Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Приборы для реакций напряжения в них

    При подведении переменного тока высокого напряжения к электродам, разделенным пластинками из диэлектрика и газовым промежутком, в последнем возникает так называемый барьерный разряд. Прототипом прибора, в котором используется такой разряд, является озонатор. Этот вид разряда обладает полимеризующим действием. Из низкомолекулярных углеводородов в нем образуются жидкие и твердые продукты, из водорода и кислорода — перекись водорода. Однако наиболее изученной и практически самой важной реакцией в барьерном разряде остается синтез озона из кислорода. Это обратимая эндотермическая реакция [c.244]


    В целях расширения аналитических возможностей метода полярографии широко используют различные модификации поляризующего индикаторный электрод сигнала напряжения. В одной из них линейно меняющееся напряжение Е х модулировано переменной составляющей имеющей незначительную амплитуду (не выше 60 мВ в случае реакции с одноэлектронным переходом). Форма переменного напряжения может быть различной— синусоидальной, прямоугольной, трапецевидной, треугольной, Частота переменного напряжения может меняться в широких пределах — Гц до кГц. Наличие переменной составляющей у линейно меняющегося поляризующего напряжения приво" дит к существенному изменению токовой характеристики и аналитических возможностей полярографического метода. Здесь мы рассмотрим только переменнотоковую полярографию, в которой постоянная составляющая модулирована синусоидальным напряжением, поскольку отечественные серийные приборы реализуют возможность использования в аналитической практике в основном именно этой разновидности метода полярографии с наложением периодически меняющегося напряжения. [c.281]

    Последний член в формуле (13.11) связан с контактной разностью потенциалов двух металлов, которая не входит в расчеты термодинамических параметров реакций, протекающих в гальваническом элементе. Поэтому его всегда опускают. Экспериментально исключение контактной разности потенциалов из величины напряжения элемента достигается исследованием электродных реакций в элементах с "правильно разомкнутой цепью", в которых измерение разности потенциалов двух электродов проводится между одинаковыми металлами. Например, к металлу М(2) присоединяют первый металл и к измерительному прибору подсоединяют проводники, сделанные из первого металла. [c.258]

    В одном из радиоспектрометров этого класса источником СВЧ мощности является генератор на Я= 1,2-10-2 м- . Модуляция осуществляется на частотах VI ==60 Гц (звуковая) и V2 = 462,5 кГц (ВЧ). Блок-схема этого радиоспектрометра приведена на рис. 8.17. Здесь СВЧ-мощность от генератора (клистрона) через резонансную полость попадает на диодный кристаллический детектор. Система включает в себя устройства /3 и для измерения длины волны, а также для регулирования и контроля мощности, поступающей в резонатор с веществом. Сигнал, возникающий на выходе, поступает в усилитель, настроенный на частоту 462,5 кГц с щириной полосы пропускания 8 кГц, затем — на линейный детектор, усилитель первой частоты модуляции и электронные осциллографы. Первый осциллограф при этом на экране дает изображение модуля производной формы линии. Напряжение временной развертки осциллографов подается от катушек низкочастотной модуляции через фазовращатель. На второй осциллограф сигнал поступает с фазочувствительного детектора, в опорном канале которого установлен фазовращатель частоты модуляции V2, а осциллограмма изображает производную линии резонансного поглощения образца. Приборы этого типа удобны для изучения хода химических реакций. [c.212]


    В батарейный стакан налейте до 2/3 его объема 25%-ный раствор серной кислоты. Опустите в него свинцовые пластины. Соедините прибор с источником постоянного тока напряжением 10 в. Включите ток и при помощи реостата установите силу тока около 1 а. Электролиз продолжайте до тех пор, пока на аноде не образуется заметное количество двуокиси свинца коричневого цвета. Затем выключите ток. При этом на электродах протекают химические реакции  [c.211]

    Получают озон чаще всего действием на газообразный кислород т. н. тихого разряда (электрического разряда без свечения и искр). Применяемый для этого в лабораторных условиях прибор — озонатор — схематически изображен на рис. И-15 (концы проводов присоединяют к полюсам индукционной катушки высокого напряжения). Тихий разряд происходит в пространстве между стенками внутреннего и внешнего стеклянных сосудов. Выходящий из озонатора кислород содержит несколько процентов озона. Его образование сопровождается уменьшением объема, так как по реакции ЗО2 —20з из 3 объемов кислорода получается 2 объема озона. [c.50]

    Анализатор АХС-203 (рпс. 6.19) представляет собой амперометрический концентратомер активного хлора, растворенного в вс де. В приборе измеряется предельный диффузионный ток во внешней цепи поляризованного электрода. При заданном постоянном напряжении величина тока пропорциональна концентрации активного хлора в растворе. Ток во внешней цепи электродов возникает вследствие электролиза — окислительно-восстановительных реакций, обусловленных присутствием в растворе хлора или других окислителей. Поляризационное напряжение должно соответствовать потенциалу восстановления активного хлора. [c.233]

    Если через раствор электролита пропускать постоянный электрический ток, ионы начнут двигаться в определенном направлении катионы — к катоду, анионы — к аноду. На катоде и аноде произойдут окислительно-восстановительные реакции, в результате которых образуются новые соединения. В лаборатории можно воспроизвести электролиз раствора поваренной соли или хлористого калия. Для этого удобен простой прибор, представляющий собой и-образную трубку с электродами, вставленными в верхнюю часть обоих колен. Электроды — угольные, их можно изготовить из угольных стержней обычной батарейки для карманного фонаря. Источником тока служит аккумулятор (необходимое напряжение — 4—6 в). В сосуд наливают 0,5 М раствор хлористого калия, добавляют 4—5 капель раствора фенолфталеина и пропускают ток в течение 8—10 мин. У катода образуется щелочь (об этом можно судить по изменению окраски раствора) и выделяются пузырьки водорода. У анода выделяется хлор. Это можно доказать, прибавив к раствору в анодном пространстве [c.63]

    Для измерения температуры реакции в пределах от —35 до +350°С обычно применяют ртутные термометры. Температуру от 350 до 600° С можно измерить при помощи ртутных термометров, наполненных азотом. Для контроля за температурой от —35 до —60° С употребляют термометры, наполненные подкрашенным толуолом или спиртом. Высокие температуры измеряют термопарами. Термометр обычно вводят или в реакционную смесь, или опускают в баню. Пользуясь масляными, глицериновыми и парафиновыми банями, всегда следует помещать в них термометр, так как они не. обладают постоянной температурой, подобно кипящей водяной бане. Некоторого регулирования температуры можно добиться путем ограничения подвода тепла к бане, т. е. путем изменения величины газового пламени или включением электронагревательного прибора через сопротивление. Для регулирования напряжения можно применять лабораторный автотрансформатор (ЛАТР), однофазный регулятор напряжения (РНО) и специальные регулирующие приспособления. [c.33]

    Для постоянного контроля и регулирования реакции среды на Бердянском и Ростовском нефтемаслозаводах используются промышленные рН-метры серии рН-2б1 в комплекте с проточными датчиками типа ДМ-5. Б качестве чувствительного элемента в датчиках используются системы со стеклянными измерительными электродами, позволяющими осуществить преобразование в электрическое напряжение параметра активности водородных ионов в пределах pH от -I до +14 при рабочих температурах 0-100°С, т.е. во всем необходимом для контроля смазок диапазоне. Система датчик - вторичный прибор обеспечивает точность измерения 0,1-0,2 pH, что вполне достаточно для практических целей. Наличие унифицированных выходных токовых сигналов (0-5 мА) у рН-метров позволяет, применять их в замкнутых контурах систем автоматического регулирования подачи тех или иных компонентов потока. [c.32]

    Масс-спектрометр является единственным спектральным прибором, в котором информация о молекуле получается не в момент взаимодействия молекулы с подводимой энергией а через сравнительно большой промежуток времени (около 10" се ). Обычно энергия передается молекуле бомбардирующими электронами. Для ионизации любой органической молекулы достаточна энергия 10—15 эв, но такая энергия редко используется для количественного анализа, если не исследуются очень сложные смеси, что будет рассматриваться ниже. При увеличении энергии электронов вышеупомянутого значения общая вероятность образования ионов непрерывно возрастает, так же как и соответствующая чувствительность прибора. В то же время увеличивается возможное число протекающих реакций распада ионизованной молекулы. Это находит отражение в увеличении интенсивности пиков осколочных ионов в масс-спектре эти изменения становятся незначительными при увеличении ионизирующего напряжения до 50—100 эв. Поскольку чувствительность и число пиков в спектрах углеводородов при таких энергиях велики, то для аналитической работы открываются широкие возможности, и поэтому обычно работают с электронами, обладающими именно этой энергией. [c.443]


    Дальнейшее увеличение чувствительности прибора ограничивается помехами, обусловленными проникновением раствора внутрь капилляра ( шумы капилляра). При этом под действием прямоугольного напряжения в токе ячейки появляется дополнительный компонент, изменение которого происходит обратно пропорционально времени в степени немногим более /2, т. е. почти по такому же закону, как и ток электрохимической реакции. Поскольку проникновение раствора в капилляр от капли к капле изменяется, при работе на высокой чувствительности резко снижается воспроизводимость полярограмм. [c.53]

    Наиболее высокая температура, при которой еще можно применять стекло, зависит от толщины его стенок и прежде всего от продолжительности механического воздействия. Если отсутствуют механические напряжения, то стекло можно доводить до температуры превращения и выше, не опасаясь деформации. Трубки для печей из стекла пирекс пригодны до 820°, трубки для сжигания из иенского стекла — до 860°. Однако подвергать стеклянные трубки слишком большому напряжению не рекомендуется уже незначительное закупоривание трубки сублимирующимися продуктами реакции может привести к ее раздуванию за счет избыточного давления внутри трубки. Деформация эвакуированного сосуда при очень длительном нагревании может произойти при температуре на 30—40° ниже температуры превращения. Для работы в вакууме пирексовые трубки пригодны лишь до 670°, а трубки для сжигания — даже до 720°. Эвакуированные приборы из кварцевого стекла устойчивы до 1200°. [c.23]

    В банку наливают 15—20 мл насыщенного раствора сернистой кислоты и сильно взбалтывают несколько минут, чтобы получилась смесь о воздухом выделяющейся из раствора двуокиси серы. Банку неплотно закрывают пробкой с укрепленной на ней спиралью с катализатором. Штепсельную вилку приготовленного прибора вставляют в розетку, соединенную о электрораспределительным щитом. Повышая напряжение, нагревают спираль до красного каления. Чем объясняется появление густого белого дыма в банке Составьте уравнение реакции окисления двуокиси серы. [c.142]

    Анализ кинетических данных упрощается, если реакции проводятся изотермически. Острие, находящееся первоначально в термическом равновесии с охлаждающим агентом, нужно нагреть до желаемой температуры (50—2000 К) за время, меньшее или равное одной секунде. Регулятор температуры, удовлетворяющий этим требованиям, можно сконструировать на основе промышленных приборов, как показано на рис. 12. Регулирование осуществляется путем использования двойного мостового контура Кельвина. Дифференциальный усилитель постоянного тока получает сигнал разбаланса с моста и быстро включает ток нагрева, идущий от источника напряжения до тех пор, пока стандартное сопротивление и сопротивление петли не станут равными. Для большинства задач пригоден управляемый программный источник постоянного тока на О—10 А. [c.191]

    Потенциометрическое титрование для окислительно-восстановительных реакций проводится с помощью платинового электрода ЭТПЛ-01 М. Для работы с блоком автоматического титрования прибор имеет выход по напряжению О—2 В и может быть использован только в диапазоне— 1-н14. [c.446]

    Джордан [34] сконструировал прибор для термометрического титрования, приспособленный главным образом для аналитических целей, в котором можно, однако, проводить и калориметрические измерения. Калориметр представляет собой обычный сосуд Дьюара, снабженный мешалкой, титратором, нагревателем и термистор-ным датчиком температуры. Термистор связан с мостиком Уитстона. Снимаемое с него напряжение непосредственно записывается на самописце. Ни калориметр, ни бюретка не термостатируются. Прибор предназначен для измерения теплоты реакции с небольшой степенью точности ( 1%). [c.60]

    Обычно, после того как реакция закончится примерно на 98%, используют силу тока, составляющую около 0,1 от обычного значения. В приборе, разработанном для кулонометрии высокой точности, напряжение регулируемого тока в сети редко изменяется более чем на 0,001% в течение дня силу тока измеряют с помощью стандартного резистора высокой точности (точность выше 1 млн ) падение напряжения iR устанавливается такое же, как в элементе Вестона. Время измеряют с точностью 1 млн или выше [13]. [c.116]

    Таким образом, потенциалы металлов можно сравнивать по эдс гальванической цепи с водородным электродом. Однако из-за условия стандартности концентраций ионов h+= uu+ = 1 моль/л описываемое устройство непригодно для такого рода измерений, так как вольтметр покажет равновесное значение эдс только в момент замыкания цепи. Вследствие прохождения тока и протекания реакции концентрации ионов в растворах сразу же начнут изменяться, эдс будет непрерывно уменьшаться и, когда в системе будет достигнут минимум изобарного потенциала, эдс станет равной нулю. Поэтому для измерения электродного потенциала применяют метод, при котором ток в цепи не протекает и потенциалы на электродах сохраняются постоянными. Этот метод, называемый компенсационным, заключается в том, что от внешнего источника тока на электроды методом подбора подают такое напряжение, которое равно разности потенциалов между электродами, но противоположно по знаку. При этом ток в системе будет отсутствовать и на электродах установится состояние, максимально приближающееся к равновесному. Таким образом, измерение потенциала сводится к измерению компенсирующего напряжения. Прибор для измерения разности потенциалов (или эдс) этим методом называется потенциометром. [c.261]

    Изучение кинетики электродных реакций связано с необходимостью записи различных переменных электрических величин и прежде всего силы тока и напряжения. Первые попытки таких измерений были осуществлены Ленцем в 1849 г. Он предложил способ измерения мгновенных значений этих величин. Идея Ленца вскоре была воплощена в конструкции так называемой шайбы Жубера. В 1891 г. была разработана первая конструкция шлейфового осциллографа. Этот прибор непрерывно совершенствовался, и в настоящее время, пользуясь им, мож1но измерять переменные токи с частотой до 20 кгц. [c.258]

    Схема прибора в сосуд (рис. 115) помещают расплавленный хлорид лития и в него опускают электроды. При пропускании тока соответствующего напряжения Li - ионы идут к отрицательному полюсу и здесь, получая электроны, переходят в нейтральное состояние ионы хлора С1 идут к положительному полюсу, где, отдавая электроны, превращаются в молекулы газа хлора. Между электродами помещается перегородка А, проницаемая для ионов, но не проницаемая для нейтральных атомов и молекул. Она представляет собой трубчатый холодильник, по которому циркулирует холодная вода, вследствие чего на поверхности труб образуется слой твердой солн. Соль свободно пропускает ионы, но препятствует нейтральным атомагл и молекулам соприкасаться между собой и вступать в реакции. Хлорид лития в электролизере поддерживается в расплавленном состоянии [c.234]

    Fe +/Fe + она равна 0,7 В, равновесие практически полностью сдвинуто влево. Разумеется, между двумя одинаковыми электродами нет разности потенциалов. При освещении возникает возбужденное состояние (R +), и теперь перенос электрона к Ре + может вывести обе системы из равновесия. Однако существует обратная реакция, которая в конечном счете приводит к установлению стационарного состояния на свету. Хотя потенциалы на каждом из электродов могут номинально изменяться, нельзя различить разности потенциалов, если освещение постоянно. В то же время, если падающий свет поглощается ближе к одному электроду, чем к другому, можно наблюдать фотоиндуцированное напряжение, так как возникает нечто вроде концентрационного элемента. Возникновение и знак фотоиндуцированного напряжения зависят от того, у какой из двух окислительно-восстановительных пар быстрее проходит обратная реакция на электродах, т. е. от электродной кинетики. У таких приборов эффективности преобразования энергии малы (<1%) преимущественно из-за неудовлетворительной кинетики переноса электронов. Высокоэнергетические окислительновосстановительные продукты, возникающие при освещении, стремятся вернуться в исходное состояние с помощью обратного электронного переноса, а не желаемого переноса электронов через нагрузку во внешней цепи. [c.273]

    Приборы для определения ЭПР называют радиоспектрометрами. Они работают на частоте 9000 мегагерц, что соответствует магнитному полю 300 эрстед. Спектр ЭПР можно охарактеризовать по интенсивности, резонансному значению напряженности магнитного поля Я , ширине и форме линий, их тонкой и сверхтонкой структуре. Под интенсивностью спектра понимают площадь под кривой резонансного поглощения. Она пропорциональна числу парамагнитных частиц или их концентрации в исследуемом веществе. Метод ЭПР применяют в фотохимии, радиационной химии при исследовании ионных кристаллов, в реакциях со свободными радикалами, при одноэлектронных редокспроцессах, при каталитических реакциях. [c.453]

    В обычном устройстве с выходом по току на аноде, равном 100%, в ячейке используется постоянный ток силой 80 А и напряжением 1,5—3,5 В в соответствии с выбираемым металлом. Напряжение регулируется так, чтобы оно превышало значение, при котором начинается растворение, и оставалось постоянным до тех пор, пока не растворится весь металл покрытия. Тогда в электродном процессе происходят изменения в результате вовлечения в него отличных по составу нижележащих материалов, которые вызывают скачок напряжения на электродах это указывает на окончание процесса растворения (по срабатыванию отключающего реле). Интегрирующий кулонометр, включенный последовательно с ячейкой, отмечает количество кулонов, расходуемых во время реакции растворения эта цифра, умноженная на некоторую постоянную, позволяет вычислить толщину покрытия. (В более поздних моделях устройства, заменивших интегрирующий счетчик, даются непосредственные показания толщины в условных единицах, основанные на точном измерении времени, в течение которого пропускается ток, поддерживаемый на постоянном уровне.) Датчик толщиномера состоит из трубки диаметром около 25 мм и длиной 40 мм с гибким пластмассовым наконечником, имеющим центральное круглое отверстие диаметром 5 мм. Стенка трубки из нержавеющей стали образует катод, а деталь электрически так соедийена с прибором, чтобы образовать анод. [c.145]

    Надо отметить, что развитие этого метода в последние годы стало возможным благода.ря успехам электроники. Кулономет-ры действуют на следующем принципе. Потенциал рабочего электрода, измеряемый вспомогательным электродом, сравнивается в приборе с заданным потенциалом. Разность этих величин усиливается и управляет током источника, питающего электролизер таким образом, чтобы поддержать потенциал рабочего электрода на заданном уровне. Ток электролиза интегрируется в специальном устройстве сумма тока выдается интегратором в виде напряжения и может быть измерена и зарегистрирована. Полностью электронные приборы обладают быстрой реакцией на возможные изменения параметров процесса электролиза и ячейки и обеспечивают высокую точность измерения. [c.221]

    Дают пятнам высохнуть и затем помещают конец бумаги,, ближайший к базовой линии, во внутреннее отделение кюветы, связанное с анодом, а другой конец бумаги — во внутреннее отделение кюветы, связанное с катодом. С помощью кисти смачивают бумагу проводящей жидкостью, начиная с концов бумаги в направлении базовой линии. Не смачивают полоску, на которой находится нанесенное вещество. Закрывают крышку и дают жидкости диффундировать через базовую линию если необходимо, закрывают прибор, чтобы защитить его от действия света, соединяют кабель с источником энергии и включают ток. Доводят напряжение примерно до 20 В на 1 см бумаги между кюветами и дают процессу протекать в течение указанного времени или до тех пор, пока маркерное вещество не пройдет определенное расстояние. Выключают ток, вынимают бумагу, высушивают в токе воздуха, защищая, если необходимо, от действия света, и оценивают полученную элек-трофореграмму в условиях, описанных в статье. Если статьей предписано применение маркерного вещества, результат испытания считается достоверным только в том случае, если это вещество продвинется от базовой линии на указанное расстояние. Если интенсивность любого дополнительного пятна, полученного с испытуемым веществом, меньше, чем интенсивность пятна, полученного с раствором стандартного образца, вещество соответствует требованиям. Если указано в статье, опрыскивают бумагу равномерно с обеих сторон реактивом, проводят дальнейшую предписанную обработку для завершения реакции и применяют те же критерии для оценки полученных пятен. [c.117]

    Схема прибора С. Миллера приведена на рис. 49. В реакционную колбу, содержащую смесь газов, были вмонтированы вольфрамовые электроды. В течение недели пропускали искровые разряды напряжением 60000 В. Содержащуюся в другой малой колбе воду поддерживали в состоянии кипения. Пары воды проходили через реакционную колбу и конденсировались в холодильнике. В процессе циркуляции они захватывали из реакционной колбы продукты реакции и переносили их в ловущку, где и осуществлялось их концентрирование. При идентификации продуктов реакции были обнаружены аминокислоты (глицин, а- и Р-аланин, глутаминовая, аспарагиновая кислоты и др.) и органические кислоты (муравьиная, уксусная, пропионовая, гликолевая, молочная). По данным С. Миллера, основными первичными продуктами реакции в зоне разряда являются альдегиды и цианистый водород. Вторичные реакции, происходящие в водной фазе, приводят к образованию из них аминокислот и органических кислот. [c.191]

    Образец исследуемого материала в форме тонкой, узкой, длинной пластины с ориентировочными размерами 150.. .300 х 5 х 2...3 мм соединяют с выносным датчиком АЭ-прибора. Свободный конец образца погружают в коррозионный раствор, заливаемый в коррозионную ячейку. Для сдвига электрохимического потенциала в электролит погружают вспомогательный электрод. Изменяя разность потенциалов между образцом и этим электродом с помощью внешнего источника тока, можно менять величину тока между ними, изменяя таким образом электрохимический потенциал образца и условия протекания на нем электрохимических реакций, стимулирующих коррозию. Погруженная часть образца изолирована защитным лаком по всей поверхности, кроме экспонируемой площадки размером 0,5... 1смЯчейка оборудована нагружающим устройством, обеспечивающим возможность задания деформации изгиба и, соответственно, растягивающих напряжений на экспонируемой пло -щадке до 150...300 МПа (15...30 кгс/мм ). С целью повышения достоверности результатов использовали соединение образца с датчиком в средней части образца, что позволяло, перевернув его и нанеся заново защитное покрытие на другие части, получить по четыре назвисимых измерения на одном образце. [c.251]

    Так, в ароцессах внсокотешературного превращения нефтяных остатков, например, при их карбонизации за счет реакций уплотнения, происходит постепенное утяжеление коксующейся массы и увеличение ее вязкости, которая складавается из вязкости изотропной среды и жидкокристаллической анизотропной фазы. Изучение изменения реологических свойств коксующейся массы позволяет разобраться в про-пессах, происходящих при образовании кокса из жидкой фазы, а гак -же найти способы регулирования фазовых переходов с целью повышения выхода и улучшения качества нефтяного кокса. В работах [74,75] приводятся результаты изучения реологических характеристик коксуемой массы, которые получены на ротационном пластовискозииетре типа конус-конус, являющемся упрощенной модификацией прибора [76], Прибор работает по принципу постоянной скорости сдвига. Верхняя часть внутреннего конуса изготовлена в виде полусферы, что позволяет вспученной массе стекать обратно в реакционное пространство. Потенциометр фиксирует температуру в измерительной ячейке и усилие на валу конуса, которое зависит от вязкости коксуемой массы. На основании данных потенциометра строится график изменения напряжения сдвига во времени. Напряжение сдвига вычисляют по формуле [c.25]

    Разность потенциалов между цинковым и серебряным электродами измеряют, компенсируя ее равным и противоположным по знаку напряжением от потенциометра так, чтобы во внешней цепи тока не было. Чтобы предотвратить включение контактных потенциалов между двумя металлами в измеряемую разность потенциалов, краевые участки на каждом электроде должны быть из одного и того же металла. Для этого проще всего добавить кусочек цинка к серебряному электроду или кусочек серебра к цинковому. Тот же результат дает использование двух медных проводов, соединяющих ячейку с измерительным прибором. Тогда измеряемая разность потенциалов действительно служит дшжущей силой реакции в ячейке и поэтому называется электродвижущей силой (Э.Д.С.) она является мерой возможной скорости реакции. [c.12]

    Электрическая энергия является наиболее удобным и экономичным способом нагревания, получения высоких и очень высоких температур. Беспламенные нагревательные приборы применяются также для того, чтобы уменьшить опасность пожара. Их использование исключает загрязнение воздуха продуктами сгорания газа, что является важным фактором с гигиенической точки зрения, а также способствует улучшению условий проведения химических реакций не изолированно от атмосферы. Приборы, которые обычно применяют в любой лаборатории, — электрические плитки, бани, сушильные шкафы, термостаты и др. — дают нагрев до 400° электрические печи (тигельные, трубчатые, криптольные, дуговые, индукционные) имеют рабочую температуру в зависимости от материала нагревания и типа печи 1000—3000°. Ясно, что получение высоких температур связано с применением более опасного для работающих по силе, напряжению и Ь10щности электрического тока. Высокотемпературные лабораторные электрические печи, как правило, работают под вакуумом или с защитной газовой средой. Большая часть лабораторных печей снабжается автоматическими регуляторами температуры. [c.232]

    Улучшение механических характеристик — прочности, долговечности катализаторов, носителей и сорбентов — становится все более важной задачей химической технологии в связи с интенсификацией каталитических процессов. Отыскание и научное обоснование оптимальных методов приготовления катализаторов с заданными физико-химическими и механическими свойствами, а также задачи стандартизации и выбора правильных критериев для сргкнительной оценки качества материалов, выпускаемых различными предприятиями, настоятельно требуют дальнейшей разработки и усовершенствования методов и приборов для механических испытаний катализаторов [1]. Эти испытания должны включать ряд методов, позволяющих оценивать материал с разных сторон, -в соответствии с различными возможными условиями механических воздействий [2]. Действительно, в металловедении, например, для всесторонней оценки механических свойств материала давно используются разнообразные, в совершенстве разработанные статические, ударные и усталостные испытания аналогично и в рассматриваемом иами специфическом случае высокодисперсных тонкопористых материалов — катализаторов, носителей, сорбентов, где работы в данном направлении еще только начинают развиваться, оценка механических характеристик также должна быть всесторонней и проводиться в различных условиях статических и динамических нагрузок. Этот комплекс методов должен включать испытания в условиях, отвечающих реальным условиям эксплуатации, поскольку в ходе реакции, при совместном действии механических напряжений, температуры и активной среды, могут наблюдаться резкие изменения прочности и долговечности гранул [14—18]. Вместе с тем для повседневного контроля качества материала на основе такого все-сторойнего обследования целесообразно выделение лишь одно-го-двух методов, самых характерных для данного типа гранул,— как пра вило, таких, которые наиболее чувствительны к минимальным значениям прочности. [c.5]

    Другой метод обнаружения метастабильных ионов, позволяющий получить сведения об их происхождении, включает измерение кинетической энергии ионов. Обычно ион попадает на коллектор с энергией еУ, где V — ускоряющее напряжение. Если электрод коллектора имеет такой потенциал, что он будет отталкивать приходящие ионы, то кинетическая энергия в момент регистрации будет уменьшаться если потенциал коллектора только на несколько вольт будет более отрицательным по сравнению с камерой, то ионы, по каким-либо причинам потерявшие кинетическую энергию, при прохождении через прибор не будут регистрироваться. Когда ион с массой /пь пересекающий ускоряющее поле, разлагается с образованием иона /пг, кинетическая энергия распределяется между осколками в соответствии с массами. Положительный ион с массой гпг получит только долю т-2,1 исходной кинетической энергии и, следовательно, будет остановлен выталкивающим потенциалом тгУ т . Ионы, которые распадаются до пересечения ими ускоряющего поля, не будут терять так много энергии. Задерживающий потенциал может быть использован либо для подавления всех метастабильных ионов, либо для определения кинетической энергии, получаемой ионами и, следовательно, для определения отношения т 1тг. Если это отношение обозначить через К, то /П1= К т и тг= = Кт. Таким образом, оказывается возможным определить т1 и тг в тех случаях, когда их нельзя заимствовать из приложения 2 вследствие того, что т известно недостаточно точно. Такое измерение может быть проведено, например, для решения вопроса о происхождении метастабильного иона в масс-спектре пропилена примерно с массой 38. В работе [45] приписывают его реакции (СзН4) ->(СзНз) -Ь Н, тогда как Блум и сотрудники [239] указывают на [c.262]

    Время пролета иона представляет собой промежуток времени между образованием иона и его регистрацией. В приборе с секторным магнитным полем, использующем магнитную развертку, все ионы получают одинаковую энергию ускорения, и время, необходимое тяжелым ионам для достижения коллектора, больше, чем для легких, но в обоих случаях оно зависит от величины ускоряющего напряжения, используемого для регистрации данного спектра. При развертке спектра по напряжению разница во времени пролета тяжелых и легких ионов будет еще больше. Значительная часть времени пролета ионов приходится на ионизационную камеру, где ионы под действием слабых полей движутся относительно медленно. Контроль времени пролета ионов можно осуществить при помощи выталкивающего электрода, расположенного в ионизационной камере для этой цели на электрод подается небольшой отрицательный (по отношению к стенкам камеры) потенциал поле выталкивающего потенциала подавляет действие рассеянных полей, проникающих в ионизационную камеру от главного ускоряющего поля. Легко видеть, что любые изменения, приводящие к увеличению времени пролета различных ионов, будут вызывать изменение интенсивностей пиков осколочных ионов, поскольку большинство ионов в масс-спектрах органических молекул образуется при многоступенчатых реакциях, и спектры их зависят от времени. Так же как и в приведенных выше примерах, по изменению времени пролета ионов можно видеть, что такие факторы, как образование изолирующих пленок на электродах ионизациогЛюй каме-, ры, вызывающие изменение положения электронного пучка и, следовательно,) области образования ионов, могут также воздействовать на время пролета.) [c.445]

    Высокая точность измерения, необходимая в элементном анализе, может быть достигнута при условии высокой стабильности всех параметров эксперимента (скорость газа-носителя, температура, напряжение питания детектора и т. д.). Хроматографический анализ продуктов реакции проводят двумя методами элюент-ным (большинство работ и коммерческих приборов) и фронтальным, разработанным Резлом и Янаком [3, 8]. Фронтальный метод [3, 8] имеет следующие преимущества сигнал катарометра от ступенчатой хроматографической зоны прямо пропорционален концентрации вещества в одном опыте, используя сорбционный и десорб-ционный процессы, можно провести два измерения концентраций. Простые продукты окисления анализируемого вещества в методе Резла — Янака разбавляются газом-носителем в цилиндрической камере с поршнем и после установления равновесия смесь продуктов выдавливается поршнем цилиндра в хроматографическую колонку и затем в детектор, который фиксирует фронтальную хроматограмму, затем в колонку подают чистый газ-носитель и детектор фиксирует десорбционную часть фронтальной хроматограммы. На основе сочетания хи-мико-деструкционного и фронтально-хроматографиче-ского методов разработан оригинальный коммерческий прибор для элементного анализа [3]. [c.189]

    Но возможности электрохимиков не ограничиваются изучением в самом широком диапазоне сжор-ости электрохимических реакций. Современная электронная техника дает возможность определять изменение этой скорости, т. е. измерять своеобразное электрохимическое ускорение в очень небольшие промежутки времени — до одной МИЛЛИ0НП011 доли секунды. Принцип такого измерения скорости электродного процесса с помощью катодного осциллографа заложен почти во всех современных электрохимических приборах (речь о них пойдет ниже). На входных клеммах катодного осциллографа любые, пусть даже самые быстрые, изменения напряжения вызывают соответствующие откло-нення луча па экране электроино-лучевой трубки. Таким образом, можно увидеть, а если нужно, то и сфотографировать, все изменения напряжения на его входных клеммах. Нанример, если подключить катодный осциллограф к розетке обычной сети освещения, использующей, как известно, перемен- [c.45]

    Полярограммы растворов, содержащих сульфид, регистрировались электронным полярографом ПЭ-312. Циклические вольтамперные кривые на. электроде с висящей ртутной каплей по Кемуля снимались полярографом РО-4 фирмы Радиометр (Дания). Осциллополярографические исследования выполнены на приборе ПО-1 Ростовского опытного завода. Дифференциальную емкость на границе ртуть — раствор измеряли с точностью около 1 % на мостовой установке по последовательной схеме. В случае протекания электрохимической реакции (наличие псевдоемкости реакции) результаты измерений пересчитывали на параллельную схему. Амплитуда переменного напряжения не превышала 7 мв. Поверхность электрода в момент компенсации (через 4,5 сек после отрыва предыдущей капли) находили из веса капли. Электрод имел период капания около 15 сек. Конец его был сошлифован на конус для уменьшения экранирования канли торцом капилляра. Анодом служил цилиндр из платиновой жести с окошками для наблюдения за капилляром. Потенциал электрода относительно нормального каломельного полу-элемента измерялся потенциометром ППТВ-1. [c.261]

    Представляет интерес прибор для автоматического контроля катодного потенциала, предложенный Пальмером и Фогелем [5]. На выходе такогр прибора можно получить силу тока до 10 а и напряжение 20 в. Такие характеристики позволяют использовать прибор для многих органических реакций восстановления. Оказывается, что с небольшим усовершенствованием этот прибор может быть использован и для электролитического окисления. Принципиальная схема прибора приведена на рис. 8. [c.39]

    Образец плотно зажимают между двумя пластинками подвижной свинцовой 1 (анод) и неподвижной алюминиевой 2 (катод). На последнюю по Ме-щают листок фильтровальной бумаги 4, смоченной раствором какого-нибудь электролита (КС1, K2SO4 и др.). На этот листок накладывают другой, смоченный соответствующим открываемому иону реактивом, и прижимают его плотно к отполированной и тщательно промытой поверхности образца. Через прибор пропускают постоянный ток напряжением 6—9 в в течение нескольких секунд. На бумаге происходит реакция и по появлению окрашенных пятен можно судить о присутствии в образце тех или иных элементов. [c.577]

    Собирают прибор (рис. 50). Источником тока служит свинцовый аккумулятор, дающий напряжение около 2 в. Берут чистый стакан на 150 мл, в который помещают раствор сульфата меди Си504, содержащий 0,1—0,15 г меди. Приливают к нему 7—8 лл 2 н. раствора азотной кислоты нЗ мл разбавленного раствора серной кислоты (1 4). Затем опускают в стакан платиновый сетчатый электрод (катод) и закрепляют его так, чтобы он не соприкасался с дном и и стенками стакана. Другой электрод — платиновую спираль (анод) — закрепляют так, чтобы он был в центре сетчатого электрода. После этого необходимо разбавить исследуемый раствор водой, чтобы уровень жидкости в стакане был приблизительно на 1 см ниже верхнего края сетки. Стакан накрывают стеклянными пластинками для улавливания брызг. Затем сетчатый катод подсоединяют к отрицательному, а спираль (анод) — к положительному полюсу источника тока. Раствор подогревают слабым пламенем горелки не выше 60° С, так как иначе медь начнет растворяться. Электролиз следует продолжать до полного обесцвечивания раствора, после чего следует проверить полноту осаждения меди качественной реакцией с гексацианоферратом-(П) калия К4 1Ре (СК)в1. [c.398]


Смотреть страницы где упоминается термин Приборы для реакций напряжения в них: [c.482]    [c.325]    [c.97]    [c.228]    [c.357]    [c.166]    [c.418]    [c.72]    [c.427]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.21 ]




ПОИСК







© 2025 chem21.info Реклама на сайте