Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация структурная

    В работе [121] сделан вывод, что причиной существования граничного слоя воды на поверхности мусковита является гидратация катионов — компенсаторов отрицательного заряда структуры. Их дегидратация связана с затратами энергии и приводит к возникновению структурной составляющей расклинивающего давления. Проявление структурных сил с большой длиной корреляции объясняется сдиранием гидратных оболочек с ионов (отделенных от твердой поверхности) молекулами воды с малым значением I, т. е. дегидратацией ионов, в первую координационную сферу которых наряду с молекулами воды входят и поверхностные атомы кислорода слюды. [c.43]


    Несмотря на обилие проведенных за последние два десятилетия термодинамических, спектроскопических и теоретических исследований, нельзя сказать, что объем полученной информации достаточен для полного понимания сложного по своей природе механизма гидратации углеводов и индуцированных гидратацией структурных эффектов. В частности, явно недостаточно изучено влияние температуры на этот процесс и связыванные с ним термодинамические характеристики. [c.62]

    Глинистые минералы обладают хорошей способностью к интенсивному ионному обмену при контакте с водной фазой, благодаря чему происходит гидратация структурных элементов и, как следствие, набухание глин, приводящее к усилению тиксотропных свойств бурового раствора. Установлено, что плоские грани в структуре частиц химически активных глин — отрицательно заряженные и для компенсации заряда в этих местах обычно адсорбируются ионы натрия и кальция, обладающие высокой плотностью заряда и способностью к гидратации, что является причиной значительного усиления структурно-механических свойств глин. При контакте с поливалентной средой глинистые частицы сорбируют определенный тип катионов благодаря большому сродству их строения к обменным местам в структуре частиц. В процессе такого обмена происходит удаление воды из кристаллической [c.115]

    Явление электропроводности связано со скоростью передвижения ионов, для которых структура студней может служить таким же препятствием, как и при диффузии, уменьшая свободный поперечник, через который движется поток ионов. Опыт показал правильность такого предположения — электропроводность в студнях тем меньше, чем больше их концентрация, хотя степень диссоциации остается неизменной Как и в случае диффузии, процесс усложняется явлениями адсорбции, гидратацией структурных элементов и влиянием pH то же наблюдается и при изменении величины электропроводности. [c.405]

    В таких растворах влияние ионов с отрицательной гидратацией на структуру воды исчезает. Когда концентрации становятся еще выше, область структурно нормальной воды в растворе перестает существовать. Ее структура по существу напоминает структуру расплавленной соли, искаженной присутствием воды (рис. 1.9,в). Это приводит к изменению многих свойств растворов, например растворяющей способности. Некоторые горные породы и минералы, практически не растворяющиеся в чистой воде, хорошо растворяются в концентрированных водных средах промывочных жидкостей. [c.27]

    Студни, содержащие электролиты, обладают электропроводностью. Электропроводность, как известно, связана со скоростью передвижения ионов. В случае значительной концентрации студня электропроводность уменьшается, так как структура студня влияет на скорость передвижения ионов. Электропроводность в студнях осложняется также явлением адсорбции, гидратацией структурных элементов студня и влиянием pH. [c.419]


    Такая модель позволяет нам перейти от относительных скоростей гидратации структурно схожих олефинов к их относительным основностям, используя уравнение 4.32), если только известны значения величины а. В случае изобутилена а только немного меньше единицы [566, 567]. Известно, что п-заместители в стироле оказывают влияние на скорость гидратации в соответствии с их константами а+ [1145]. Поскольку а меньше единицы, то основности стиролов должны меняться в больших пределах, чем скорости их гидратации. [c.131]

    Наш опыт изучения гидратационных характеристик слоистых силикатов [66] позволяет, однако, связывать с гидратацией ионов-компенсаторов появление только внутренней части граничного слоя связанной воды. Принятие этой концепции позволяет объяснить большую толщину слоя адсорбционно связанной воды для каолинита по сравнению с мусковитом. Причину появления внешней части граничного слоя мы, как уже указывалось, склонны объяснять структурной необходимостью существования промежуточного слоя между адсорбционно и осмотически связанной водой. Правомочность этого объяснения, кроме всего прочего, подтверждается сильным влиянием гидрофильности — гидрофобности поверхности на развитие структурных сил. [c.43]

    В—структурная константа мембраны при расчете селективности D—коэффициент диффузии Dam—коэффициент диффузии растворителя в мембране d—диаметр поры мембраны dr.a—диаметр гидратированного иона а—эквивалентный диаметр канала /о— пористость мембраны G—проницаемость мембраны АЯ—теплота гидратации I— ионная сила раствора 1—коэффициент Вант-Гоффа К—степень очистки раствора /Ср—коэффициент разделения к, La, Lp—расход концентрата, исходной жидкости и растворителя соответственно [c.11]

    Отметим еще одну особенность распределения (9.23). Как видно из (9.23) — (9.25), вклад поверхностных диполей в электрическое поле значителен при любой, в том числе нулевой (L = 0) степени гидратации. Это важное отличие нелокальной электростатики позволяет объяснить природу нового эффекта — структурной составляющей расклинивающего давления в фосфолипидных дисперсиях (см. ниже). [c.160]

    Предложенная теория позволяет объяснить некоторые необычные свойства структурных сил, в частности, их. уменьшение при переходе липидного бислоя из жидкой фазы в твердую [419], несмотря на то, что при этом возрастает поверхностная плотность диполей. В процессе такого фазового перехода вода вытесняется из области полярных головок, что означает снижение степени гидратации, описываемой параметром L, и, следовательно, фактора 7, входящего в Ро [см. (9.42) ]. Аналогичным образом можно объяснить также снижение гидратационных сил у тех фосфолипидов, у которых площадь на одну молекулу So меньше [458]. [c.166]

    Гидрофильные коллоидные системы характеризуются тем, что растворитель связывается в них не только за счет адсорбционного взаимодействия полярных молекул воды с твердой фазой (истинная гидратация), но и за счет внутренней структуры системы (структурная гидратация). При этом огромное количество воды может быть механически захвачено ( иммобилизовано ) сложно построенным каркасом. Количество жидкости, связанной таким путем, может во много раз превысить массу дисперсной фазы. [c.276]

    Принципиальное отличие (9.43) от (9.40) состоит в наличии множителя, содержащего разность экспонент. Следовательно, для зеркальной модели уменьшение степени гидратации (т. е. параметра Ь) приводит к более сильному спаду структурных сил, чем в рамках диэлектрического приближения (9.40). При этом в случае дегидратированной поверхности (1 = 0) гидратационные силы полностью исчезают. [c.167]

    Другой метод исследования гидратации латексных частиц основан на измерении объемного или теплового эффекта фазового перехода при замораживании и плавлении водных дисперсий синтетических латексов. Поведение различных дисперсных систем при замораживании и существование в них незамерзающих межфазных прослоек воды изучается давно (обзор ранних работ см. в [I]). Исследования течения незамерзающих прослоек воды в кварцевых капиллярах [32, 329, 525] углубили представления о структурных изменениях граничных слоев воды, эффективная толщина которых имеет порядок 10 м и убывает с понижением температуры замораживания. [c.191]

    Указанный процесс представляет собой совокупность ряда сложных химических, физико-химических и физических явлений, поэтому несмотря на вековую историю развития науки о вяжущих, в результате которой достигнуты большие успехи в химии цемента, до сих пор нет общепризнанной количественной теории твердения минеральных вяжущих. Работы по этой проблеме проводились по четырем основным направлениям изучение фазового и химического состава, твердеющих дисперсий вяжущих и влияния на него наполнителей, органических и неорганических добавок, температуры и давления исследование элементарных актов образования гидратов, кинетики и химии гидратации развитие представлений о природе сил, обуславливающих межчастичное взаимодействие новообразований и структурно-механические свойства твердеющей системы близки к этому направлению исследования микроструктуры камня и математического описания ее моделей. [c.32]


    Повышение степени дисперсности увеличивает поверхность реакции гидратации, а следовательно, и ее скорость, В результате ускоряется появление новообразований. Кроме того, с повышением дисперсности, а следовательно, и суммарной поверхности частиц уменьшается расстояние между ними, что значительно повышает структурно-механические свойства и ускоряет образование сплошной пространственной структуры. [c.112]

    При этом необходимо, чтобы контакты, нарушенные смещением элементов структуры, восстанавливались в ходе дальнейшего твердения, По мере гидратации цемента число и прочность структурных связей возрастают, и способность цементного камня к этой своеобразной пластической деформации уменьшается. Поэтому молодая структура цементного камня способна воспринимать значительно большее расширение, чем структура зрелого цементного камня. [c.132]

    Углеводород состава СвНз присоединяет 4 атома хлора, реагирует с аммиачным раствором нитрата серебра, при гидратации по Кучерову дает изопропилметилкетон (СНз)2СНСОСЫз. Какова структурная формула углеводорода Назовите его. [c.29]

    Составьте структурные формулы кислот, образующихся при последовательной гидратации летучей модификации оксида фосфора (V). [c.213]

    Установите структурные формулы олефинов, гидратацией которых можно получить 3-метилгекса-нол-3. Напишите уравнения реакций гидратации этих олефинов и рассмотрите механизмы гидратации 1) сернокислотной и 2) каталитической (в присутствии каталитических количеств минеральных кислот). [c.27]

    Согласно Р. Э. Нейману, с увеличением плотности адсорбционных слоев происходит все большая замена двойного электрического слоя сильно развитыми гидратными оболочками на поверхности частиц. Таким образом, имеет место переход от систем, стабилизованных двойным электрическим слоем, к системам, стабильность которых обусловлена структурно-механическим барьером. Иначе говоря, при увеличении адсорбции поверхностью латексных глобуЛ происходит не только количественное, но и качественное изменение механизма стабилизации. Возникает новый по своей природе энергетический барьер, препятствующий коагуляции, близкий к представлениям П. А. Ребиндера, об образовании структурированных гелеобразных слоев эмульгатора. Электрический заряд двойного электрического слоя при этом уменьшается или исчезает совсем благодаря тесному контакту ионогенных групп и возрастанию ионной силы. На неэлектростатическую природу стабилизующего барьера в этом случае, согласно Р. Э. Нейману, указывает и то, что коагуляция адсорбционно насыщенных латексов не подчиняется закономерностям, характерным для латексов, частицы которых несут двойной электрический слой. Очевидно, существует иной, неэлектростатический механизм стабилизации, связанный со структурой и гидратацией плотно упакованных насыщенных слоев эмульгатора. [c.385]

    Под сольватацией (гидратацией) понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. [c.137]

    Конуэй и Бокрис, рассматривая структурные теории гидратации ионов, пришли к заключению, что их недостатком является отсутствие различия между значениями теплот и энергий гидратации. Это приводит к большим расхождениям в рассчитанных и экспериментальных данных. Они указывают также, что невозможно сделать обоснованный выбор между моделями, положенными в основу расчетов, поскольку не существует независимого метода деления теплот гидратации солей на теплоты гидратации, соответствующие отдельным ионам. [c.178]

    Поскольку структура приповерхностных водных слоев меняется в зависимости от температуры, то подвижность ионов, а следовательно, и скорость роста кристаллов (или аморфных новообразований) при температурах структурных перестроек должна иметь максимум. Разогрев вяжущей системы при гидратации сказывается на структурных особенностях граничных водных слоев и, поэтому, на кинетике гидратообразования. [c.86]

    Глубина фронта реакции зависит от плотности кристалла и у идеального кристалла может соответствовать мономолекулярному слою воды, а у дефектных —десяткам слоев. Гидратированные на поверхности кристалла ионы немедленно переходят в раствор. В процессе разрушения поверхностного слоя кристалла может происходить отрыв не только отдельных ионов, но и групп ( блоков ), насчитывающих сотни и тысячи структурных единиц. Гидратация таких блоков в растворе происходит подобно гидратации исходного кристалла. Возможно протекание реакции путем соединения по- [c.310]

    Развитие поверхностной реакции воды с исходным зерном сильно зависит от энергетического состояния поверхности твердого тела, структурных частиц воды и плотности твердого тела. Очевидно, что ослабление сил химической связи в решетке растворяющихся кристаллов и повышение степени электролитической диссоциации воды должно приводить к ускорению реакций гидратации. [c.311]

    Как видим, ближняя гидратация ионов в водных растворах тесно связана со структурным состоянием воды. Это заключается в том, что усиление упорядоченности воды ведет к ослаблению гидратации ионов. Например, разрушение структуры воды усиливает гидратацию. Роль структурного состояния воды в явлениях гидратации ионов в растворах подчеркивает большое значение короткодействующих сил для свойств растворов. При гидратации ионов собственная структура воды изменяется, возникает новая структура, характерная для раствора. При этом обнаруживается большая устойчивость структуры воды, о вызвано, во-первых, тем, что каждая молекула в воде участвует приблизительно в четырех водородных связях, и, во-вторых, тем, что трансляционное движение молекул Н2О происходит в основном по пустотам структуры. С ростом температуры и давления собственная структура воды становится менее упорядоченной, ближняя гидратация ионов усиливается и затрудняет ассоциацию катионов и анионов и образование контактных ионных пар. [c.277]

    До настоящего времени недостаточно хорошо изучено состояние воды в гидросиликатах, хотя благодаря спектроскопическому и ЯМР методам исследования получена ценная информация о связанной воде в продуктах гидратации Сд5 и воде норового пространства [56, 214—216, 233—235]. Полное физическое разделение адсорбированной и структурной воды гидросиликатов затруднено, так как, хотя среднее значение свободной энергии связи для конституционной воды больше, чем для адсорбированной на поверхности, некоторая доля адсорбированной воды удерживается более прочно по сравнению со слабо связанной водой структуры [56]. [c.75]

    Введение различных примесей в раствор способствует изменению толщины ГС, а в некоторых случаях и их образованию [428]. А. И. Русанов и соавт. [498] проследили зависимость протяженности ГС на кварце от состава смеси полярной и неполярной жидкости и нашли, что максимальной толщине отвечает мольная доля полярного компонента, приближающаяся к единице. Введение электролита в воду также может влиять на структуру ГС. Это направление исследований представляет значительный интерес, поскольку затрагивает фундаментальный вопрос о влиянии гидратации ионов на структурирование воды. Так, сильное влияние иона МОз на коагуляцию положительно заряженных латексов полистирола было объяснено его слабой гидратацией [499]. Г. Пешель и П. Белоушек [479] приводят ряд 1 >Вг->С1 , в котором усиливается разрушающее влияние аниона. Согласно этим же авторам [479, 500], обнаруженная экстремальная зависимость структурной составляющей раскли- [c.172]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    При малой концентрации электролита (кривая 1 на рис. 11.3) снижения электростатического барьера недостаточно для коагуляции. Однако в присутствии электролита в начальном индукционном периоде постепенно происходит утончение граничных гидратных прослоек и ослабление сил структурного отталкивания (участок а). Становится возможной первичная агрегация частиц (участок б), ведущая к уплотнению адсорбционных слоев эмульгатора на поверхности растущих агрегатов, усилению их гидратации и, следовательно, структурного отталкивания. Коагуляция затормаживается, что отвечает промежуточному индукционному периоду. Но гидрофобизация поверхности агрегатов и утончение граничных гидратных прослоек в присутствии электролита продолжается (участок в), вновь ослабляется структурное отталкивание, и коагуляция возобновляется. При достаточных размерах агрегатов система теряет седимен- [c.195]

    Из измерений относительной вязкости и аналитического определения объемной доли дисперсной фазы латексов находили коэффициенты гидратации, значения которых приведены в табл. 11.5. Как видно из этих данных, перемешивание приводит к заметному снижению коэффициента гидратации, т, е. к утончению граничных гидратных прослоек, однако при хранении латексов гидратные оболочки восстанавливаются. Эти результаты подтверждают изложенные выше представления об обратимых предкоагуляционных изменениях в латексах при перемешивании, влияющих на структурный фактор устойчивости. [c.199]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    Напишите структурную формулу углеводорода состава СзНв, если известно, что он реагирует с бромом, с аммиачным раствором окиси серебра, при гидратации дает метилизопропилкетон. [c.60]

    Влияние температуры на ККМ определяется взаимодействием различных факторов, и характер его различен в случаях ионогенных и неионогенных ПАВ. Вообще повышение температуры должно затруднять образование мицелл вследствие возрастания дезагрегирующего влияния тепл-лзого движения молекул. Вместе с тем с увеличением интенсивности теплового движения уменьшается гидратация полярных групп молекул (ионов) ПАВ, что, напротив, способствует мицеллообразованию. Важную роль играют структурные изменения воды при нагревании. Повышение температуры вызывает разупорядоч.ение. воды, а это означает, что уги.1Н-вается стремление воды избавиться от гидрофобных частиц (радикалов молекул ПАВ), которые, как уже отмеча- [c.66]

    Напишите структурную формулу углеводорода С0Н12, если известно, что он обесцвечивает бромную воду, при гидратации образует третичный спирт СвН дОН, при окислении хромовой смесью — ацетон и пропионовую кислоту. Напишите уравнения всех реакций. [c.159]

    На процессах гидратации, конденсации и других существенно сказываются микросвойства воды — диэлектрическая проницаемость, структурные особенности. Реакционная способность воды является совокупным проявлением свойств жидкости и индивидуальных свойств молекул. [c.83]

    В настоящее время внимание исследователей обращено на систематическое изучение термодинамических свойств растворов электролитов в свете успехов, достигнутьгх в структурном анализе подобных систем. Изучению природы водных растворов электролитов и характеристике состояний отдельных ионов в растворе уделено особое внимание в работах А. Ф. Капустинского и его сотрудников. Введение кристаллохимических характеристик ионов позволило обобщить обширный фактический материал по энтропиям, теплоемкостям и парциальным o бъeмaм ионов, а также представить картину гидратации в виде своеобразного замещения ионами молекул воды в ее подвижной квазикристалличе-ской структуре. Еще Д. И. Менделеев обратил внимание на то, что вода имеет различную степень химического родства с растворенным веществом, т. е. часть вo ды имеет большую связь с раст-воренньгм веществом по сравнению с остальной массой растворителя. Действительно, как показали многолетние работы [c.128]

    Структурно-механическая стабилизация — надежный фактор устойчивости коллоидов и находит широкое производственное применение. В качестве примера можно указать на стабилизацию суспензий минеральных вяжущих строительных материалов (цемента, извести, гипса) в процессе их гидратационнйго твердения—стабилизацию, осуществляемую различными поверхностно-активными веществами лигносульфонатами кальция (пластификатор ССБ), олеиновой кислотой и органическими соединениями типа полуколлоидов. Небольшие добавки этих веществ содействуют адсорбционному и химическому диспергированию при гидратации и гидролизе твердых частиц (см. гл. V) и изменяют кристаллическую структуру (адсорбционное модифицирование). Так, например, в трехкальциевом алюминате ЗСаО-АЬОз (составная активная часть цемента) происходит изменение от правильных гексагональных табличек до ните- и палочкообразных частиц, тонких иголочек. В результате в системе накапливается коллоидная фракция, резко возрастает скорость гид- [c.128]


Смотреть страницы где упоминается термин Гидратация структурная: [c.51]    [c.58]    [c.109]    [c.56]    [c.306]    [c.244]    [c.319]    [c.41]   
Явления переноса в водных растворах (1976) -- [ c.564 ]




ПОИСК







© 2025 chem21.info Реклама на сайте