Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлорганические ионные

    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]


    Термический распад металлорганических концевых групп в полимерных цепях представляет собой процесс отщепления гидрид-иона с образованием двойной связи [13]  [c.417]

    Депрессорная активность отмечена, у сополимеров этилена с малеиновым ангидридом, диалкилфумаратами и некоторыми другими соединениями [6]. Запатентованы в качестве депрессорных присадок для различных топлив некоторые активные сополимеры этилена с пропиленом [8], стильбеном [6], деценом, дициклопента-диеном [9], бутадиеном, инденом [10] и др. Такие сополимеры получают ионной сополимеризацией в присутствии металлорганического катализатора. [c.222]

    При полимеризации под воздействием металлорганических катализаторов присоединение первой молекулы мономера происходит по сильно поляризованной связи металл—углеводородный радикал (Ме —R"). Ион металла в процессе полимеризации постоянно находится при карбанионе и влияет на рос т макроиона. Алкильный радикал не оказывает влияния на скорость присоединения к макроиону последующих звеньев, но, наряду с ионом металла, определяет возможность присоединения первого звена, так как от строения алкильного радикала также зависят полярность, энергия и стерическая доступность связи металл— углерод. Если строение радикала металлорганического катализатора резко отличается от строения мономера, скорость присоединения первого звена может оказаться намного меньше [c.141]

    Метод ЯМР особенно удобен при изучении неустойчивых промежуточных соединений, а именно карбониевых ионов, карбанионов, радикалов и металлорганических комплексов. [c.142]

    Известны устойчивые комплексы, в которых лигандами являются непредельные углеводороды. Часть таких комплексов, особенно образованные 5 р -катионами, представляет собой а-связан-ные металлорганические соединения, например ион [c.106]

    В связи с многообразием комплексных соединений классификация их затруднена. Вначале были склонны делить их на две группы 1) вернеровские комплексы и 2) карбонилы металлов и металлорганические соединения, где лигандами являются молекулы, ионы органических соединений и существует связь Ме—С в значительной мере ковалентная. [c.372]

    Ионная полимеризация протекает благодаря образованию из молекулы мономера реакционноспособных ионов в присутствии катализаторов (кислоты, катализаторы Фриделя — Крафтса, щелочные металлы, амиды этих металлов, металлорганические соединения, комплексные катализаторы Циглера — Натта и др.). При ионной полимеризации катализатор регенерируется и не входит в состав полимера. Ионная полимеризация может происходить как по цепному, так и по ступенчатому механизму. В зависимости от природы катализатора различают полимеризацию катионную (рост цепи осуществляется карбкатионом) и анионную (рост цепи осуществляется карбанионом)  [c.262]


    Для достаточно полного объяснения реакции гетерогенной полимеризации необходимо несколько расширить механизм, предложенный для объяснения гомогенной полимеризации. Реакции инициирования, распространения и обрыва цени, протекающие при гомогенной полимеризации, должны быть изменены с учетом присутствия металлорганических соединений и каталитически активных поверхностей. Для объяснения стереорегулярного характера полимеров, образующихся на твердых катализаторах, в противоположность полимерам атактического типа, получаемым в присутствии гомогенных катализаторов, были предложены три измененных варианта механизма, объясняющего каталитическое действие поверхности. Эти три гипотезы предполагают следующие механизмы а) идущий вверх от поверхности рост полимера в результате ионной координации б) рост полимера вдоль поверхности по механизму связанного иона — радикала в) рост полимера вдоль поверхности в результате ионной координации. [c.296]

    На рис. 8 схематически представлена полимеризация по механизму связанного иона-радикала. Атом металла с непарным электроном находится па поверхности в результате илп восстановления соединения активного металла катализатора до соответствующей валентности или гомолитического расщепления металлорганической связи. К атому металла нечетной валентности присоединяется молекула олефина, образуя связанный ион-радикал. Возбужденный конец связанного иона-радикала соединяется со смежной молекулой олефина, адсорбированной на поверхности. Это ведет к образованию большего металлорганического радикала, связанного с металлом нечетной валентности. [c.300]

    По существу гипотеза связанного радикала предполагает передачу по длине цепи олефина одного электрона вместо двух. На каждой ступени реакции используется ионный характер поверхности, лежащей под точкой присоединения, и па каждой ступени образуется промежуточное металлорганическое соединение. [c.301]

    Связь в металлорганических соединениях может изменяться от практически ионной (с сильно электроположительными металлами типа калия) до практически ковалентной (с менее активными металлами типа олова [c.235]

    Влияние ионного радиуса металла в металлорганическом компоненте катализатора на стереоизомерный состав полимера [c.40]

    Кинетические закономерности полимеризационных процессов на металлорганических комплексных катализаторах согласуются с представлениями о составе каталитического комплекса и о роли каждого из компонентов комплекса. В каталитическом комплексе отсутствует разделение ионов. Этим обусловливается как бы постоянное переходное состояние в системе, через которое проходят молекулы мономера при образовании макроцепей. Благодаря этому создается определенное расположение атомов в комплексе и растущей цепи полимера [21]. Особенностями комплексных металлорганических катализаторов обусловливаются  [c.172]

    Рассматриваемые смешанные катализаторы, в том числе металлорганические комплексные катализаторы, отдельными авторами [212] принимались даже за ионные соединения. Их повышенная активность в общем соответствует характеру высокоспиновых комплексов. Приводимый ниже ряд лигандов [211], составленный в порядке уменьшения силы поля для комплексов октаэдрического строения, в основном коррелирует с этим  [c.184]

    Образование металлорганических комплексов иногда имеет положительное биологическое значение, инактивируя избыточные количества активных ионов тяжелых металлов или благоприятствуя растворению труднодоступных, но биологически важных элементов. [c.129]

    Пергалогенат-ионы ХО4. Наиболее важен среди них перхлорат-ион СЮ". Он образует растворимые соли практически со всеми ионами металлов, за исключением ионов наиболее тяжелых щелочных металлов К" , КЬ+ и Сз+. Его часто используют также для осаждения солей других крупных однозарядных катионов, например [СгеПгСЬ] , но этот прием совершенно непригоден для металлорганических ионов, таких, как [( Г) -СБН5)2ре+], поскольку их перхлораты взрывчаты. Безопаснее использовать соли других анионов, например СРзЗОз, ВРГ, РРе. Способность перхлорат-иона к образованию комплексов очень мала, поэтому его часто используют для понижения степени комплексообразования. Однако некоторая способность к координации у этого иона есть, и несколько перхлоратных комплексов известны. [c.139]

    В цикле работ Ю. И. Ермакова с сотр. [45—48] по исследованию реакции гидрогенолиза алканов изучены каталитические системы, полученные взаимодействием металлорганических соединений переходных металлов с поверхностью носителей. В частности исследован гидрогенолиз этана и неопентана на следующих металлах, нанесенных на 5102 Р1, Р1, Мо—Р1, Рд, У—Р(1, Мо—Рс1. Приготовление этих катализаторов включает две стадии 1) закрепление на поверхности носителя ионов Ш или Мо 2) нанесение металл-органпческих соединений Р1 или Р(1 с последующим их восстановлением. Найдено [45], что при гидрогенолизе этана активность Р1-ка- [c.96]


    В третью группу входят такие соединения, которые могут передавать карбонильной группе отдельные атомы или группы атомов, например молекулы альдегидов или кетонов, отдающие а-водород в реакциях альдольного присоединения, металлорганические соединения (RLi,.RMgX), а также соединения, способныё отдавать гидрид-ион (например, в реакции Канниццаро и реакции Тищенко) в литературе эти соединения известны как криптооснования . [c.329]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    В этом разделе будут рассмотрены только органические производные непереходных элементов — наиболее важные и хорошо изученные металлорганические соединения. В результате высокой реакционной способности многие из этих соединений имеют большое значение в органической химии. У этих соединений связь С—Э (а-связь), в зависимости от природы непереходных элементов, может сильно различаться по своей полярности (от обычной ковалентной связи до полярной и даже — ионной). Это определяет реакционную способность таких соединений. Исходя из этого все элементор-ганические соединения непереходных элементов можно разделить на три группы  [c.173]

    Криптооснования металлорганические соединения, доноры гидрид-ионов . [c.124]

    Полимеризация под влиянием ионных катализаторов обычно происходит с большими, чем радикальная, скоростями и приводит к получению полимера большой молекулярной массы. Методом ионно-координационной, или стереоспецифической, полимеризации получают полимеры высокой степени симметрии — стереорегулярные полимеры. Строгая упорядоченность структуры макромолекул достигается благодаря использованию комплексных катализаторов на основе металлорганических соединений металлов I — П1 групп и хлоридов металлов IV—VIII групп с переменной степенью окисления. Типичным катализатором служит комплекс триалкилалюминия и хлорида титана  [c.332]

    В комплексных ионах с разнородными лигандами часть лигандов может вести себя инертным образом, а часть — лабильным. Центральный ион с инертными лигандами часто рассматривают как неизменную структурную единицу в реакциях замещения и присоединения. Так ведут себя металлорганические фрагменты типа С2Н5М + или (С2Н5)зРЬ+, оксокатионы типа иОг + и др. Присутствие таких фрагментов в комплексе иногда отражают в его названии. Например, оксоацетатные комплексы и(VI) называют ацетатными комплексами уранил-иона. [c.34]

    Наиболее прочные алкильные металлорганические соединения (МОС) [1] образуют Ве и Mg. Они, так же как гидриды, имеют полимерную структуру в отличие от ионной структуры алкильных МОС ЩЗЭ (крайне неустойчивых), где анионная подрешетка занята алкильными карбоанионами. [c.45]

    Анионная полимеризация. Анионная полимеризация осуществляется через образование иона с отрицательно заряженным углеродным атомом (карбаниона), который находится в поле противоиона, образуя с ним ионную пару. Катализаторы основания, щелочные металлы и их гидриды (ЫН, ЫаН), амид натрия ЫаЫН , металлорганические соединения и другие вещества, являющиеся донорами электронов. [c.451]

    Интерес представляют катализаторы, содержащие два переходных элемента. Эти катализаторы получены совместным нанесением металлорганических соединений элементов У1П и VI групп. Предлагаемые для этих катализаторов модели поверхностных состояний нанесенных компонентов весьма близки к постулируемым ансамблям Кобозева они включают два-три атома восстановленного металла VIII группы и два-три атома или иона с низшей степенью окисления элемента VI группы. [c.114]

    Известно, что металлорганические соединения разлагаются при этом в зависимости от условий реакции образуются ионы или свободные радикалы. Ионный характер металлорганических соединений позволяет постулировать механизм полимеризации с участием связанного иона, согласно которому олефин соединяется на твердой поверхности с металлорганическид компонентом, приводя к росту молекулы полимера, аналогично росту волоса. [c.297]

    Однако металлорганические соединения могут претерпевать и гемолитическое расщепление с образованием свободных радикалов — особенно при повышенных температурах и в присутствии соединений металлов переменной валентности [56]. Гемолитическое расщепление металлорганического соединения, адсорбированного на твердой поверхности, ведет к одновременному образованию свободного радикала, который переходит в раствор, и связанного радикала, соединенного с поверхностью катализатора. Связанные радикалы на поверхности катализатора могут образоваться также вследствие того, что металлы переменной валентности переходят в состояние нечетной валентности, когда в них присутствуют непарные й-электроны. Следовательно, металлы в состоянии нечетной валентности (если они не связаны попарно в кристаллическом состоянии) фактически представляют свободные радикалы, заключенные в структуре твердого катализатора. Непарные металлические ионы нечетной валентности присутствуют, в частности, в дефектных участках кристаллической решетки твердого вещества. Присутствие непарных ( -электронов доказывается полупроводимостью окпснометаллических катализаторов. [c.297]

    Такие олефиновые концевые группы были обнаружены при полимеризации пропилена [69]. Их присутствие полностью согласуется со всеми рассмотренными выше механизмами, так как все они предполагают участие металлорганических соединений. При радикальном и ионно-радикальном вариантах механизма обрыв цепи может происходить в результате диспропорционирова-ния или димеризацпи растущих радикалов, что также ведет к появлению ненасыщенных и насыщенных концевых групп. [c.298]

    На рис. 7 схематически представлен механизм [63], предполагающи1Г участие ионного центра на поверхности катализатора. Это по существу видоизменение механизма каталитического действия поверхности, предложенного ранее для объяснения реакции роста металлорганических соединений при взаимодействии этилена с триэтилалюминием 199, 100]. Активный центр поверхности представляет металлорганические соединение, в котором связь металл-углерод поляризована металл находится на положительном конце диполя, а органическая группа на отрицательном. Олефины адсорбируются по месту металлорганической связи и при этом поляризуются. В результате этого отрицательно заряженный конец молекулы олефина соединяется с металлом, а металлорганическое соединение перемещается к положительно заряженному концу олефина. Молекулы олефина присоединяются по одной за каждьп эле- ментарный акт, внедряясь между металлом и алкильной цепью при этом образуется новая алкильная цепь, содержащая на два углеродных атома больше, чем исходная. Следовательно, происходит ступенчатый рост молекулы полимера. [c.299]

    Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высокий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость реакции оказывают влияние также стерические и химические свойства заместителей металлорганического соединения. При полимеризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецпфичность, однако, падает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряд Р>С1>Вг>1 в том же порядке увеличивается молекулярный вес. Натта [28] в результате проведенных опытов по полимеризации п"ропилена с треххлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду  [c.40]

    Косси [153] считал, что АЦ, образовавшийся при взаимодействии СПМ и металлорганического соединения (МОС), представляет собой монометаллический комплекс, центральным атомом которого является ион переходного металла, находящийся в октаэдрическом окружении одно нз координационных мест занято алкильной группой, которая оказалась у переходного металла вследствие обмена с МОС, и, по крайней мере, еще одно координационное место в комплексе должно быть вакантным для координации олефина. Другие места координации могут быть заняты другими лигандами.-По Косен разрыв С-связи го- молитический и рост цепи происходит по схеме  [c.146]

    Иногда тип изомеризации или перегруппировки зависит от природы катализатора. Например, в присутствии комплексов родия (I) кубан дает кунеан, а в присутствии ионов серебра — трицикло-октадиен. Предполагают, что в этих реакциях принимают участие металлорганические интермедиаты, однако истинный механизм реакций все еще недостаточно понятен. Для объяснения механизма реакции были предположены образование металлокарбениевых ионов, комплексов металлокарбена и окислительное присоединение металла к напряженной ординарной углерод-углеродной связи [146]. [c.163]


Смотреть страницы где упоминается термин Металлорганические ионные: [c.63]    [c.97]    [c.142]    [c.147]    [c.278]    [c.476]    [c.260]    [c.299]    [c.275]    [c.469]    [c.472]    [c.163]    [c.371]    [c.52]    [c.148]    [c.88]   
Основы неорганической химии (1979) -- [ c.577 ]




ПОИСК







© 2025 chem21.info Реклама на сайте