Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, экстракция соединений

    Для определения кобальта в растворе, содержащем никель и железо, после экстракции соединения кобальта с 2-нитрозо-1-нафтолом хлороформом (см. стр. 161) хлороформный экстракт промывают последовательно раствором соляной кислоты двумя порциями по 20 мл каждая, один раз 10 мл воды и затем двумя порциями раствора щелочи по 5 мл каждая и 5 мл воды. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексное соединение железа и никеля, то раствор хлороформа еще раз последовательно промывают раствором щелочи и водой. Хлороформный слой через сухой фильтр переносят в градуированную пробирку емкостью 10 мл. Измерение оптической плотности растворов проводят на фотоэлектроколориметрах ФЭК-56, ФЭК-57 или ФЭК-60 при X = 365 нм или спектрофотометрах при X 307 нм. Содержание кобальта находят по градуировочному графику (см. стр. 162). [c.162]


    Экстракция никеля при помощи а-диоксимов из растворов, содержащих цитрат- и тартрат-иопы, затрудняется тем, что эти ионы образуют с никелем комплексные соединения в водных растворах. [c.106]

    Экстракция диметилглиоксимата никеля хлороформом. (Отделение очень малых количеств никеля.) Экстракцию проводят в лимоннокислом или аммиачном растворе. Так отделяют никель от железа (III), алюминия, кобальта и т. п. Вместе с никелем экстрагируются следы кобальта и меди их извлекают из экстракта взбалтыванием с раствором аммиака. Мешают большие количества марганца, потому что в их присутствии происходит каталитическое окисление диметилглиоксимата никеля с образованием соединения, нерастворимого в хлороформе. В этом случае прибавляют солянокислый гидразин или солянокислый гидроксиламин. [c.914]

    Экстракция соединения никеля с а-фурилдиоксимом. Экстрагируют дихлорбензолом. Молярный коэффициент светопоглощения 8 = 17 000 при К = 438 ммк. [c.920]

    Для выделения солей благородных металлов из сложных смесей солей меди, кобальта, железа, никеля и других применялся концентрат нефтяных гетероатомных соединений, главным образом азотсодержащих [138]. Эффективность экстракции зависела от состава концентрата, состава водной фазы и типа разбавителя, [c.344]

    Известен ряд а-диоксимов, кроме диметилглиоксима, которые широко используются для фотометрического определения никеля с применением метода экстракции. В экстракт переходит соединение никеля состава [c.186]

    Быстрый и достаточно точный фотометрический метод определения около 1 % Мо в простых и легированных сталях, содержащих никель, хром,. вольфрам и другие элементы, включает экстракцию роданидных соединений пятивалентного молибдена диэтиловым эфиром [601]. Вольфрам удерживают в растворе добавлением винной или лимонной кислоты. [c.221]

    Для снижения предела обнаружения рения применяют экстракцию комплексного соединения рения с роданидом. При экстракции комплекса бутилацетатом из 3—5 М солянокислого раствора молярный коэффициент погашения комплекса увеличивается до 41,5-10 . При экстракционном варианте метода избирательность определения повышается допустимо присутствие по 1 мг железа, вольфрама, меди, хрома, никеля и некоторых других элементов. [c.184]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]


    При экстракции четыреххлористым углеродом из растворов с pH 10, содержащих комплексон Н1 и диэтилдитиокарбаминат, в неводный слой переходят катионы меди, ртути и висмута, а в водном растворе остаются кобальт, никель, марганец, железо, цинк и др. Далее устанавливают pH 4 и повторяют экстракцию при этом в органический растворитель переходят весь кобальт, железо и частично никель и марганец. Последние три катиона вытесняют из неводного раствора, прибавляя к водному раствору ацетат ртути (диэтилдитиокарбаминат ртути значительно устойчивее аналогичных соединений железа, никеля и меди, но менее устойчив, чем диэтилдитиокарбаминат трехвалентного кобальта). Для отделения кобальта от больших количеств железа лучше маскировать последнее пирокатехином при pH 10, а затем очищать экстракт от следов железа ацетатом ртути. При определении кобальта в присутствии больших количеств меди последнюю экстрагируют из раствора с pH 10, содержащего комплексон Н1 и диэтилдитиокарбаминат натрия после этого снижают pH до 4 и экстрагируют кобальт. [c.151]

    Факты соэкстракции при экстракции внутрикомплексных соединений. Дирсен [103, 321] заметил, что при экстракции соединений никеля и цинка с р-изопропилтрополоном (НА) в присутствии довольно больших количеств перхлората натрия, который вводится для поддержания ионной силы, натрий частично увлекается в органическую фазу. В отсутствие никеля и цинка этого явления не наблюдается. Автор связывает соэкстракцию натрия с образованием солей Ка2пАз и Ка№Аз. [c.178]

    Реагент с никелем образует растворимое соединение красного цвета, которое экстрагируется полярными растворителями — спиртами (н.бутиловым, изобутиловым, изоамиловым), а также четыреххлористым углеродом [553]. Изучены условия экстракции соединения никеля [1141]. Комплексное соединение никеля с PAN менее устойчиво, чем соединение с ЭДТА [462]. Оно образуется при соотношении Ni PAN = 1 2, растворы его имеют максимальные полосы поглощения при I = 530 и 570 ммк e Q = = 50 ООО [1303]. Другие авторы [575] нашли устойчивость образующегося комплекса IgPa = 25,3 lgP2=23,0 [465]. [c.44]

    Для экстракционно-фотометрического определения никеля применяются воднорастворимые оксимы диоксим циклогександиона и его производные 4-метил-, 4-изопропил диоксим циклогептандиона и циклопентандиона (см. стр. 15,27).Эти реагенты менее чувствительны, чем а-бензилдиоксим. Относительно большая растворимость реагентов в воде и широкий диапазон значений pH полной экстракции соединения никеля способствует их успешному применению в анализе. [c.106]

    Диэтилдитиокарбаминат натрия (ДДТК) не имеет преимуществ по сравнению с другими органическими реагентами для определения никеля из-за малой селективности. Ионы меди и кобальта образуют окрашенные соединения с ДДТК и мешают определению никеля. Экстракция ДДТК различными растворителями была изучена Боде [481], он определил период полураспада реагента в зависимости от pH раствора (табл. 43). [c.113]

    Исследуемый формазан образует комйлеКсЫ со многими мefaллймri, но в спектральной области максимального поглощения света ионов меди и никеля светопоглощение соединений других элементов ничтожно мало или совсем отсутствует. Легкость образования медно- и никельформаза-нового комплексов, высокая чувствительность реакции позволили провести исследования процесса комплексообразования формазана с Сц2+ и N1 +. С этой целью были изучены оптимальные условия образования окрашенных соединений меди и никеля с формазаном и показана возможность их экстракции. [c.148]

    В работе [263] показано, что для экстракции металлов (перед их определением атомно-абсорбционной спектроскопией) лучше применять смесь 80 % бензола и 20 % толуола, нежели ксилол (в последнем при стоянии происходит выпадение твердого осадка). Здесь же обсуждены вопросы приготовления стандартов, автома--тической дозировки проб, загрязнения металлами из чужеродных продуктов (масел механизмов при нефтедобыче и транспортировке промывных вод и т. д.). Методом атомно-абсорбционной спектроскопии определялись ванадий, никель, медь, железо, молибден, кобальт. Выявлены различия в определении этим же методом концентрации никеля в виде никельорганических соединений в зависимости от лиганда. Форма существования никеля в нефтях и применение различных лигандов для его выделения из нефтей или концентрирования влияют на его определение [268]. [c.146]

    Неорганические ионы для экстрагирования переводят в комплексные соединения с неорганическими или органическими лигандами. Особенно эффективны для этой цели органические комплексанты, образующие так называемые хелатные соединения. Например, диметилглиоксим является селективным экстрагентом для никеля, а-нитрозо-р-нафтол—для кобальта, дифенилтиокарбазон (дитизон) применяют для экстракции таких металлов, как серебро, ртуть, свинец, медь, цинк. С неорга-ническимн лигандами можно экстрагировать железо(П1) в виде соединения НРеС , железо(1П), кобальт(П) и молибден (V) — в виде комплексных ионов с роданид-ионом. [c.311]


    Учитывая вредное влияние органических соединений при электролизе никеля, необходимо принимать все меры к снижению содержания их в электролите. Радикальным решением вопроса было бы исключение дерева и полотна (бельтинга и брезента) из аппаратуры цеха электролиза (что сейчас частично осуществляется). Однако в ближайшее время такое мероприятие не может быть осуществлено по всеместно. Поэтому необходимо идти по пути снижения содержания органических соединений в растворах. Это достигается предварительной экстракцией, органических веществ путем кипячения в воде дерева и брезента перед их установкой в ванны. Для предупреждения чрезмерного накопления органических соединений в растворе последний подвергают специальной очистке. Поверхностно активные органические вещества адсорбируются и увле- [c.342]

    Для аналитической химии большой интерес представляет экстракция незаряженных внутрикомплексиых соединений в условиях образования мономерных частиц в органической фазе. Обычно в качестве лигандов применяют органические реагенты, обладающие кислотными функциями (Кцисс — 10 — 10 °), являющиеся чаще всего бидентатными. Примером определения элементов в виде внутри-комплексных соединений является определение никеля в ряде объектов а-диоксимами (стр. 186), кобальта нитрозо-нафтолами (стр. 160), цинка дитизоном (стр. 220), алюминия 8-оксихинолином и др. Для этого определяемый элемент в виде внутрикомплексного соединения переводят в органическую фазу с последующим фотометрированием экстракта. [c.80]

    Экстракционно-спектрофотометрические методы применяются при исследовании процессов комплексообразования, определении констант экстракции и устойчивости комплексных соединений и констант равновесия химических реакций. При использовании метода экстракции (распределения) равновесную концентрацию иона металла — комплексообразователя в системе М—R органический растворитель — вода определяют в органической фазе, если поглощение образующегося соединения может быть измерено (см. стр. 126). Зная общую концентрацию металла, по разности находят его концентрацию в водной фазе. Например, при исследовании комплексообразования никеля с рядом диоксимов в интервале концентраций 4,5х X 10 — 1,3 10 моль/л равновесную концентрацию никеля определяют в органической фазе по поглощению соответствующего диок-симата никеля. [c.82]

    В основу метода положено предварительное выделение железа экстракцией дибутиловым эфиром б виде HFe l , реэкстракцией этого соединения в водную фазу с последующим определением железа в виде ферроин-иодида. Для повыщения чувствительности метода можно вместо иодид-иона использовать сульфофталеиновые красители, например бромфеноловый синий. При этом образуется ионный ассоциат (Vax 610 нм, е = 5,9 10 ). Но этот последний метод при непосредственном определении железа в солях кобальта имеет два недостатка 1) очень узкий интервал значений pH прн экстракции ассоциата (pH 8,7—8,9) 2) малую избирательность, так как следы никеля, кобальта и меди при замене иодида на бромфеноловый синий дают интенсивно окращепные, экстрагирующиеся ионные ассоциаты. [c.158]

    Добавляют 5 мл раствора а-фурилдиоксима, 10 мл буферной смеси и доводят pH раствора до 8,5—9,5 по универсальной индикаторной бумаге, прибавляя по каплям раствор ЫаОН если раствор будет иметь щелочную реакцию >9,5, добавляют несколько капель уксусной кислоты. Дают раствору постоять 15 мин и образовавшееся соединение диоксимата никеля экстрагируют в течение 10 мин на механическом вибраторе двумя порциями хлороформа по 5 мл каждая. Перед второй экстракцией добавляют в воронку еще 5 мл раствора а-фурилдиокси-ма. Обе порции хлороформного раствора сливают в градуированную пробирку емкостью 10 мл или мерную колбу емкостью 25 мл и доливают до метки хлороформом. Измерение оптической плотности эталонных растворов производят на фотоэлектроколориметрах ФЭК-56, ФЭК-60 или спектрофотометрах при А, 438 нм (рис. 55) и строят градуировочный график. В качестве раствора сравнения используют хлороформ, которым обработан раствор холостого опыта . [c.188]

    Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и в каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 23). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бу-тпловьп1, амиловый), хлоропроизводные (хлороформ, четыреххлористый углерод). Иод можно извлечь бензолом, сероуглеродом, хлорное железо — диэтиловым или диизопропиловым эфиром. Лучше всего катионы металлов извлекаются органическими растворителями, если соответствующий металл предварительно связать в виде внутрикомплексного соединения. Например, свинец связывают дитизоном и извлекают четыреххлористым углеродом, никель связывают диметилглиоксимом и извлекают хлороформом в присутствии цитрата натрия. Смеси ионов различных элементов можно разделять экстракцией, используя избирательное (селективное) извлечение различными растворителями и регулируя pH раствора. Можно осуществлять также и групповые разделения ионов. [c.454]

    Железо экстрагируется диэтиловым )фиром в виде комплексного соединения Н [РеСЦ] и отделяется таким способом от никеля и некоторых других элементов. Существуют методы разделения элементов экстракцией дитизонатов, купферонатов, гидроксихино-линатов, диэтилдитиокарбаминатов металлов, т, е. комплексных соединений металлов с различными органическими реагентами. Экстракцию используют и как метод концентрирования небольшие количества [c.23]

    Больщой теоретический и практический интерес представляет экстракция железа в виде НРеС14 из 6 М раствора хлороводородной кислоты диэтиловым эфиром. Железо можно отделить таким способом от никеля и некоторых других элементов. На примере этого соединения был выяснен механизм экстракции. В отсутствие воды экстракции почти нет, из чего следует, что вода играет какую-то роль в процессе извлечения. Доказан так называемый гидратно-сольватный механизм, по которому в состав экстрагирующегося соединения входят не свободные протоны, а Н3О+ (и более сложные образования), сольватированные молекулами органическо1 о разбавителя — эфира. [c.573]

    Кобальт и никель часто сопутствуют друг другу в природе, поэтому при их получении сталкиваются с проб-лемой разделения соединений этих элементов. Для их разделения используются такие методы, как разделение, основанное на различии свойств соединений (например, различная растворимость в воде) электролиз растворов солей кобальта и никеля (при электролизе вначале выделяется один металл, потом — другой) экстракцию разделение с помощью ионообменных смол. [c.290]

    Из рафината после экстракции кобальта цинк и никель выделялись осаждением в виде карбонатов. При этом продукт после выпарки маточного раствора в основном содержал соли ш,елочных металлов. Из осадка вельцеванием при гемпературе 800—900 С выделяли товарный оксид цинка. Клинкер в основном содержал оксид никеля, который может быть использован для получения различных соединений. [c.110]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]

    Возрастает роль выщелачивания. При переработке гидрометаллургическими методами бедных труднообогатимых руд (зЬлотых. окисленных медных, никель-кобальтовых. молибденовых, урановых и др.), наиболее трудоемким и энергоемким процессом является отделение раствора от рудной массы, т. е. операции фильтрования, репульпации. противоточной декантации, а также разделение ценного компонента и примесей с целью получения чистых соединений. Поэтому наиболее успешными могут быть бесфильтрацнонные методы сорбции из пульп, а также сорбции и экстракции из растворов. [c.135]

    Отделение молибдена от рения может быть осуществлено экстракцией эфиром из солянокислых растворов, содержащих роданид, без добавки восстановителя [1106]. В отсутствие Mo(VI) рений в этих условиях не экстрагируется эфиром. При совместном присутствии рений частично вместе с молибденом переходит в эфир. Однако в присутствии Fe(HI) переход рения в эфирный слой прекращается. Экстракция кобальта устраняется добавкой Zn l2. Хром и никель образуют окрашенные соединения, но не экстрагируются эфиром. Фториды, тартраты, оксалаты и фосфаты остаются в водной фазе. Для количественного выделения 30 мг Мо из 25—50 мл раствора достаточно однократной экстракции 10 мл эфира. [c.207]

    Определение микроколичеств кобальта проводят, применяя экстракцию внутрикомплексного соединения кобальта в хлороформ, из уксуснокислой среды (pH 2,5 5). Максимальное светопоглощение экстракта оранжевого цвета наблюдается при длине волны 415 нм. Градуировочный график в области концентраций кобальта 10—50 мкг в объеме 25 мл прп толщине поглощающего слоя 5 мм имеет вид прямой линии. Молярный коэффициент погашения комплекса при Дтах — 415 нм составляет 2,9-10. Окрашенные соединения с реагентом образуют медь, железо ( I), никель (П), их разрушают кипячением с 1 М азотной кислотой после прибавления реагента. Собственную окраску железа (ill) маскируют фосфат-ионом. [c.70]

    Соединения роданида кобальта с органическими аминами. Методы отделения и фотометрического определения кобальта в виде соединении тетрароданида кобальта с крупными органическими катионами описаны на стр. 156. Экстракция кобальта заствором трибутилфосфата нз 10 У раствора соляной кислоты 407] позволяет выделить микрограммовые количества кобальта из металлического никеля. Трибутилфосфат рекомендуется для отделения урана от кобальта и других элементов [1383]. Экстракция легкоплавкими ароматическими аминами (а-нафтиламин и др.) из растворов иодидов и бромидов позволяет отделить кобальт от меди [187]. [c.74]

    Разделение ацетилацетоном. Ацетилацетон реагирует практически со всеми металлами, образуя устойчивые внутрико.мп-лексные соединения, не растворимые в воде, но растворимые полярных органических растворителях [1101]. Предложен метод отделения небольших количеств кобальта от железа экстракцией ацетилацетоната кобальта четыреххлористым углеродо.м из аммиачных растворов, содержащих этилендиаминтетрауксусную кислоту [20]. Вместе с кобальтом в неводный слой переходят также ацетилацетонаты меди, никеля, свинца, кадмия, цинка и марганца. Отделение бериллия от кобальта и многих других элементов основано на том, что из водного раствора с pH 9, содержащего ко.мплексон III и ацетилацетон, хлороформом извлекается только ацетилацетонат бериллия [19]. Экстрагирование ацетилацетоната трехвалентного кобальта описано в работе [225]. Разработана методика определения кобальта, основанная на предварительной экстракции ацетилацетонатов железа и кобальта [512]. Предложен способ выделения следовых количеств кобальта и других элементов из золы биологических материалов экстрагирование.м ацетилацетоно.м [680]. [c.78]

    Hз)2 6H402N0H [1433]. Реагент образует с ионами кобальта окрашенное соединение, экстрагируемое изоамиловым спиртом. Максимум светопоглощения этанольного раствора комплекса находится при 374 ммк, молярный коэффициент поглощения равен 19 680. Определение можно выполнить при содержании кобальта порядка 0,5 мкг в 1 мл органической фазы. Экстракция происходит количественно при pH 4—7. Ионы железа (Н1), меди, хрома и никеля мешают, другие обычные катионы в 100-кратном количестве по отношению к кобальту не влияют. [c.143]


Смотреть страницы где упоминается термин Никель, экстракция соединений: [c.105]    [c.915]    [c.36]    [c.421]    [c.93]    [c.171]    [c.271]    [c.342]    [c.126]    [c.85]    [c.27]    [c.198]    [c.138]   
Экстракция внутрикомплексных соединений (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Никель соединения



© 2025 chem21.info Реклама на сайте