ингредиенты (минеральные примеси) являются катализаторами многих нежелательных реакций, которые могут протекать в адсорбере. Ниже будет показано, что на зольных углях при адсорбции сероводорода в присутствии воздуха стимулируется образование серной кислоты. При повышенных температурах, характерных для стадии десорбции (например, 250 ""С), на зольных углях интенсивно протекает разложение нестойких адсорбатов. Так, значительная часть этилового спирта при 250 °С превращается в ацетальдегид и двуокись углерода. Содержание ацетальдегида в этанольном конденсате после стадии десорбцш из малозольного угля составляет0,025%, а из угля, содержащего 30% золы, 6,2%. [c.91]

    На рис. 10,15 показана установка [66] для изучения процесса адсорбции двуокиси углерода из потока воздуха при атмосферном давлении. Основным узлом установки является стеклянный адсорбер 3, имеющий штуцеры для отбора газа на анализ (через гребенку 4) и ввода термопар. Температурный режим определяется многоточечным потенциометрогм 1. Нахрев адсорбера для регенерации адсорбента производится с помощью электрообмотки из нихро-мовой проволоки. Поток газа-носителя через ротаметр 7 поступает в смеситель 5, куда из баллона подается двуокись углерода. Ее количество устанавливается по реометру 8. Смесь газа-носителя (воздуха), нагнетаемого воздуходувкой 9, и двуокиси углерода поступает в адсорбер, заполненный гранулами исследуемого сорбента. Через штуцера, начиная с нижнего, газ отводится на анализ, который в данном случае производится инфракрасным спектроскопом IRGA. В схеме установки предусмотрена также колонка 6 для предварительной осушки воздуха с помощью силикагеля. Требуемая температура опыта поддерживается с помощью термостата 2. [c.236]

    При выборе типа адсорбента для выделения ацетилена из промышленных газовых смесей необходимо учитывать совместную адсорбцию других компонентов и в первую очередь двуокиси углерода. Молекулы как ацетилена, так и двуокиси углерода обладают значительными квадрупольными моментами, а следовательно, и дополнительными специфическими составляющими энергии адсорбции. При пропуске смеси ацетилена и двуокиси углерода через слой шарикового силикагеля с добавкой глинозема ШГСГ (удельная поверхность 400 м /г) первые порции выходящего газа содержали только хуже адсорбирующийся компонент — двуокись углерода. Результаты ана.т1иза адсорбирован-ной фазы после установления равновесия приведены в табл. 15-1 [8]. [c.307]

    Температурный уровень оказывает решающее влияние на избирательность поглощения сернистого ангидрида в присутствии двуокиси углерода. Как показывают кривые адсорбционного равновесия (рис. 17,23), при низких температурах из смеси двуокись углерода — сернистый ангидрид мордени-том преимущественно поглощается первая. С повы-шением температуры происходит инверсия избира- о тельности, из смеси начинает избирательно поглощаться сернистый ангидрид, причем ири 100 °С коэффициент разделения близок к 9. Одновременно при высоких температурах в большей мере подавляется совместная адсорбция азота и кислорода. [c.365]

    Метод сероочистки цеолитами применим не только к сишженным углеводородам, но и к более тяжелым нефтяным продуктам газовым бензинам, лигроинам и т. п. В пропане, наряду с сероводородом, присутствуют метилмеркаптаны, в бутане— метнлмеркаптан и этилмеркаптан, в бензинах и лигроинах — различные сернистые соединения. При очистке высокомолекулярных фракций следует иметь в виду, что по избирательности адсорбции поглощаемые компоненты в порядке убывания адсорбционного сродства образуют ряд вода — меркаптаны — сероводород — двуокись углерода [67]. [c.423]

    Принципиальная схема процесса представлена на рнс. 20,34. Углеводородное сырье нагревают в теплообменниках 2, а затем в печи 1 до 300—500 °С, после чего вводят сверху, в вертикальный адсорбер 3, заполненный цеолитом СаА с частицами размером 1,6—6,4 мм. Процесс депарафинизации может осуществляться при давлении (1—10)-105 Па (1 — 10 кгс/см ). Для повышения скорости адсорбции и соответственно степени извлечения нормальных парафинов на верх адсорбера подают нагретый инертный газ (азот, водород, двуокись углерода) или легкие углеводороды (метан, этан, пропан). При выборе тегаературиого режима учитывают, что выше 450 °С начинается крекинг углеводородов. Соотношение высоты адсорбера к диаметру составляет 10 1. Чтобы уменьшить стенание сырья по стенкам адсорбера, внутри адсорбера вмонтированы специальные конусообразные элементы. [c.462]

    Сущность работы. Разделение многокомпонентной смеси методом адсорбционной хроматографии из одной пробы связано с трудностями вследствие большого различия в адсорбционных свойствах Отдельных компонентов разделяемой смеси. Лучшее разделение может быть достигнуто, если в процессе хроматографирования десорбцию различных компонентов смеси производить при разных температурах. Этот принцип и применен в настоящей работе. Адсорбция всех компонентов смеси на силикагеле производится при низкой температуре. При этой же температуре происходит десорбция кислорода, азота, двуокиси азота и окиси углерода. Наиболее трудно десорбируемые газы закись азота двуокись углерода десорбйру-ются при комнатной температуре. Таким путем удается полностью разделить смесь, состоящую из шести компонентов. [c.194]

Рис. 8.23. Теплоты адсорбции на природном шабазите [65]. г — аргон 2 — кислород . 3 — аяот 4 — окись углерода J — двуокись углерода. Рис. 8.23. <a href="/info/3647">Теплоты адсорбции</a> на природном шабазите [65]. г — аргон 2 — кислород . 3 — аяот 4 — <a href="/info/11665">окись углерода</a> J — двуокись углерода.
    По данным [6], величина адсорбции ртути из воздушной среды составляет (вес.%) активированный уголь —0,04—0,06 гопкалит (50% активной МпОа, 30% СиО, 15% СоО, 5% AgaO) — 7,2 окись кобальта —1,65 двуокись марганца —41,8. [c.71]

    Предполагается суш,ествование нескольких соединений серебра с кислородом, в которых серебро проявляет валентность от 1 доЗ. Лучше всего изучены получаемые химическим и электрохимическим путем окись, двуокись и трехокись серебра (АёаО, AgO п А 2 0д). Кислородные соединения серебра неустойчивы, однако существует склонность серебра к значительной адсорбции и растворению кислорода при сравнительно невысоких температурах. В некоторых условиях серебро ведет себя как переходный металл с незаполненным -подуровнем, приобретая способность к хемо-сорбцин углеводородов, например этилена. Это происходит в присутствии кислорода, который связывает з-электроны серебра и создает возможность перехода части с/-электронов на уровни 3 и р. [c.262]


Смотреть страницы где упоминается термин Адсорбция двуокись: [c.29]    [c.144]    [c.292]    [c.47]    [c.538]    [c.137]    [c.115]    [c.357]    [c.365]   
Газовая хроматография в практике (1964) -- [ c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция гексахлорацетона и двуокиси углерода

Адсорбция двуокиси серы

Адсорбция двуокиси углерода на железе

Адсорбция на активированном угле . Окислительные свойства двуокиси углерода

Адсорбция окиси углерода, двуокиси углерода и окиси азота на металлах и окислах металлов

Двуокись селена адсорбция

Двуокись углерода адсорбция

Двуокись углерода адсорбция на активированном угле

Двуокись углерода адсорбция на двуокиси титана

Двуокись углерода адсорбция силикагелем при кой температуре

Двуокись углерода адсорбция силикагелем при микой температуре

Двуокись углерода теплота адсорбции

Железо, адсорбция газов растворимость в двуокиси титан

Изотерма адсорбции двуокиси углерода на угле Норит

Изотермы адсорбции двуокиси углерода

Исследование активированной адсорбции кислорода на гопкалите и двуокиси марганца

Кремния двуокись адсорбция на поверхности

Кремния двуокись, адсорбция следов инертных газов, ссылки

Никель адсорбция двуокиси кремния

Очистка воздуха от двуокиси углерода методом низкотемпературной адсорбции

Статика и динамика процесса адсорбции двуокиси углерода

Теплота адсорбции воды и двуокиси углерода

Титан, адсорбция газов двуокись, адсорбция

Титана двуокись, адсорбция

Титана двуокись, адсорбция азота

Титана двуокись, адсорбция кислорода

Тонкая очистка от двуокиси углерода методом адсорбции

Углерода двуокись, давление насыщенных паров над твердой фазой десорбция из адсорбента изотермы адсорбции

Цирконий, адсорбция газов двуокись, каталитическая активность



© 2025 chem21.info Реклама на сайте