Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода взаимодействие с кислородом

    Хуанг [130] исследовал адсорбцию СО на серебряных формах цеолитов X и У. Перед адсорбционными измерениями цеолиты со степенями обмена больше 90% выдерживали в вакууме при 350—400° С, а затем нагревали в кислороде. В спектрах обоих цеолитов наблюдается полоса при 2195 см тогда как в спектре цеолита У, содержащего катионы u(I), эта полоса смещена к 2160 см . В присутствии предадсорбированного аммиака полос, связанных с адсорбцией СО, не обнаруживается. Однако в результате частичного удаления аммиака после вакуумирования при 25° С эта полоса появилась в области 2170 см , после вакуумирования при 110° С — вблизи 2180 см , а после вакуумирования при 380°С она сместилась к 2200 см . Возможно, что окись углерода взаимодействует с катионами путем образования тг-связей. Если присутствие аммиака сдвигает полосу поглощения СО, адсорбированной цеолитом СиУ, на 80 см , то для цеолита AgY величина этого сдвига составляет 25 см . Очевидно, адсорбция аммиака не меняет локализацию ионов серебра в цеолите в такой степени, как это предполагается для медного цеолита. [c.237]


    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    Газ, полученный в результате конверсии углеводородов, содержит значительные количества окиси и двуокиси углерода (от 10 до 35% и от 15 до 30% соответственно). Окись углерода, как известно, является потенциальным источником водорода, в результате ее каталитического взаимодействия с водяным паром образуются водород и двуокись углерода. Этот процесс можно рассматривать как грубую очистку от окиси углерода. Грубую очистку от двуокиси углерода осуществляют описанными выше абсорбционными методами. В результате очищенный газ может содержать от 50 см /м до 7000 см /м окислов углерода. Кроме того, в газе обычно присутствуют незначительные примеси кислорода (до 500 см /м ). [c.366]

    Можно представить себе, что реакция образования двуокиси углерода протекает в две стадии сначала из углерода и кислорода получается окись углерода (первая стадия) затем окись углерода взаимодействует с кислородом, образуя двуокись углерода (вторая стадия) [c.26]

    Окись углерода СО бесцветный газ, без запаха, чрезвычайно ядовит. Отравляющее действие окиси углерода состоит в том, что она необратимо взаимодейству-, ет с гемоглобином крови, которая после этого утрачивает способность переносить кислород от легких к тканям. По химическим свойствам СО является типичным восстановителем. [c.310]


    Далее, получившаяся окись углерода взаимодействует с кислородом воздуха по реакции [c.41]

    Гарнер с сотрудниками [60—62, 66] детально изучил каталитическое окисление окиси углерода на закиси меди, использовав для исследования поверхностных процессов методы измерения электропроводности и теплот адсорбции. Было показано, что электропроводность пленки закиси меди в процессе окисления примерно такая же, как и в случае пленки, насыщенной окисью углерода, и отличается от электропроводности пленки СнгО, обработанной кислородом. Более того, как показали Гарнер с сотрудниками, стационарная электропроводность в случае предварительной адсорбции кислорода устанавливается в течение значительно более долгого времени, чем на свободной поверхности. Это показывает, что во время реакции поверхностная концентрация окиси углерода высокая, а кислорода — низкая. Было сделано предположение, что кислород и окись углерода взаимодействуют на поверхности с образованием карбонатного комплекса, который в свою очередь реагирует со следующей молекулой окиси углерода, образуя двуокись углерода  [c.43]

    Окись углерода—бесцветный газ, без вкуса и практически без запаха, что особенно затрудняет его органолептическое определение. Окись углерода является сильным ядом кумулятивного действия, т. е. обладает способностью постепенно накапливаться в организме. При взаимодействии СО с гемоглобином крови образуется карбоксигемоглобин—стабильное соединение, не поглощающее кислород воздуха и тем самым мешающее крови быть переносчиком 63. Результат длительного воздействия окиси углерода в малых концентрациях (хроническое отравление) проявляется у человека через 2—3 месяца. При этом наблюдаются головные боли, головокружение, потеря зрения и чувствительности кожи. [c.172]

    Чтобы проследить пути взаимодействия кислорода с полимером, было изучено [108] окисление полиэтилентерефталата с тяжелым кислородом Юг. Массо-спектрометрический анализ показал окись углерода содержит кислород только из полимера значительные количества двуокиси углерода содержат тяжелый кислород около половины ацетальдегида и воды образуется из атмосферного кислорода. [c.89]

    Катализаторы конверсии природного газа с окислами металлов., Сущность этого процесса состоит во взаимодействии кислорода окислов металлов с углеводородами, которое приводит к образованию газа, содержащего водород, окись углерода и частично восстановленного окисла металла. [c.37]

    Вместе с тем надо помнить, что избыток воздуха требует больших затрат энергии, а недостаток ведет к образованию СО. Поэтому надо выбирать оптимальный режим, имея в виду, что в отходящих газах довольно велико содержание кислорода. Взаимодействие окиси углерода и кислорода приводит к так называемому догоранию (дожигу) СО, температура может возрасти до 1000— 1100°С, что в неконтролируемых условиях может вызвать значительные повреждения оборудования. Для своевременного выявления и подавления этого процесса в регенератор обычно впрыскивают воду. Если догорания не происходит то окись углерода выводят в печь, где одновременно генерируется водяной пар. В последнее время эксплуатируются установки со специальным катализатором и измененным режимом работы в них СО дожигают непосредственно в регенераторе. [c.67]

    Большинство исследователей пришло к выводу, что окись и двуокись углерода являются первичными продуктами окисления углерода при хемосорбции. Установлено, что кислород никогда не может быть десорбирован в чистом виде. Сорбционный механизм взаимодействия кислорода с углеродом может быть представлен следующей приближенной схемой. Атомы кислорода, находящиеся вблизи углеродной поверхности, адсорбируются на поверхности и удерживаются на ней за счет химических сил. При этом происходит более глубокое объединение атомов кислорода и углерода с образованием сложных гипотетических соединений типа С Оу Этот комплекс распадается по истечении некоторого времени с выделением СО и СОз. Стадии протекания этого процесса могут быть представлены следующим образом  [c.143]

    Доказано, что при образовании на металле сплошного монослоя водорода или кислорода на 1 атом водорода или кислорода приходится 1 атом поверхности металла. При хемосорбции азота, окиси углерода, углеводородов образуются более сложные сорбционные соединения. Окись углерода может образовать монослой путем такого взаимодействия атомов - [c.198]

    Полученная по реакции (И 1.2) окись углерода может вступать во взаимодействие с кислородом  [c.88]

    Характерным для С окислом является также окись углерода (СО). Она образуется в тех случаях, когда сгорание-углерода или его соединений идет при недостатке кислорода. Чаще всего она получается в результате взаимодействия углекислого газа с раскаленным углем  [c.494]

    При этом процессе перегретый водяной пар смешивают с углеводородным сырьем, нагревают до 565°С, смешивают в диффузоре с нагретым до 510°С кислородом или обогащенным кислородом воздухом, и смесь подают в верх каталитического реактора. Кислород вступает в экзотермическую реакцию с углеводородом в незаполненной зоне над слоем катализатора. Здесь же протекают эндотермические реакции углеводородов с водяным паром и двуокисью углерода, ограничивающие подъем температуры в результате экзотермической реакции. Затем реакционную смесь пропускают через слой никелевого катализатора, в котором эндотермические реакции протекают почти до равновесия, что позволяет достигнуть достаточно полного превращения углеводородного сырья в окись и двуокись углерода и водород. Получаемые газы, выходящие из каталитического реактора при температуре около 950°С, охлаждаются примерно до 350°С и направляются через второй реактор, содержащий окисный железохромовый катализатор, для превращения окиси углерода взаимодействием с водяным паром в двуокись углерода и водород. [c.180]


    Согласно одной из них, при взаимодействии углерода и кислорода прежде всего образуется двуокись углерода, в дальнейшем реагирующая с углеродом, в результате чего образуется окись углерода (редукционная теория). [c.201]

    С, а при достижении температур свыше 1 600° С выход окиси углерода превышает выход углекислоты в 2 раза. Таким образом, раскаленный углерод, взаимодействуя с кислородом при высоких температурах, не столько горит , сколько газифицируется . Это понятно, если вспомнить, что молекула углекислоты (СОо) обладает устойчивостью только при сравнительно умеренных температурах и охотно теряет ее в присутствии раскаленного углерода, захватывая лишний атом этого углерода и раскисляясь в окись углерода по уже приводившейся схеме [c.169]

    Наиболее эффективным восстановителем является угЛерод, затем следуют фосген и окись углерода. Однако уголь связывает кислород преимущественно в виде СО, что дает незначительный тепловой эффект, тогда как при взаимодействии окиси углерода с кислородом выделяется почти в три раза больше тепла. Это позволяет вести процесс хлорирования без подвода тепла извне. [c.519]

    Взаимодействие с кислородом. Как показано, при взаимодействии твердого углерода с кислородом образуется СО и СО2. Долгое время обсуждался вопрос о том, какой из этих продуктов является первичным и какой образуется в результате вторичных реакций. Часть исследователей полагала, что первичной является окись углерода, которая затем сгорает частично в газе до двуокиси. Другие, напротив, считали, что сначала образуется двуокись углерода, в той или иной мере восстанавливающаяся затем в результате вторичной реакции с углем до окиси. Позднее Ридом и Уиллером (1910 г.) было высказано предположение о том, что при взаимодействии О2 с твердым углеродом сначала образуется [c.210]

    Условный водородный показатель и условный расход водяного пара. Реакцию конверсии СН с несколькими окислителями (водяным паром, кислородом, двуокисью углерода) можно представить как взаимодействие СН с одним окислителем (например, с водяным паром). Среди реагентов могут находиться окись углерода и водород для такого общего случая можно записать следующее равенство, как некоторую условную реакцию  [c.6]

    Адсорбция даже таких простых газов, как водород, кислород, азот и окись углерода, на переходных металлах представляет собой весьма сложный процесс, поскольку в ходе адсорбции образуется несколько связанных форм. Об этом, в частности, убедительно говорят спектры термодесорбции водорода, азота и окиси углерода с поверхности поликристаллического вольфрама (рис. 10). Слабо связанные состояния водорода и азота имеют, по-видимому, молекулярный характер и образуются в результате взаимодействия с переносом заряда, в то время как несколько прочно связанных состояний являются атомарными. Существование нескольких хемосорбционных состояний отчасти может быть следствием кристаллографической неоднородности поверхности поликристаллического адсорбента. Однако это не единственная причина, поскольку такая же сложная картина наблюдается при адсорбции на поверхностях. [c.25]

    Более жесткие ограничения налагаются химическими взаимодействиями на горячем источнике электронов. Уже давно замечено, что способные к диссоциации газы легко удаляются при взаимодействии с горячим катодом [108]. Но до последнего времени оставалась не выясненной возможность химических изменений и создания новых частиц [20]. Например, при работе ионизационного манометра было найдено, что как кислород [ПО], так и водород [111] образуют окись углерода и другие углеродсодержащие соединения за счет взаимодействия с металлическими частями установки, содержащими углерод, и со стеклянными стенками. Эти реакции инициируются термически, и их можно подавить, лишь понижая температуру эмиттера. [c.268]

    Взаимодействие окиси углерода и кислорода в присутствии кварцевого стекла Замедляет окись углерода 30 [c.332]

    Предкарительное изучение других реакций обнаружило большое разнообразие возможных реакций (см., в особенности, е i, стр. 2273). Молибден и окись углерода взаимодейство али совершенно так же, как вольфрам и азот. На поверхности раскалённых нитей происходят многие реакции разложения например, вольфрам разлагает аммиак, углекислоту и циан. Продукты разложения иногда вступают в дальнейшие реакции например, углекислота окисляет вольфрам в трёхокись, но поверхность металла при этом не покрывается устойчивым адсорбционным слоем атомов кислорода. При разложении водяного пара, однако, образуется адсорбционный слой кислорода. Окись углерода разрушает вольфрамовые нити, причём, когда молекулы газа находятся при достаточно низкой температуре, эта оки ь образует на поверхности, повидимому, мономолекулярную плёнку, возгоняющуюся в виде соединения W O, причём каждая молекула окиси углерода отрывает от нити по одному атому вольфрама. Если же газ достаточно нагрет (выше комнатной температуры), то эта плёнка либо весьма далека от сплошной, либо вовсе не образуется, и реакция между газ эм и нитью идёт гораздо медленнее. [c.371]

    Для полного и быстрого горения газа необходимо создать хорошие условия перемещивания его с воздухом в соотнощени-ях, обеспечивающих протекание реакций взаимодействия между горючими компонентами и кислородом. Реакции полного сгорания комлонентав горючего газа и тепловой эффект горения представлены в табл. 27. Приведенные данные показывают, что при горении газов получаются продукты горения, состоящие из углекислоты и водяных паров. Если в газе содержатся сернистые соединения (например, сероводород), то в продуктах сгорания будет находиться сернистый газ. В дымовых газах также будут содержаться азот воздуха, поступивщего на сжигание таза, и избыточное (неизрасходованное) количество кислорода воздуха. При недостаточном поступлении воздуха в продуктах сгорания, как правило, содержится и окись углерода — продукт неполного горения углеводородных газов, а также несгоревшие компоненты газа. [c.115]

    Число поверхностных ионов Си было определено путем измерения адсорбции криптона в предположении, что грани (001), (011) и (111) одинаково часто выходят на поверхность, можно было оценить среднее число Qu -центров. Оно оказалось меньше числа адсорбированных атомов кислорода, что указывает на внедрение кислорода в поверхностный слой последнее подтвер-ладается данными о том, что окись углерода взаимодействует (с образованием углекислоты) лишь с частью предварительно адсорбированного кислорода. Механизм адсорбции изображен на рис. 18. [c.41]

    Мы получили большое значение для Это показывает, что в данной реакции существует большая движущая сила, которая должна привести к ее самопроизвольному течению. Однако термодинамика не дает никаких сведений относительно сопротивлений процессам или относительно их скоростей она предоставляет только информацию о движущей силе, которая сзществует. Окись углерода и кислород могут смешиваться при комнатной температуре без всякого взаимодействия в течение многих лет, если не будет преодолено сопротивление реакции. Тепло может возбудить реакцию так же, как подходящий катализатор, но при отсутствии средств, с помощью которых начинается реакция, последняя не будет иметь места с поддающейся измерению скоростью при 298 К, хотя известно, ято существует мощная движущая сила. [c.177]

    Примером необратимого ингибирования являются фосфоорга-нические соединения, используемые в качестве пестицидов или боевых отравляющих веществ (зарин, зоман, УХ). Фосфорелируя активный центр ацетилхолинэстеразы, соединения этого класса образуют прочные химические инертные соединения, блокируя центральную нервную систему животного, человека или насекомого. Классическим примером обратимого ингибитора является цианид-ион или окись углерода, взаимодействующие с гем-содер-жащими ферментами или переносчиками кислорода. Образуя комплексы с гем-белками, эти соединения обратимо выводят их из биохимических процессов. [c.197]

    Анализ гаэа на выходе из многоподовых печей показывает, что водород и окись углерода взаимодействуют с кислородом закиси никеля примерно в равных количествах, несмотря на то, что парщальное давление СО в два раза ниже, чем Hg. [c.106]

    Скорость процесса контролируется взаимодействием метана с адсорбированным на катализаторе кислородом и тормозится десорбирующимся водородом. Стадия (I) не является лимитирующей. Окисление активных центров происходит быстро с образованием промежуточного соединения, обладающего слабыми основныш свойствами. Меаду подвижным водородным атомом метана и промежуточным соединением устанавливается водородная связь. Вследствие большого сродства водорода к никелю протон, принимающий участие в водородной связи,смещается к атому никеля. В результате разрядки протона на поверхности кристаллического никеля образовавшийся комплекс атомов разлагается на окись углерода, водород и окись никеля. Распад промежуточного соединения не является стадией, контролирующей скорость процесса, о чем свидетельствует большой экзотермический эффект его образования /27/. [c.49]

    Отметим ряд общих закономерностей, присущих процессу регенерации в реакторах любого типа. Продукты сгорания кокса содержат окись углерода (см. гл.2), парциальное давление которой зависит от типа катализатора и ряда других факторов. Если, однако, в отходящих газах довольно велико содержание кислорода, взаимодействие окиси углерода и кислорода приводит к так назьшаемому догоранию, которое в неконтролируемых условиях может вызвать значительные повреждения оборудования. Своевременное выявление и подавление этого процесса возможно с помощью целого ряда приемов обычно, чтобы прекратить догорание, впрыскивают воду. Если догорание не имеет места, окись углерода выводится в печь, где одновременно генерируется водяной пар. [c.49]

    Структурные формулы в основном возникли в органической химии и хорошо описывают органические молекулы. Для неорганических молекул штрих хуже передает многообразие атомного взаимодействия. В молекуле СО существует так назьшаемая семиполярная связь. Атом кислорода передает электрон углероду, после чего электронные оболочки обоих атомов делаются подобными электронным оболочкам азота. Поэтому Л. Полинг описывает окись углерода формулой С = О . Связь в молекуле Не трактуется как трехэлектронная, возникающая в результате обмена места электрона иона гелия с электронной парой гелия. Высказывалось предположение, что подобная связь имеется и в О2. [c.484]

    В последнее десятилетие проводятся исследования по применению плазмы для химических реакций возникла фактически но- вая отрасль химии — плаэмохимия. Особенно интенсивно исследования ведутся в Институте нефтехимического синтеза АН СССР. Сущность плазмохимического процесса заключается в том, что смесь, например метана и кислорода, поступает в плазменную струю, где температуры достигают нескольких тысяч градусов. В плазменной струе происходит распад (диссоциация) молекул исходного вещества на атомы, простейшие молекулы, ионы, такие, как СНз, СНа, СН, С, Са, Са, СО, О, 0 +, обладающие очень высокой реакционной способностью. Взаимодействуя между собой, они образуют самые различные соединения, папример формальдегид, окись углерода, воду.  [c.291]

    Характерным для углерода оксидом является также карбоксид (окись углерода) (СО). Он образуется в тех случаях, когда сгорание углерода или его соединений идет при недостатке кислорода. Чаще всего СО получается в результате взаимодействия СО2 с раскаленным углем -СО2 + С+ 172 кДж = 2С0 [c.294]

    Часто при адсорбции металлами таких реакционноспособных газов, как водород, кислород, окись углерода и другие, происходит как физическая адсорбция, так и хемосорбция, которая приводит к образованию новых поверхностных соединений. В этом случае адсорбированная молекула или продукты ее превращения локализуются на поверхности с большой энергией связи с поверхностными атомами металла [270], так что значительно более слабыми межмолекулярными взаимодействиями хемосорбированных молекул друг с другом можно пренебречь. Однако в случае благородных газов, особенно таких, как криптон и ксенон, и некоторых других химически инертных молекул, таких, например, как перфторметан, наблюдается только молекулярная (физическая) адсорбция на поверхности металла. Исследование молекулярной адсорбции на чистой поверхности металла представляет значительный интерес для развития молекулярной теории адсорбции. Большинство металлов обладает простой кристаллической решеткой, например, медь и же- [c.56]

    При взаимодействии кислорода воздуха с раскаленным топливом происходит интенсивный процесс горения. Образовавшиеся продукты сгорания, содержащие высокий процент двуокиси углерода, проходят снизу вверх через слой раскаленного топлива и взаимодействуют с углеродом, причем сбразуется горючая окись углерода СОз + С = 2С0. [c.100]

    Предложено определение кислорода в металлическом бериллии методом плавления в токе инертного газа [816]. Образовавшаяся в результате взаимодействия графита (из тигля) и кислорода при 2700°С окись углерода удаляется током аргона (0,5 л]мин), окисляется до двуокиси углерода, поглощается раствором Ва(0Н)2- Определение заканчивается кондуктометри-ческим методом. Для уменьшения улетучивания бериллия вводят никель. Интервал определяемых концентраций 0,01 — 1 70- [c.200]

    Легко соединяясь с кислородом, серой или хлором, а также — с магний-комплексами окись углерода не образует устойчивых соединений с галоидовородными кислотами. Однако, при взаимодействии хлористого водорода с окисью углерода все же происходит обычное для с присоединение НС1 и образование непрочного хлористого формила Н-С0-С1, который в присутствии хлористой меди и хлористого алюминия вступает в реакцию с ароматическими углеводородами, образуя альдегиды (метод Гаттермана-Коха). Эта реакция идет также и при замене окиси углерода пентакарбонилом, железа [c.52]

    Вместо химического взаимодействия с поверхностью или захвата потоком вещества газы можно также сконденсировать на холодном пальце . Поскольку требуется удалить азот и кислород, окись углерода и углекислоту, а также воду, для охлаждения следует применять по крайней мере жидкий водород, а еще лучше — жидкий гелий. Поэтому способ получения низких давлений цри помощи охлаждаемого пальца не пригоден для длительной работы. В качестве же вспомогательного насоса на ультравакуумной линии очень удобна поверхность, охлаждаемая водородом или гелием. Более того, если чистые условия нужно поддержать в течение короткого промежутка времени, то полное погружение в жидкий гелий может быстро довести обычное разрежение в 10"5 мм рт. ст. до вакуума 10 ° мм рт. ст. и лучше. В такой системе взаимодействие электронного пучка со стенкой может привести к выделению загрязнений. [c.254]

    Мы начнем с обсуждения результатов, полученных с применением закиси меди. Данные магнитных измерений [20] подтвердили, что использованный препаративный метод позволил получить только закись меди. На поверхности, свободной от адсорбированного кислорода, окись углерода при 20° адсорбировалась обратимо. Если же при 20° предварительно проводили адсорбцию кислорода, то быстрая адсорбция окиси углерода сопровождалась выделением гораздо большего количества тепла. Например, вместо 20 ккал/моль для теплоты адсорбции окиси углерода на прогретой поверхности Гарнер, Стоун и Тили [15] в случае поверхности, содержащей адсорбированный кислород, получили для соответствующей теплоты 49 ккал/моль. Было также обнаружено, что предварительная адсорбция окиси углерода повышает теплоту адсорбции кислорода с 55 до 100 ккал/моль. Было ясно, что при этом осуществляется химическое взаимодействие. Продукт оказывался совершенно устойчивым в присутствии избытка кислорода, но в случае избытка окиси углерода происходила медленная перегонка углекислого газа в присоединенную к прибору охлаждаемую ловушку. Мы можем очень легко убедиться, что при предположении о конверсии адсорбированного кислорода в углекислый газ путем атаки окисью углерода из газовой фазы, теплота должна быть больше наблюдавшегося количества в 49 ккал/моль. Т1плота реакции СО(газ) + /202(газ) = СОг(газ) составляет 67 ккал/моль, а теплота диссоциативной адсорбции кислорода на прогретой закиси меди равна 55 ккал/моль, следовательно, разность показывает, что реакция СО(газ) + О(адс) = СОг(газ) экзотермична и ее тепловой эффект равен 67— ( /2X55), т. е. 39 ккал. Фактически продукт находится главным образом в адсорбированном состоянии, поэтому для определения реальной теплоты взаимодействия требуется прибавить молярную теплоту адсорбции углекислого газа. Если принять для последней 20 ккал/моль (ср. табл. 1), [c.313]

    Восстановление палладия водородом при 200° С является в какой-то степени обратимым процессом, и при обработке кислородом часть палладия вновь окисляется. После адсорбции СО на таком окисленном образце в спектрах появляется полоса поглощения, характерная для взаимодействия окиси углерода с ионами. Pd . Обработка кислородом восстановленного цеолита PdY, содержащего адсорбированную окись, углерода, приводит к образованию двуокиси углерода. На цеолитах PdY, исследованных а работе [201], было также изучено взаимодействие палладия с окисью азота [202]. N0 адсорбировали как на исходных, так и на восстановленных образцах. Анализ спектров ЭПР исходного цеолита, обработанного кислородом при 500° С, указывает на присутствие в образцах ионов Pd . После напуска N0 при 23° С в ИК-спектре наблюдаются полосы в области 1775—1875 и2025—2175 см . Вакуумирование образца при 23° С приводит к удалению из спектра большей части низкочастотных и всех высокочастотных полос. Присутствие полос в области 2025—2175 см вызвано образованием N0 " и Pd при взаимодействии N0 с Pd  [c.322]


Смотреть страницы где упоминается термин Окись углерода взаимодействие с кислородом: [c.317]    [c.120]    [c.244]    [c.16]    [c.99]    [c.119]    [c.312]    [c.319]   
Лекции по общему курсу химии (1964) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с кислородом



© 2025 chem21.info Реклама на сайте