Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий, адсорбция газов поверхность

    Многочисленные источники возможного загрязнения газов можно разделить на две основные группы взаимодействие газов с поверхностью твердых тел, ограничивающих объем газа, и негерметичность системы. При соприкосновении газа с поверхностью твердого тела имеют место два противоположных процесса — поглощение газа (сорбция, адсорбция) и газовыделение (десорбция с поверхности, диффузия газа из объема твердого тела, сквозная диффузия из окружающей среды). Так, например, наблюдается заметная диффузия Не, Нг, Ne, Аг, Ог через стекло. Скорость ее зависит от перепада давления. Водород хорошо диффундирует через нагретые палладий, сталь. Легко проницаемы для газов полимеры. Поэтому для снижения роли различного рода загрязняющих процессов необходимо правильно выбирать материалы для систем хранения газов и использовать необходимые в каждом конкретном случае приемы обработки поверхности, контактирующей с газом (шлифовка, полировка, покрытия различного рода, термообработка и т.п.). [c.918]


    История развития термодинамики адсорбционных процессов и ее систематическое построение для адсорбционных процессов разного рода (адсорбция газов, паров, жидкостей и растворов) на жидких и на твердых поверхностях подробно изложены в работах Киселева [1, 2, 3, 4, 5j Между изменением свободной энергии (работой адсорбции А) и изменением поверхностного натяжения Oj—ff при адсорбции чистого газа установлено следующее соотношение  [c.713]

    При адсорбции газов и паров на поверхности многих адсорбентов образуется полимолекулярный адсорбционный слой. В этих случаях теория Ленгмюра неприменима и для различного рода расчетов пользуются теориями БЭТ, Поляни, Дубинина и др. [c.28]

    Зависимость Q от Л в в рассматриваемом нами случае обусловлена тем, что общее число адсорбционных центров N не остается постоянным, а возрастает по мере увеличения Л в. Адсорбционные центры на поверхности кристалла рассматриваются здесь как своего рода плоский газ, концентрация которого возрастает вместе с возрастанием Л в и изменение энергии которого учитывается при вычислении дифференциальной теплоты адсорбции. [c.376]

    Метод термодесорбции, применяемый в последнее десятилетие для исследования каталитических систем, дает ценную информацию о состоянии адсорбированных частиц на поверхности катализаторов. Результаты, полученные этим методом, позволили установить существование различных типов активных центров при адсорбции газов [1— 8], органических веществ [9—11], воды [11—14] на поверхности различного рода катализаторов, рассчитать энергию активации десорбции адсорбированных частиц, порядок десорбции и уточнить представления о характере неоднородности поверхности [11, 15]. [c.404]

    Ларсон [Л. 69] определял величину достижимого перегрева воды при ее контакте с различного рода металлами, при этом контактирующая поверхность имела форму шара диаметром 3,18 мм. Эти шарики не были греющими поверхностями, они нагревались за счет тепла, получаемого от воды, сама же вода подогревалась за счет излучения электрических Нагревателей. При атмосферном давлении достигалась температура 116°С при наличии металлических стимуляторов кипения, а в стеклянной трубе без каких-либо дополнительных устройств была получена температура жидкости 142° С. В случае поверхностей, обычно смачиваемых водой ( <90°), величина ее перегрева равна указанным выше значениям. На некоторых поверхностях, таких как алюминий, цинк, магний и т. д., образование пузырей происходит при температуре поверхности, значительно меньшей 100° С. Это явление связано частично с адсорбцией газа на поверхности этих металлов, а возможно, и с наличием химической реакции металла с водой, в результате которой происходит выделение газа, что в свою очередь ведет к образованию пузырей при пониженной температуре. Очевидно следующее вещества, химически инертные или обладающие хорошей сопротивляемостью коррозии, такие, как стекло, кремний и даже нержавеющая сталь, дают большую величину перегрева. [c.225]


    Необходимо отметить особый вид поглощения газа, которое приводит к проникновению его также внутрь твердого тела, но которое все же следует рассматривать как адсорбцию. Такое поглощение происходит путем диффузии адсорбируемого газа с поверхности внутрь твердого тела по граням кристаллов, причем диффундирующий газ не заходит внутрь кристаллической решетки, а образует на гранях кристаллов лишь одномолекулярную пленку. Такого рода поглощение газа аналогично адсорбции пористыми телами. [c.158]

    Есть определённые доказательства в пользу того, что частично диссоциированные хлориды образуют более прочные связи с поверхностью оксида алюминия, чем можно было бы ожидать в результате простой физической адсорбции. Скорость формирования таких связей низка и ощутимых значений она достигает только на адсорбентах, проработавших несколько лет. При таком роде взаимодействия H I нельзя удалить продувкой горячим газом, хотя при пропарке хлороводород будет всё-таки удалён с поверхности оксида алюминия. Таким образом, адсорбция на оксиде алюминия является обратимой. [c.9]

    Изотермы адсорбции растворенных веществ из раствора в общем по своему виду аналогичны адсорбционным изотермам для газов, и, как было показано, для разбавленных растворов эти изотермы достаточно хорошо подчиняются уравнению Фрейндлиха или уравнению Ленгмюра, если в них подставить равновесную концентрацию С растворенного вещества в растворе. Однако адсорбция из растворов по сравнению с газовой адсорбцией оказывается значительно более сложным явлением прежде всего потому, что наряду с адсорбцией растворенного вещества (адсорбата) на поверхности адсорбента может происходить и адсорбция самого растворителя. В результате этого между адсорбатом и растворителем происходит конкуренция за обладание адсорбентом и чем хуже адсорбируется растворитель, тем лучше адсорбируется растворенное вещество из раствора (адсорбат). Поэтому различного рода искажения обычной изотермы адсорбции происходят довольно часто. [c.276]

    Другой канал стока кислотных компонентов образуют сухое осаждение и сухое поглощение подстилающей поверхностью. Первый из этих процессов реализуется в случае достаточно крупных частиц с диаметром более 10 мкм. Однако, если говорить об аэрозолях, то основная масса кислот и сульфатов атмосферы содержится в частицах значительно меньших размеров, как правило, с диаметром менее 1 мкм. Для них, как и для газов, гравитационное осаждение не играет роли в качестве стока на подстилающую поверхность. В то же время и молекулы газов, и частицы при контакте с элементами подстилающей поверхности могут быть захвачены и необратимо выведены из атмосферы благодаря различного рода сорбционным процессам адсорбции, абсорбции или хемосорбции. Интенсивность такого стока кислотных компонентов зависит от конкретных свойств подстилающей поверхности. [c.215]

    Фазовое превращение I рода, соответствующее конденсации двумерного газа в двумерную жидкость, характеризуется вертикальным участком на изотерме адсорбции, т. е. конечным скачком адсорбции при постоянном относительном давлении. Такие фазовые превращения совсем подавно были открыты в лаборатории Гаркинса при изучении адсорбции п-гептана на серебре и графите и затем более подробно были изучены на примере адсорбции и-гептана на кристаллическом образце РегОз с удельной поверхностью 7,46 л 2/г. Адсорбция и-гептана на была тщатель- [c.744]

    Особый интерес представляет вопрос об изменении теплоты адсорбции с заполнением. Эти кривые дифференциальных теплот лучше получать измерением интегральных теплот при прибавлении очень малых порций газа, чем путем наблюдения за теплом, освобождающимся в результате адсорбции больших количеств газа в течение более продолжительных периодов времени. Во всех исследованиях такого рода очень существенным обстоятельством является, конечно, определение величины поверхности. Наиболее удовлетворительным методом является измерение физической адсорбции не рекомендуется определять площадь поверхности по хемосорбции газов. Более подробные сведения читатель найдет в гл. 4. [c.492]

    В присутствии инертных газов [41 ]. Некоторые интересные сведения о расположении хемосорбированных атомов на поверхностях дают измерения дифракции электронов [42]. Исследования такого рода позволяют, по-видимому, определить характер процесса заполнения поверхности, т. е. обнаружить, заполняют ли первые порции хемосорбированного газа места на поверхности беспорядочно или же адсорбируются с определенной преимущественной ориентацией например, при 25%-ном покрытии поверхности адсорбированные атомы могут образовать симметричную поверхностную решетку. Большое значение имеет преимущественное покрытие определенных граней при хемосорбции, как это было обнаружено новым методом с помощью электронного микропроектора [43]. Эти данные дополнительно подтверждают наличие биографической неоднородности и тем самым объясняют появление в некоторых случаях ступенек на кривых, выражающих зависимость теплоты адсорбции от заполнения [44]. [c.493]


    Для полимолекулярной адсорбции типичными являются изотермы, вид которых схематически изображен на рис. 18. Обычно точки излома таких изотерм связывают с конденсацией решеточного газа в первом, втором и т. д. монослоях адсорбата на поверхности адсорбента. Уравнения изотерм такого рода тоже могут быть выведены в рамках решеточной теории. При этом, однако, не удается получить количественных предсказаний, что связано прежде всего с весьма условным характером, который приобретает решеточная модель при изучении многослойной адсорбции. Так, [c.146]

    Технологическое оформление процессов поверхностного разделения указанного типа может быть самым разнообразным. Для примера упомянем процессы пенного разделения, в которых при пропускании через раствор пузырьков инертного газа образуется пена, непрерывно удаляемая из системы. Эффект разделения в растворе достигается при этом за счет различной способности молекул к адсорбции на границе жидкость — газ. Процессы подобного рода, внешне похожие на флотацию, иногда называют флотацией молекул . Другой пример дают процессы адсорбционного разделения веществ. В этом случае многокомпонентную смесь приводят в соприкосновение с некоторым количеством адсорбента после установления адсорбционного равновесия адсорбент вместе с адсорбционным слоем удаляют, вносят новую порцию адсорбента и т. д. В результате состав смеси меняется. На практике такой процесс обычно является непрерывным и реализуется он, например, при стекании порции раствора по свежей поверхности адсорбента, при прохождении газовой смеси через адсорбционную колонку и т. п. В общем случае можно представить различные открытые процессы поверхностного разделения жидких или газообразных смесей, отличающиеся по природе отделяемого поверхностного слоя. [c.23]

    A. Физическую адсорбцию, при которой молекула адсорбируемого вещества связывается с поверхностью силами Ван-дер-Ваальса. Типичным примером является адсорбция некоторых газов и паров при низких температурах. Адсорбция такого рода полностью обратима и адсорбционное равновесие достигается весьма быстро. [c.214]

    Представляет большой интерес сопоставление газохроматографических данных, полученных при простейшем допущении о практическом достижении адсорбционного равновесия с данными, полученными статическими методами. Некоторые сопоставления такого рода уже были сделаны выше (см. рис. 24 и табл. 2). Они показывают, что на однородных поверхностях оба метода дают близкие результаты. Особенно хорошие результаты получены для однородного непористого и неспецифического адсорбента — графитированной термической сажи [59, 62]. Также близкие к статическим результаты получаются при применении газохроматографического метода к изучению адсорбции относительно слабо адсорбирующихся благородных газов и низших углеводородов на геометрически весьма однородных пористых кристаллах цеолитов (см. рис. 24). Удовлетворительные результаты были получены также и на неоднородных поверхностях (см., например, рис. 51), однако лишь для сравнительно слабо адсорбирующихся веществ [57]. Худшие результаты получаются обычно для сравнительно сильно адсорбирующихся веществ на адсорбентах с неоднородной поверхностью. Так, было найдено [79], что полученные газохроматографическим методом теплоты адсорбции нормальных алканов Се—Се и бензола на силикагелях с порами размером от 100 до 1000 А на 15—20% ниже измеренных в калориметре при тех же заполнениях той же поверхности. [c.122]

    Явление адсорбции из растворов было открыто и впервые изучено Т. Е. Ловицем (1785 г.). Изотермы адсорбции растворенных веществ из раствора в общем аналогичны адсорбционным изотермам для газов, и к ним тоже применимы уравнения (а) и (б), если в них вместо давления р газа подставить концентрацию с растворенного вещества в растворе. Однако адсорбция из растворов по сравнению с газовой адсорбцией оказывается значительно более сложным явлением хотя бы уже потому, что на поверхности адсорбента может происходить наряду с адсорбцией растворенного вещества также и адсорбция растворителя. Вследствие этого здесь значительно чаще встречаются различного рода искажения обычного вида изотермы. [c.414]

    Химические реакции на поверхности раздела жидкость — газ [4, 13]. Многие газы, такие, как аммиак, хлористый водород, двуокись серы, двуокись углерода и др., вступая в контакт с поверхностью воды и адсорбируясь ею, химически реагируют с водой. При этом образуются соединения, диссоциирующие на ионы. Подобного рода процессы протекают в несколько стадий. Сначала происходит адсорбция газа поверхностью воды, подчиняюи аяся уравнению (18), затем идет химическая реакция, далее образующееся новое вещество диссоциирует на ионы. [c.40]

    Данные по адсорбции пропилена и кислорода на различных катализаторах, полученные методом последовательной адсорбции газов (табл. 33), оказались одинаковыми. Для сравнения изучали адсорбцию каждого газа в отдельности (индивидуальная адсорбция). В результате адсорбции на поверхности устанавливается определенное соотношение кислорода и олефина, от которого зависит состав образовавшихся поверхностных соединений, представляющих собой кисло род-углеводо-родные комплексы. На катализаторах глубокого окисления адсорбируется значительно больше кислорода, чем углеводорода, и наоборот, поверхностные соединения, образующиеся на селективных катализаторах, обогащены молекулами олефина. Аналнз адсорбции смесей углеводорода с кислородом показал [141], что при указанных в табл. 33 соотношениях наблюдаются оптимальные условия образования кислород -углево дородных комплексов— активных форм, ведущих различные стадии процесса ойисления. [c.53]

    Метод вполне универсален, он может быть применен к любому пористому или мелкодиспергирован-ному адсорбенту. Универсальность метода может быть проиллюстрирована табл. 44, в которой приведены величины удельных поверхностей для 45 адсорбентов. Данные для адсорбентов от № 1 до № 30 были взяты у Брунауера и Эммета[ ], для Л гЗ —34— у Смита, Торнхилла и Брэя[ ], а для 35—45 — у Эммета и де Витта [ . Резу.льтаты таблицы раскрывают поразительный факт, что метод адсорбции газов применим к определению удельных поверхностей, величины которых могут изменяться в 100000 ра , как, например, от поверхности невосстановленного РодО до поверхности активного угля Оагсо О. [c.403]

    Пикеринг и Экстром напыляли металлические катализаторы типа родия или никеля на зеркальные поверхности ячейки Уайта, позволяющей получать многократные отражения (20— 40 раз) [68]. Спектры регистрировались до и после адсорбции газов. Сравнение обеих серий кривых проводилось методом, описанным Кингом с сотрудниками [69]. При этом методе применялся детектор, выход которого был связан с преобразователем, позволяющим осуществить запись на перфорированных карточках. Для получения конечных графиков была использована электронная счетная мащина 1ВМ. Описанным методом можно изучать полосы, полученные при поглощении от 0,03 до [c.70]

    Косвенные методы определения дисперсности делятся на две группы. К первой относится определение интенсивности, укрыви-стости и маслоемкости первого рода, увеличивающихся с повышением степени дисперсности пигментов [5]. Ко второй — определение суммарной удельной поверхности адсорбцией газов (метод БЭТ), красителей из растворов или по сопротивлению фильтрованию слоя пигмента при протекании через него газа. Исходя из удельной поверхности рассчитывают средний диаметр частиц, условно принимая их форму шарообразной. [c.288]

    Механизм твердофазного восстановления окислов металлов, согласно современной ад сорбционно-автокаталитической теории, развиваемой Г. И. Чуфаровым с учениками, со Стоит в адсорбции газа-восстановителя (Вадс) реакционной поверхностью, отрыве kh jIO-рода от окисла и соединении его с адсорби рованным газом-восстановителем (Вг) и десорбции газообразного продукта восстЗ  [c.52]

    Физическая адсорбция, или адсорбция Ван-дёр-Ваальса, характеризуется сравнительно малым тепловым эффектом (около 5 ккал1моль), т. е. величиной того же порядка, что и теплота испарения, а также высокой скоростью установления равновесия. Это указывает на то, что энергия активации процесса очень мала (около I ккал1моль). Адсорбция такого рода обусловлена межмолекулярными силами Ван-дер-Ваальса, действующими между молекулами газа и поверхностью адсорбента. [c.49]

    Проницаемость газа. Сопротивление уплотненного порошка по отношению к газовому потоку при определенных условиях может использоваться для измерения размеров частиц или величины удельной поверхности. Методы подобного рода описаны Арнеллем [111] и Дерягиным, Фридляндом и Крыловой [112]. Такие методы, вероятно, в настоящее время редко используются, поскольку стал доступным быстрый метод потока, включающий адсорбцию азота на кремнеземе. [c.652]

    Делались неоднократные попытки определить центры адсорбции по количеству газов, адсорбируемых единицей площади поверхности. Измерения такого рода для адсорбции водорода на вольфраме (см. разд. 2 этой главы) сделал Робертс [13], который нашел по количеству водорода, необходимого для насыщения поверхностн воль-франовой проволоки (площадь определена геометрически), что каждый атом поверхности адсорбирует по одному атому водорода. Более точные измерения площади адсорбентов были сделаны Франкен-бургом [7], использовавшим порошкообразный вольфрам, и Биком с сотрудниками [18, 19], работавшими с полученными испарением пленками вольфрама, никеля и других металлов. Они обнаружили поразительное совпадение между числом хемосорбированных атомов водорода и числом атомов металла на поверхности, как это видно из табл. 16. [c.211]

    Борн и Франк [17] считали главным фактором в адсорбционном катализе продолжительность пребывания на поверхности реагирующих компонентов. В газообразном состоянии квантовомеханический эффект прохождения через энергетический порог не осуществляется, потому что время соударения газовых молекул слишком коротко (около 10- сек.) даже, если плотнссть газа была бы высокой (что приводило бы к многочисленным соударениям), мало или совсем нет шансов возникновения заметных превращений. После того, как произойдет адсорбция, оба участвующих в реакции компонента реакции образуют особого рода мономолекулярную пленку , специфически сформированную на активных центрах. Предполагают, что эта пленка сохраняется в течение времени, измеряемого секундами.  [c.119]

    Несколько похож вывод, сделанный Бибом [8] при исследовании величины интегральных и дифференциальных теплот адсорбции водорода для активных и отравленных образцов медного и никелевого катализаторов. Он указывает, что каталитическая поверхность содержит атомы меди с разными уровнями энергии и что атомы с наиболее высоким уровнем первыми адсорбируют приближающиеся газовые молекулы, между тем как другие точки с более низким уровнем энергии не в состоянии адсорбировать и не могут изменить электронные конфигурации реагентов настолько, чтобы они были способны соединиться. Поэтому взгляд Биба совпадал с теорией, что точки с наивысшей степенью ненасыщенности на металлической поверхности являются местами каталитической активности. Биб нашел также, что интегральная величина теплоты адсорбции приблизительно на 20% выше для отравленного (окисью углерода) катализатора, чем для активного образца. Эффект отравления, повидимому, явился доказательством, что точки на поверхности меди, лишенные адсорбционной способности, не были точками с высоким уровнем энергии. Тейлор и Кистяковский [141] предполагали, что лишь часть поверхностных атомов, именно атомы в высшей степени ненасыщенные, активируют адсорбированные газовые молекулы, как это показали измерения зависимости теплоты адсорбции от степени насыщения поверхности. Они отметили, что процесс эндотермичен для 1) водо рода на активной меди 2) водорода на меди, отравленной кислородом, и 3) окиси углерода на активной меди. Три различные полученные ими кривые рассматривались как логическое следствие указанной выше теории. Тейлору и Кистя-ковскому казалось, что места на поверхности катализатора, имеющие большие теплоты адсорбции, обладают большей химической активностью. Тейлор [132] предполагал, что энергия активации постоянна, и пришел к заключению на основании теплот адсорбции, что лишь часть поверхности, соответствующая активным местам, которые адсорбировали первые 4 см газа, имеет значение для скорости реакции. Было установлено, что скорость реакции уменьшалась, до 28% от нормальной, когда яд покрывал поверхность, которая в других случаях была покрыта первым куб. сантиметром газа. Пиз установил, что 0,2 сл окиси углерода понизили скорость гидрогенизации этилена на меди при 0° С. [c.153]

    Если притяжение между адсорбированной молекулой и молекулой поверхности можно представить суммарной константой а такого рода, то энергия адсорбции Еа различных газов на одной и той же поверхности должна быть пропорциональной ай газа, так как Оц твердого вещества остается постоянной. Простой ван-дер-ваальсов [c.332]

    Существование нитридов железа может служить доказательством того, что хемосорбция азота на поверхности катализаторов вызывает разрушение молекул N2 и образование в активных центрах нитрида. Такого рода реакция возможна как пер-зая ступень синтеза аммиака. Этот вывод подтверледают некоторые экспериментальные данные , показывающие, что азот н водород из их смеси адсорбируются интенсивнее, чем каждый из этих газов в отдельности, в чистом виде. Особенно увеличивается при этом адсорбция водорода. При 350° и давлении выше 20 ат наблюдалась трехступенчатая адсорбция водорода (1 I, 2 1, 3 1 по отношению к азоту), что могло бы соответствовать Последовательно му образованию иа поверхности катализатора комплексов, содержащих группы =МН, —ЫН9 и МНз. [c.503]

    В количественной трактовке данных физической адсорбции могут возникнуть серьезные ошибки, если температура охлаждения такова, что давление паров адсорбируюш,егося газа слишком мало для установления быстрого равновесия между адсорбентом и твердым адсорбатом. Геометрия адсорбционной кюветы будет определять соотношение между газом, который сначала взаимодействует со стенками кюветы, и газом, взаимодействуюш,им с образцом. Если давление газа при первом пуске будет выше давления твердого адсорбата при температуре стенок кюветы, то некоторое количество газа образует твердый налет на стенке. Даже при эффективном охлаждении образец будет несколько теплее стенок охлаждаемой кюветы, особенно если он облучается ИК-пучком. Установление равновесия между конденсированным адсорбатом и адсорбентом может быть очень медленным процессом. Был проведен опыт (Литтл, 1960), в котором этилен замораживали на части стенки кюветы, охлаждаемой до — 195°, а образец пористого стекла в кювете поддерживали при комнатной температуре. Затем охлаждали образец до температуры только на несколько градусов более высокой, чем температура жидкого газа, а этилен в это время оставался в замороженном состоянии. ИК-спектр записывали при этих условиях эксперимента в течение 3 час, и при этом на образце не было обнаружено адсорбции этилена. Было найдено, что в такого рода экспериментах максимальная адсорбция этилена на образце происходит после ряда быстрых циклов нагревания адсорбата до испарения с последующим охлаждением до его конденсации. При испарении твердого адсорбата наблюдалась значительная адсорбция холодного газа на адсорбенте, и максимальная адсорбция, обнаруживаемая по интенсивности линий, устанавливалась очень быстро. Если кювета сконструирована так, что образец в этих условиях можно быстро удалить через клапан и изолировать от ячейки, содержащей замороженный адсорбат, то можно получить надежные адсорбционные данные при нагревании образца и измерении выделившегося газа. В описанной системе существует еще опасность того, что адсорбированный газ может конденсироваться в твердом виде на внешней поверхности адсорбента и при этом никогда не установится равновесие с внутренней поверхностью образца. В этом случае полученный спектр в основнол будет спектром чистого твердого адсорбата, а не спектром вещества в адсорбированном состоянии. [c.50]

    Фазовое превращение I рода, соответствующее конденсации двумерного газа в двумерную жидкость, характеризуется вертикальным участком на изотерме адсорбции, т. е. конечным скачком адсорбции при постоянном относительном давлении. Такие фазовые превращения совсем недавно были открыты в лаборатории Гаркинса при изучении адсорбции и-гептана на серебре [ ] и графите [1 ] и затем более подробно были изучены на примере адсорбции п-гептана на кристаллическом образце РегОз с удельной поверхностью 7,46 м 1г. Адсорбция -гептана на РогОд была тщательно измерена в области малых относительных давлений в температурном интервале от 15 до 30°, и на основании полученных результатов были построены кривые т —м. При этом было показано, что семейство изотерм п—со совершенно аналогично семейству кривых р—V для реальных трехмерных газов вблизи критической области. На рис. 745 изображены кривые тг—ю для и-гептана на КезОд. На основании этих кривых были определены двумерные критические константы тГд=0,45 9мк/с и, 0=29° и Мд=900 А . Последняя величина является, повидимому, слишком большой. Для -гептана на графите эта величина значительно меньше. Слишком большое значение Шц авторы склонны объяснить тем, что [c.744]

    Когда все адсорбционные центры поверхности поглотителя будут заняты адсорбируемыми частицами, должен наступить предел адсорбции. Мы видели, что такое насыщение действительно наблюдается. Часто однако предел адсорбции зависит не только от рода поверхности, но и от условий поглощения-Это противоречие было устранено предположением о неодинаковой активности разных участков поверхности поглотителя, причем соотношение активностей может зависеть от температуры и пр. ( 275). В некоторых случаях после насыщения при больших давлениях наступает добавочная адсорбция, которая имеет уже другой механизм конденсация адсорбируемого газа в виде жидкости в порах поглотителя (капиллярная конденсанция, см. 276). [c.354]

    Устойчивость металлов к коррозии часто зависит либо от защитной пленки, образующейся в результате реакции (например, РЬ304 на свинце, погруженном в Н2504), либо от хемосорбированных пленок (например, в случае Сг и нержавеющих сталей), которые насыщают сродство металли ческой поверхности без вытеснения поверхностных атомов металла и образования рещетки продукта реакции. Аналогично этому считают, что такие ингибиторы коррозии, как хроматы или нитриты, хемосорбируются на поверхности железа и предохраняют его от коррозии по подобному механизму Это объясняет, почему потенциалы железа, погруженного в раствор хромата, подчиняются типичной изотерме адсорбции, а также почему скорость изменения потенциала сначала велика, а затем уменьшается, как и в случае хемосорбции газов на металлах. Подобно доказательству существования двух родов адсорбционных центров для кислорода на вольфраме, данные по коррозии также подтверждают представление о двух родах центров в случае адсорбции кислорода на нержавеющих сталях или адсорбции хроматов на железе. Так как хемосорбции благоприятствует наличие незаполненных -электронных зон в металле или сплаве, явления пассивации, а также катализа преимущественно наблюдаются на переходных металлах. Этим фактором пользуются при объяснении найденных критических составов сплава, при которых начинает проявляться пассивность. Растворенный в металле водород является донором электронов, которые заполняют й-зону, и тем самым понижает или нарушает пассивность, а также может ухудшить и каталитические свойства. [c.428]


Смотреть страницы где упоминается термин Родий, адсорбция газов поверхность: [c.675]    [c.519]    [c.452]    [c.452]    [c.512]    [c.369]    [c.49]    [c.178]    [c.483]    [c.280]    [c.174]    [c.111]    [c.234]    [c.293]    [c.129]   
Структура металических катализов (1978) -- [ c.301 , c.310 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция газов



© 2025 chem21.info Реклама на сайте