Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генри относительные

    ПОСТОЯННАЯ ЗАКОНА ГЕНРИ, ОТНОСИТЕЛЬНЫЙ СДВИГ ЧАСТОТЫ, [c.86]

    Поскольку многие вещества существуют при обычных температурах лишь в твердом состоянии, вычисление значений и 72 для них по уравнению (VI, 25) невозможно. Поэтому для растворенных веществ следует искать другие методы нормирования активности (выбор величины Ц). Для этого используют свойства предельно разбавленного раствора относительно второго компонента, а именно—применимость закона Генри (коэффициент Генри—постоянная величина), и постулируют  [c.210]


    Таким образом, относительная скорость перемещения обратно пропорциональна константе Генри и отношению объемов неподвижной и подвижной фазы в колонке. Отношение относительных скоростей перемещения двух компонентов 1 и 2 приблизительно обратно отношению констант Генри для этих компонентов  [c.557]

    Результатом этого взаимодействия является отклонение парциальных и общего давлений от величин, выражаемы законами Генри и Рауля. Тем не менее, для приближенной количественной оценки можно находить из допущения, что при относительно небольшом содержании одного компонента. в другом последний подчиняется закону Рауля, т. е. [c.98]

    При выражении состава фаз не в абсолютных, а в относительных концентрациях видоизменяется и запись закона Генри. Так, напрнмер, при использовании относительных мольных концентраций на основе зависимости (Х,6) выражение (XI,5) можно записать в виде [c.436]

    Следовательно, при выражении закона Генри в относительных концентрациях равновесие в системе газ—жидкость изображается также кривой линией. Однако для сильно разбавленных растворов (малые концентрации X газа в жидкости) можно принять (1 — т) X 0. Тогда знаменатель уравнения (XI,8) обращается в единицу и уравнение принимает вид [c.436]

    Теория линейной хроматографии рассматривает процессы, в которых распределение вещества между фазами описывается линейной изотермой адсорбции и, следовательно, подчиняется закону Генри (рис. 1.1, кривая /). Распределение концентрации вещества в таком процессе по слою адсорбента симметрично относительно ординаты, соответствующей максимальной концентрации. [c.19]

    Теория линейной х р о м а то г р а ф и и рассматривает такие процессы, в которых распределение вещества между фазами У описывается линейной изотермой и, следовательно, подчиняется закону Генри. В таком процессе распределение концентрации ве- щества в хроматографической зоне симметрично относительно ординаты, соответствующей максимальной концентрации. [c.18]

    Селективность неподвижной фазы. В газо-жидкостной хроматографии разделение смеси веществ достигается тем легче, чем больше различие в коэффициентах Генри компонентов разделяемой смеси для выбранной неподвижной фазы. Херингтон 10] вывел соотношение (76), позволяющее связать относительный удерживаемый объем со свойствами системы сорбат — сорбент. Согласно этому уравнению, разделение компонентов смеси может происходить вследствие различия у компонентов смеси либо упругости пара, либо коэффициентов активности. [c.61]


    Однако, как показали опыты, при высоких давлениях закон Генри не соблюдается и не всегда газ увеличивает свою концентрацию в жидком растворе при возрастании давления. При относительно же низких давлениях для всех газов, химически не взаимодействующих с растворителями, закон Генри справедлив, т. е. растворимость увеличивается при повышении давления. [c.70]

    Связь константы Генри с потенциальной функцией внутреннего вращения. При внутреннем вращении молекулы, в зависимости от угла поворота а ее фрагментов относительно друг друга, расстояния силовых центров молекулы от плоской поверхности адсорбента изменяются, что вызывает изменение потенциальной энергии межмолекулярного взаимодействия Ф молекулы с адсорбентом, а следовательно и константы Генри. Если внутреннее вращение фрагментов молекулы является свободным, т. е. оно не связано с преодолением потенциальных барьеров, то молекула стремится расположиться на поверхности неспецифического адсорбента по возможности (в зависимости от температуры) так, чтобы ее силовые центры находились на наименьших расстояниях от поверхности. Если же внутреннее вращение в молекуле не свободно, но заторможено внутримолекулярными потенциальными барьерами, то расположение на поверхности адсорбента соответствующих фрагментов молекулы связано не только с потенциальной функцией межмолекуляр- [c.189]

Рис. 10.6. Зависимость вычисленной константы Генри К (а) при 500 К для адсорбции на ГТС дифенила от величины угла поворота а бензольных колец относительно друг друга Рис. 10.6. <a href="/info/841584">Зависимость вычисленной</a> <a href="/info/6087">константы Генри</a> К (а) при 500 К для адсорбции на ГТС дифенила от величины угла поворота а бензольных колец <a href="/info/1623378">относительно друг</a> друга
    И вычислен-уравнению (10.11) значениями констант Генри. Величины б рассчитывались по уравнению (10.6) с использованием экспериментальных значений К1, определенных при нескольких температурах. Зависимость б от Wo имеет четкий минимум при 0= 1,7 кДж/моль. Таким образом, барьер внутреннего вращения этильной группы относительно кольца в молекуле этилбензола невелик. Аналогичный расчет для стирола дает кДж/моль. [c.201]

    В самом деле, при малых давлениях в знаменателе уравнения (IV, 11) можно пренебречь членом kp, весьма малым по сравнению с единицей, и уравнение Ленгмюра принимает вид, тождественный с уравнением Генри, которому подчиняется распределение вешества между двумя фазами а = a an kp = Кр. Таким образом, при малых р адсорбированное количество вещества прямо пропорционально равновесному давлению. Этот случай соответствует начальному почти прямолинейному участку изотермы. При больших значениях р в знаменателе уравнения Ленгмюра можно, наоборот, пренебречь единицей, и тогда уравнение примет вид а = Ямакс. т. е. адсорбированное количество вещества перестает зависеть от давления, что отвечает относительно прямолинейному участку изотермы, идущему почти параллельно оси давлений. [c.91]

    По работе [18] коэффициенты уравнения Кричевского—Ильинской различных газов, растворенных в воде, имеют одинаковый порядок величины. Заметное отклонение от закона Генри наблюдается у газов, обладающих относительно высокой растворимостью. Для таких газов последний член уравнения (VI.16) может стать достаточно большим. [c.120]

    Кислород — газ, относительно мало растворяющийся в воде. При температуре 20 С в воде растворяется около 9 мг/л кислорода. Если применять чистый кислород вместо воздуха, то растворимость его возрастает пропорционально повышению парциального давления кислорода в газовой фазе (по закону Генри). [c.204]

    При выражении состава фаз в относительных концентрациях запись закона Генри видоизменяется. В этом случае уравнение (16.5) принимает следующий вид  [c.46]

    Для реальных растворов интервал концентрации, в котором закон Рауля выполняется более или менее точно, зависит от природы компонентов раствора, характера межмолекулярных взаимодействий в растворе. Можно показать, что для данной системы область выполнения закона Рауля относительно больше, чем закона Генри. Очевидно, что для растворов, являющихся идеальными во всем интервале концентраций, законы Генри и Рауля становятся тождественными. [c.50]

    Мак-Генри и Вильгельм [59] получили относительно постоянную величину чисел Пекле (около 2) для газового потока в насадке одного определенного размера. Расчет чисел Пекле проводился в предположении идеального перемешивания. < [c.133]

    Температурная зависимость коэффициента проницаемости газов обычно описывается уравнением Аррениуса. Проницаемость паров и жидкостей через непористые полимерные мембраны в значительной степени зависит от их растворимости в полимере. При соприкосновении с жидкостями или их парами полимеры в большей или меньшей степени набухают. При этом межмолекулярные силы полимера ослабевают, энергия активации обычно снижается, что приводит к увеличению коэффициента диффузии. В общем случае коэффициент диффузии зависит от концентрации распределяемого вещества в полимере [5]. При сорбции водяного пара полимерными пленками наблюдается сильное отклонение от закона Генри уже при относительной влажности воздуха 40-60% [19]. Решение задачи стационарной диффузии газов и паров через плоскую мембрану при условии зависимости коэффициента диффузии от концентрации дано в работе [5]. [c.538]


    Константа Генри для адсорбции на графитированной термической саже стереоизомеров изученных элементорганических соединений зависит от геометрического строения их молекул и от их ориентации относительно поверхности [40]. Транс-изомеры соединений типа (СНз)зМ СН=СНМ"(СНз)з, где М и М" обозначают пары Si, [c.201]

    Так как для бесконечно разбав.ченны.х растворов (при малом давлении газов, паров) коэффициет 1,1 активности равны единице, то на основании уравнения (П1.9) можно сформулировать следующую закономерность при разбавлении системы (уменьшение давления) коэффициент распределения стремится к постояшюму значению, равному константе распределения Генри. В этом и состоит закон Генри. Относительно величины адсорбции А этот закон запишется так  [c.135]

    Что утверждает закон Генри относительно парциального давления пара растворенного вещества над идеальным разбавленым раствором  [c.215]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Поскольку давление, объем и температура связаны между собой уравнением Клапейрона, то зависимость одного типа может быть преобразована в зависимость другого типа. Поэтому достаточно остановиться на рассмотрении изотерм адсорбции. На прак тике наиболее часто используются изотермы Лэнгмюра, Фрейндлиха, Генри, Шлыгина—Фрумкина—Темкина—Пыжова, Бру-науэра—Эммерта—Теллера (БЭТ) (табл. 3.1). Каждая из них связана с определенными допущениями относительно структуры поверхности адсорбента, механизма взаимодействия молекул адсорбента и адсорбата, характера зависимости дифференциальных теплот адсорбции от степени заполнения поверхности катализатора адсорбатом. Например, наиболее широко используемая изотерма Лэнгмюра основана на следующих допущениях 1) поверхность адсорбата однородна 2) взаимодействие между адсорбированными молекулами отсутствует 3) адсорбция протекает лишь до образования монослоя 4) процесс динамичен, и при заданных [c.150]

    Газовыделение из порообразователей обычно описывается кинетическим уравнением первого порядка (например, в случае использования азодикарбонамида). Поскольку кинетические константы зависят от температуры, то количество выделившегося газа зависит от полной термической предыстории частиц. С другой стороны, при высоких давлениях выделившийся газ может раствориться в расплаве. Даррил и Гриски [54] установили, что при относительно низких концентрациях газа для некоторых пар расплав—газ применим закон Генри. Константа закона Генри экспоненциально возрастает с температурой. [c.548]

    Отсутствие высокочувствительных детекторов непрерывного действия вызывало необходимость применения химических методов анализа растворов, вымываемых из хроматографической колонки, что, в свою очередь, требовало относительно больших объемов исследуемых вешеств и времени анализа. Кроме того, из-за низкой чувствительности методов анализа и значительного разбавления анализируемых вешеств элюентом приходилось работать в области достаточно высоких концентраций, что вызывало дополнительное размывание хроматографических зон вследствие криволиней-ности изотермы адсорбции из растворов и зависимости коэффициента Генри от концентрации. Как следствие разделение компонентов смеси затруднялось. [c.68]

    Выбор оптимального соотношения комнонентов для составления смешанной фазы целесообразно производить графическим методом. Впервые графический метод был применен Роршнайдером для выбора жидкой фазы оптимальной полярности. Ваксмундски и Супринович показали, что логарифм коэффициенга распределения данного вещества между газом-носителем и смешанной жидкой фазой во многих случаях линейно зависит от состава последней, что позволяет относительно просто подобрать оптимальную смешанную жидкую фазу по значениям коэффициентов Генри ана- [c.176]

    Выбор оптимального соотношения компонентов для составления смешанной фа-3 ы целесообразно производить гр-афическим методом. Впервые графический метод был применен Роршнайдером для выбора жидкой фазы оптимальной полярности. Ваксмундски и Супринович показали, что логарифм коэффициента распределения данного вещества между газом-носителем и смешанной жидкой фазой во многих случаях линейно зависит от состава последней, что позволяет относительно просто подобрать оптимальную смешанную жидкую фазу по значениям коэффициентов Генри анализируемых веществ на индивидуальных жидких фазах. Для смешанных фаз величина удерживания может быть рассчитана из соотношения [c.66]

    На рис. 10.6 показан пример зависимости вычисленных значений К для ад- орбции на ГТС дифенила при 500 К от угла поворота а одного бензольного кольца, входящего в его молекулу, относительно другого бензольного кольца. В этом расчете для каждого угла а молекула рассматривается в целом квазижесткой. Из рисунка видно, что при а = 0, когда вся молекула принимается плоской и расстояния всех ее атомов от поверхности адсорбента наименьшие, константа Генри наибольшая. По мере роста а расстояния части атомов этой молекулы от плоской поверхности ГТС увеличиваются и К[ сначала медленно, а затем очень быстро уменьшается, особенно в интервале значений а от 5 до 50°. Весьма высокая чувствительность константы Генри для адсорбции на ГТС к значению угла внутреннего вращения позволяет распространить хроматоскопический метод на определение параметров потенциальной функции внутреннего вращения — барьеров внутреннего вращения и равновесных значений углов, соответствующих минимальным значениям W между этими барьерами для свободной молекулы молекулы в вакууме). Определив параметры W, можно далее описать поведение молекулы как в вакууме, так и в других средах, в частности, и при адсорбции. [c.190]

    Высота иасадки (ВЭТТ), эквивалентная одной теоретической тарелке по своему разделительному действию, может быть рассчитана по уравнениям, приведенным в табл. 111.21, в которой приняты следующие обозначения переменных С, Ь — нагрузка по пару и жидкости, кг/(м ч) С, Ь — мольные потоки пара и жидкости Ш — скорость па- ра в полном сечении колонны, м/с >к — диаметр колонны, м — размер насадки, м Нпзс — высота слоя насадки, м а —удельная поверхность насадки, е — свободный объем насадки, м /м а — коэффициент относительной летучести р, — вязкость жидкости, сПз рж, Рп — плотность жидкости и пара, г/см М — масса одного моля паровой фазы Н — К0нстанта Генри, кмоль/м (кгс/см ) Р — абсолютное давление, кгс/см Dv — коэффициент диффузии легкокипящего компонента, см /с т — тангенс угла наклона кривой равновесия коэффици- [c.310]

    Активность и стандартное состояние компонента с низким относительным содержанием (растворенное вещество, обозначаемое индексом S ) необ.ходнмо обсудить более тщательно. Главная проблема состоит в том, что раствор становится идеальным разбавленным при низких коицептрация.х растворенного вещества — концентрациях, очень далеких ог чистого жидгшго растворенного вещества. Вначале мы установим смысл стандартного состояния растворенного вещества, которое подчиняется закону Генри, а затем рассмотрим отклонения от теальности. [c.261]

    Английский ученый Генри Кавендиш (1731—1810) обнаружил, что электропроводность воды значительно возрастает при растворении в ней соли. В 1884 г. молодой шведский ученый Сванте Аррениус (1859— 1927) опубликовал докторскую диссертацию, которая включала измерения электропроводности растворов СОлей и соображения относительно интерпретации этих данных. Эти первые представления были довольно неясными, однако позже он сформулировал их более четко, а затем в 1887 г. опубликовал подробную статью об ионной диссоциации. Аррениус предположил, что в водном растворе хлорида натрия присутствуют ионы натрия Na+ и хлорид-ионы С1 . Если, в такой раствор опустить электроды, то иоиы натрия будут притягиваться катодом и двигаться по. направлению к ему, а хлорид-иоиы будут притягиваться анодом и перемещаться к нему. Такое движение ионов в растворе в противоположных направлениях и объясняет механизм прохождения электрического тока через раствор. [c.150]

    При изучений массообменных нагрузочных характеристик маломасштабных колонн испытания проводились на разбавленных растворах /26/. Поведение примеси в области малых концентраций как правило подчиняется закону Генри, т.е. коэффициент относительной летучести остается постоянным. При работе с разбавленными растворами физические свойства жидкой и паровой фаз и их температуру можно считать практически постоянными по высоте колонны. Таким образом, создаются условия, при которых гидравлические и ыассообменные характеристики по высоте колонны остаются практически неизменными, что избавляет от значительной части ошибок при испытании колонн и существенно упрощает вычисления. [c.16]

    J нoвaнии измерения абсолютных удельных объемов удерживания нетрудно определить коэффициенты Генри, а по ним коэффициенты активности при бесконечном разбавлении, являющиеся важнейшими физико-химическими константами в теории растворов. В аналитической же практике для целей идентификации пользуются относительными и интерполяционными величинами удерживания. [c.52]

    В этом случае обычно говорят об области Генри . Эта область имеет практически важное значение, обеспечивая высокую симметричность хроматографических пиков. Однако существование простой зависимости (IV, ) в конечном интервале величин Г связано либо с недостаточной точностью измерений Г и с (или р) и недостаточно постоянной Г, либо с тем, что влияние притяжения адсорбат — адсорбат в некотором интервале величин Г > О практически полностью скомпенсировано влиянием неоднородности поверхности. Из рис. IV,1 видно, что изотермы адсорбции аргона на графитированной термической саже близки к линейным при относительно высоких (для адсорбции аргона) TOMtfepaTypax и в области малых заполнений, меньших 3—5 /о плотного монослоя (емкость монослоя составляет в этом случае около 10 мкмоль/м ) [32, 33]. [c.155]

    Генри и Спринг [5] независимо пришли к тому же выводу относительно структуры циклоартенола, что и авторы синтеза. В ходе своих исследований они приготовили ряд меченных дейтерием соединений. При обработке ацетата циклоартанола-Зр хлористым водородом-Н2 бул получен ацетат ланостен-9(11)-ола-Зр-[19-Н ], т. пл. 173°, 1а]о = 4-84° (с = 1,2 в хлороформе). [c.402]


Смотреть страницы где упоминается термин Генри относительные: [c.113]    [c.472]    [c.119]    [c.69]    [c.190]    [c.140]    [c.144]    [c.157]    [c.8]    [c.182]    [c.65]    [c.66]   
Курс газовой хроматографии (1967) -- [ c.249 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Генри



© 2024 chem21.info Реклама на сайте