Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлорганические с связями

    Наращивание углеродной цепи основано на взаимодействии органических веществ, сопровождающемся образованием новой углерод-углеродной связи. К этому типу реакций относят присоединение металлорганических соединений по кратным связям С=0, С -С, С - N и др., взаимодействие металлорганических соединений с галогенопроизводными углеводородов, полимеризация непредельных соединений, реакции конденсации. Решая вопрос о том, в какой последовательности наращивать в молекуле исходного соединения углеродную цепь, следует пользоваться методом схематической разбивки молекул целевого продукта на фрагменты. Этот прием можно рассмотреть на примере составления схемы превращения этилового спирта в бутиловый. Одна из схем предполагает присоединение сразу фрагмента, содержащего два атома углерода (способ [c.86]


    Металлорганические соединения. Химия металлорганических соединений изучает огромное число соединений, имеющих связи метал — углерод. Синтезированы различные соединения на основе лития, натрия, калия, рубидия, магния, ртути, алюминия, свинца, железа и других металлов. Многие из них ядовиты, самопроизвольно возгораются (взрываются) даже при комнатной температуре, поэтому требуются особые меры предосторожности при работе с такими веществами. Однако это не препятствует использованию их в технике. Выдающееся значение приобрело открытие особых каталитических свойств некоторых простых и комплексных металлорганических соединений, особенно На основе алюминийорганических соединений, которое позволило упростить и ускорить процессы промышленного производства ряда ценных полимерных материалов и синтетических каучуков. [c.269]

    В связи с многообразием комплексных соединений классификация их затруднена. Вначале были склонны делить их на две группы 1) вернеровские комплексы и 2) карбонилы металлов и металлорганические соединения, где лигандами являются молекулы, ионы органических соединений и существует связь Ме—С в значительной мере ковалентная. [c.372]

    Катализаторы основного типа. В присутствии основных катализаторов наблюдаются процессы г< с-транс-изомеризации и миграции двойной связи. Скелетная изомеризация не наблюдается. Типичные катализаторы щелочные металлы (диспергированные и на носителях), химические соединения щелочных металлов (гидриды, фториды, азиды), металлорганические соединения. Для подобных катализаторов характерна высокая селективность реакций изомеризации. [c.81]

    Термический распад металлорганических концевых групп в полимерных цепях представляет собой процесс отщепления гидрид-иона с образованием двойной связи [13]  [c.417]

    Благодаря высокой реакционной способности многие металлорганические соединения (особенно соединения металлов первой и второй групп периодической системы) нашли широкое применение в органическом синтезе. Так, на способности металлорганических соединений взаимодействовать с серой, кислородом, галогенами, селеном, теллуром основано их применение для получения спиртов, тиоспиртов и других производных углеводородов. Особенно широкое применение в синтезе углеводородов и их производных (спирты, альдегиды, кетоны, кислоты) находит реакция присоединения металлорганических соединений по кратным связям С=С, С=0, =N, N, =S, N=0 и S=0. [c.207]


    На рис. 8 схематически представлена полимеризация по механизму связанного иона-радикала. Атом металла с непарным электроном находится па поверхности в результате илп восстановления соединения активного металла катализатора до соответствующей валентности или гомолитического расщепления металлорганической связи. К атому металла нечетной валентности присоединяется молекула олефина, образуя связанный ион-радикал. Возбужденный конец связанного иона-радикала соединяется со смежной молекулой олефина, адсорбированной на поверхности. Это ведет к образованию большего металлорганического радикала, связанного с металлом нечетной валентности. [c.300]

    Модификация каучука или резиновой смеси на каждой из стадий их переработки имеет свои преимущества и недостатки. Модификация полимеров в растворе приобрела особое значение в связи с освоением растворной полимеризации изопрена, бутадиена и других мономеров под влиянием комплексных и анионных металлорганических катализаторов. Промышленная реализация этого процесса связана с преодолением ряда технологических и химических трудностей необходимостью эффективного смешения высоковязких растворов полимера с маловязкими реагентами, возможностью применения в качестве растворителей только углеводо- [c.236]

    При значительном увеличении концентрации катализатора и относительно высоком использовании мономеров эффективность катализатора снижается, так как при этом повышается роль процесса его дезактивации, а при существенном увеличении вязкости среды — и роль диффузии мономеров. Уменьшение [т]] сополимеров, по мнению ряда авторов, связано главным образом с передачей цепи через металлорганическое соединение [5, 6, 14]. С увеличением температуры сополимеризации константа реакции роста увеличивается [12]. В то же время возрастает скорость дезактивации катализатора. Поэтому изменение температуры неодинаковым -обрааом сказывается при полимеризации ня разных каталитических системах. Из рис. 2 видно, что с повышением температуры сополимеризации выход сополимера и [т]] его уменьшается состав не изменяется [11, 13]. [c.297]

    При гидроочистке нефтяных дистиллятов почти полностью нарушаются связи С—8, но практически не затрагиваются связи С—С, т. е. процесс протекает без заметной деструкции сырья. Подтверждением этого является то, что выход гидрогенизата от сырья достигает 95—99% (масс.), а глубина обессеривания — 90—99,5%. Снижение же содержания азоторганических соединений при этом не превышает 40—75% эти соединения удаляются труднее не только серы, но и олефинов и тем более диенов. Сероорганические соединения нефти почти всегда концентрируются в тяжелых фракциях в виде гетероциклических соединений ароматического ряда. В тяжелых фракциях содержится и большее количество азот- и металлорганических соединений. Гидроочистка такого более тяжелого сырья, в том числе и нефтяных остатков, является более трудным процессом и требует дополнительного изучения. Гидроочистка нефтяных фракций до 350 °С преследует две основ- [c.235]

    Однако убедительного прямого доказательства образования промежуточных углеродных радикалов при химических превращениях кофермента в природе все еще нет. По этой причине Кори предложил другой интересный механизм, согласующийся с современными представлениями о металлорганических реакциях [268]. Главная особенность этого механизма — электроциклическое раскрытие корин-кольца кофермента, расщепление единственной ковалентной связи, соединяющей кольца А и D (рис. 6.10), что, таким образом, объясняет роль боковой цепи корин-системы. Кори считает, что созданная природой такая ковалентная связь в корин-снстеме вовсе не случайна. Наиболее вероятное гипотетическое объяснение происходящей перегруппировки включает образование кобальт-карбенового комплекса с субстратом. [c.394]

    Полимеризацию непредельных углеводородов с сопряженными двойными связями, протекающую под действием металлорганических соединений, также можно считать анионной реакцией с этим согласуется торможение реакции СО2 или иными электрофильными агентами. Анионной реакцией, вероятно, является также гетерогенная полимери зация ненасыщенных углеводородов, например, полимеризация этилена, катализируемая треххлористым титаном при добавке триэтилалюминия (Циглер) аналогичные катализаторы образуются из четыреххлористого титана и триэтилалюминия. [c.936]

    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]


    При полимеризации под воздействием металлорганических катализаторов присоединение первой молекулы мономера происходит по сильно поляризованной связи металл—углеводородный радикал (Ме —R"). Ион металла в процессе полимеризации постоянно находится при карбанионе и влияет на рос т макроиона. Алкильный радикал не оказывает влияния на скорость присоединения к макроиону последующих звеньев, но, наряду с ионом металла, определяет возможность присоединения первого звена, так как от строения алкильного радикала также зависят полярность, энергия и стерическая доступность связи металл— углерод. Если строение радикала металлорганического катализатора резко отличается от строения мономера, скорость присоединения первого звена может оказаться намного меньше [c.141]

    Химически стойкие и термически устойчивые полимеры получаются при сочетании в металлорганических соединениях ковалентных и координационных связей. Такие полимеры названы клешневидными металлорганическими полимер а-м и. Исходными мономерами могут служить ацетилацетонаты цинка, магния, меди, никеля, кобальта, бериллия и других металлов. Ацетилацетонаты взаимодействуют с тетракетонами с отщеплением [c.506]

    Диазометан — чрезвычайно реакционноспособное вещество. Так как в нем на атоме углерода имеется избыточная электронная плотность, он может реагировать и как сильное основание, и как нуклеофильный реагент, а также быть донором карбенов. Реакции диазометана как основания. Как известно, к соединениям, обладающим наибольшими основными свойствами (т. е. способностью отщеплять от соединений атом водорода в виде протона и связывать его в недиссоциированное соединение), относятся вещества, имеющие избыточную электронную плотность на атоме углерода. В первую очередь к ним следует отнести металлорганические соединения — соединения, в которых имеется ковалентная связь углерод—металл. Так как электроотрнцательность таких металлов, как Ма и равна 0,9—1,0, то степень ионности связи С—М составляет 50%. а избыточная электронная плотность находится на атоме углерода. Соединения с основными свойствами, присоединяя за счет избыточной электронной плотности протон, образуют с ним практически недиссоциированное соединение. Наиболее сильными основными свойствами обладают такие соединения, как бутиллитий и трифенилметилнатрий несколько уступают им магнийорганические соединения. [c.465]

    Металлорганическими соединениями называются органические соединения, содержащие связи металл — углерод (С—Ме). По характеру этой связи металлорганические соединения подразделяются на две группы. К первой группе относятся вещества с а-связью между металлом и углеродом, ко второй — соединения, в которых образование связи металла с органической частью молекулы происходит путем заполнения -оболочки металла я-электронами органической молекулы. [c.206]

    Одно из удивительных свойств В12 состоит в способности образовывать алкильные производные [256]. До открытия Баркером витамина В12 считалось, что связь Со — Со должна быть непрочной, если вообще существует. Это первый и единственный пример устойчивого в воде природного металлорганического соединения. Его полная структура установлена в 1956 г. на основании кристаллографических работ Ходжкин и более ранних химических исследований Тодда и Джонсона. Полный синтез этого соединения осуществлен в начале 70-х гг. общими усилиями Вудворда и Эшен-мозера. [c.381]

    В присутствии металлорганических соединений (Н —Ыа) образование активного центра происходит путем внедрения мономера по поляризованной связи металл—углерод  [c.396]

    Лиганды, которые координируются через атом углерода, часто рассматривают как радикалы (например, -СНз), а их взаимодействие с атомом металла — как образование ковалентной связи путем спаривания электронов. Этот подход традиционен для химии металлорганических соединений. Всегда можно формально изобразить связь М—СНз и как результат взаимодействия донор-ного атома С в анионе СНз с катионом металла. Поэтому оба [c.11]

    Отдельную группу составляют я-доноры, в которых электроны, вступающие в связь, занимают л-орбитали (алкены, алки-ны, ароматические углеводороды и их производные). Акцептором может служить молекула, имеющая вакантные электронные уровни. Им часто является атом металла в галогенидах металлов и некоторых металлорганических соединениях, молекула галогена, ароматическое или ненасыщенное соединение с высоко электроотрицательным заместителем (ароматические полинитросоединения, тетрацианэтилен и др.). Донорно-акцепторная связь приводит к образованию комплексов (молекулярных соединений), которые могут быть слабыми или весьма прочными и которые играют важную роль в органической, металл-органической и физической химии. [c.123]

    Полученные подобным образом металлорганические соединения химически связаны с эфиром. Они вступают в те же реакции, что и индивидуальные, т. е. лишенные эфира, магнийорганические соединения. Поэтому их обычно не выделяют из раствора, а непосредственно применяют для дальнейших синтезов. [c.124]

    На рис. 7 схематически представлен механизм [63], предполагающи1Г участие ионного центра на поверхности катализатора. Это по существу видоизменение механизма каталитического действия поверхности, предложенного ранее для объяснения реакции роста металлорганических соединений при взаимодействии этилена с триэтилалюминием 199, 100]. Активный центр поверхности представляет металлорганические соединение, в котором связь металл-углерод поляризована металл находится на положительном конце диполя, а органическая группа на отрицательном. Олефины адсорбируются по месту металлорганической связи и при этом поляризуются. В результате этого отрицательно заряженный конец молекулы олефина соединяется с металлом, а металлорганическое соединение перемещается к положительно заряженному концу олефина. Молекулы олефина присоединяются по одной за каждьп эле- ментарный акт, внедряясь между металлом и алкильной цепью при этом образуется новая алкильная цепь, содержащая на два углеродных атома больше, чем исходная. Следовательно, происходит ступенчатый рост молекулы полимера. [c.299]

    И К спектры органических веществ сапропелей характеризуются сильной и широкой полосой поглощения с максимумом в области 3400—3350 см которая соответствует гидроксильной и амидной группам - ОН и NH. В области 2925 и 2855 см" наблюдаются две узкие адсорбционные полосы, идентифицируемые как алифатические группы — Hi и СНз. В этих же веществах обнаружены карбоксильные группы алифатических структур по наличию полосы поглощения в области 1700-1720 см и амидные при 1660-1640 см . Сильные полосы поглощения в области 1000-1100 см характерны для полисахаридов. Полосы поглощения в области 800-780, 520-475 см свидетельствуют о наличии в сапропелях металлорганических связей типа Л е—ОН, —С=С—, -О— и др. [c.111]

    Германий, по-видимому, присутствует в нефти хотя бы частично в виде металлорганических соединений, поскольку наблюдается обратная связь между его содержанием и зольностью нефтей [947]. Специальных исследований форм связи германия с органическими компонентами нефтей не проводилось. Имеются сведения, что в углях германий может находиться в виде внутри-комплексных соединений с функциональными группами эфирного характера, либо о-дигидроксильпыми группами пирокатехина [8, 948]. Он также может быть связан в соли с карбоксильными остатками и oiraTKaMn тиокарбоновых кислот в молекулах смол [c.175]

    Превращения кислородсодержащих н металлорганических соединений. Кислород в среднедистиллятных фракциях нефтепродуктов может быть представлен соединениями типа спиртов, эфиров, фенолов и нафтеновых кислот. В высококипящих фракциях кислород находится в основном в мостиковых связях и в циклах молекул. Наибольшее количество кислородсодержащих соединений концентрируется в смолах и асфальтенах. Содержание смол возрастает с повыиаением температуры кипения фракции — от 0,1% в бензине до 2—3% в вакуумных дисгиллятах. [c.300]

    Гидроочистка остаточных нефтяных фракций сопряжена с большими трудностями. Это связано, во-первых, с тем, что высо-кокипящие фракции содержат серу в устойчивых тиофеновой, беиз-и дибензтиофеновых структурах. Во-вторых, высокая вязкость остаточных продуктов затрудняет диффузию водорода к поверхности катали.-5атора. И, наконец, вследствге высокого содержания конденсированных аренов, смол, асфальтенов и металлорганических соединений в сырье катализатор быстро закоксовывается и дезактивируется, [c.304]

    В алкилмагниевых солях, как и в других металлорганических соединениях [например, 2п(СНз)2], связь между углеродом и металлом поляризована, причем атом металла является положительным, а атом углерода — отрицательным полюсом. [c.112]

    Заместители при двойной связи, притягивающие и-электронную пару (карбалкоксильные, нитрильные, нитро- или винильные группы), поляризуют двойную связь таким образом, что незамещенный атом углерода приобретает катионоидный характер. Этот цвиттерион может присоединять анион (например, ОН или анионы металлорганических соединений) к незамещенной метиленовой группе, в результате чего у замещенного атома С появляется отрицательный заряд. Образовавшийся карбанион присоединяется к поляризованной двойной связи молекулы мономера и т. д. На растущем конце цепи имеется отрицательный заряд. Обрыв цепи вызывают способные к присоединению катионы, например Н+ перенос цепи вызывают молекулы, способные образовывать анионы, например ЫНз при полимеризации стирола под действием ЫаЫНг. Полимеризация нитроэтилена вызывается даже водой. [c.936]

    Большие успехи в области применения регулируемой анионной полимеризации достигнуты за последние годы и в связи с открытием комплексных катализаторов Циглера—Натта . Под влиянием этих катализаторов были получены кристаллические полимеры этилек а, пропилена и других а-олефипов, обладающие регулярным строением с определенным расположением заместителей в пространстве (изотактические и синдиотактические полимеры, стр. 57 ел.). По типу полимеров, получаемых под воздействием катализаторов Циглера—Натта, последние называют с т е р е о-специфическими к а т а л и з а т о р а. м и. Стерео-специфические катализаторы состоят из смеси металлорганических соединений металлов П и 1Н гру[И1 и галогенидов металлов [ V и VI групп, включая торий и уран. Наибол ,шее распространение приобрел катализатор, получаемый смешением триалкил-алюминия и х. юридов титана при разл гчном молярном соотно-пн нии компонентов. [c.146]

    В молекуле или анионе основания присутствуют атомы элементов (обычно атомы кислорода или азота), имеющих неподеленные пары р-электронов, за счет которых образуется ковалентная связь с отщепляемым от метиленового компонента протоном. Менее доступны основания, у которых неподеленная пара электронов находится на атоме углерода [например, (СбН5)зС ]. Металлорганические соединения (магний-, цинк- и литийоргани-ческие) также относятся к основаниям, так как связь между атомами углерода и металла поляризована в сторону более электроотрицательного атома углерода. [c.196]

    В этом разделе будут рассмотрены только органические производные непереходных элементов — наиболее важные и хорошо изученные металлорганические соединения. В результате высокой реакционной способности многие из этих соединений имеют большое значение в органической химии. У этих соединений связь С—Э (а-связь), в зависимости от природы непереходных элементов, может сильно различаться по своей полярности (от обычной ковалентной связи до полярной и даже — ионной). Это определяет реакционную способность таких соединений. Исходя из этого все элементор-ганические соединения непереходных элементов можно разделить на три группы  [c.173]

    Соединения с одним атомом кислорода в цикле Окси- и оксосоединения Соединения с одним атомом кислорода в цикле. Оксиоксосоединения. Карбоновые кислоты. Суль-финовые и сульфоновые кислоты. Амины. Гидроксиламины. Гидразины. Азо- и диазосоединения. Фосфорорганические соединения со связями С—Р, Металлорганические соединения Соединения с двумя атомами кислорода в цикле. Окси- и оксосоединения Карбоновые кислоты, ( ульфокислоты, амины и другие соединения с тремя, четырьмя, пятью и более циклически связанными атомами кислорода Соединения с одним атомом азота в цикле, Оксисоединения. Оксосоединения Соединения с одним атомом азота в цикле. Окси-н оксосоединения, Оксиоксосоединеиия [c.234]

    К обширному классу так называемых элементорганических соединений относятся многочисленные соединения фосфора, кремния, бора, а также металлов — металларганические соединения. Следует подчеркнуть, что к последнему классу относятся только такие соединения, в которых атомы металлов непосредственно связаны с атомами углерода. Алкоксиды и ароксиды (алкоголяты, гликоляты, глицераты, феноляты) металлов, соли органических кислот, сложные эфиры металлсодержащих кислот и т. п. не относятся к металлорганическим соединениям. [c.75]

    Вещества с молекулярной структурой характеризуются тем, что они образованы из молекул, связанных друг с другом силами Ван-дер-Ваальса или водородной связью. К таким веществам, например, относятся простые вещества (Н2, N2, О2, галогены, 8в), неорганические (Н2О, ЫНз, НР, СО2, N204) и органические соединения (спирты, кислоты), а также кристаллы некоторых координационных металлорганических и органических соединений (типичный представитель нафталин), в том числе полимеров, белков, нуклеиновых кислот. [c.132]

    Боковые винильные группы и ответвления мешают свободному перемещению макромолекул друг относительно друга и вращению звеньев при низких температурах, вследствие чего каучук СКБ менее морозостоек, чем натуральный каучук. Температура стеклования натрий-дивинилового каучука —48° С, а натурального —70° С. Чем в полимере больше звеньев, соединенных в положении 1—4, тем выше его морозостойкость. Температура стеклования полидивинила, звенья которого соединены только в положении 1—4, минус 110° С, а полидивинила, состоящего только из звеньев 1—2, выше 0°С. Увеличению числа связей в положении 1—4 способствует понижение температуры полимеризации, применение лития вместо натрия и использование металлорганических катализаторов. СКБМ, у которого полимерная цепь содер- [c.182]

    Детектор электронного захвата (ДЭЗ) по частоте использования занимает одно из ведущих мест. Универсальные газовые хроматографы, как правило, комплектуются этим детектором наравне со стандартными детекторами — ионизационно пламенным и по теплопроводности. Столь быстрое и широкое распространение ДЭЗ получил в связи с необходимостью измерения весьма малых количеств хлорсодержаших пестицидов в продуктах растительного и животного происхождения. Он успешно применяется для определения малых концентраций галоген-, кислород- и азотсодержащих веществ, некоторых металлорганических соединений и других веществ, содержащих атомы с явно выраженным сродством к электрону [c.61]

    Техника предъявляет к резиновым изделиям самые разнообразные требования. В одном случае необходима большая прочность, в другом—высокая эластичность, в третьем—термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкау-чука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, гак и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополиме-ризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемым для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незаменимым для целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах было найдено, что проведение полимеризации в присутствии комплексных металлорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Соединения, реагирующие подобным образом, называют крип- доснованиями, поскольку у них основные свойства в известной мере находятся в скрытом виде. К такого рода соединениям относятся некоторые металлорганические соединения и гидриды металлов, алкильные остатки (или водородные атомы) которых негати-вированы +/-эффектом металла. Водородные атомы, связанные с атомом углерода, также могут быть перенесены со своими образующими связь электронами, если они подвержены сильному электронному давлению , как, например, в изопропилат-анионе  [c.178]

    Так или иначе, при адсорбции на катализаторе происходит активация водорода и восстанавливаемого органического субстрата, превращение их в поверхностные соединения, способные реагировать друг с другом по одному или нескольким определенным маршрутам, не требующим преодоления высокого активационного барьера. Согласно предложенным механизмам, ненасыщенное соединение, связанное с поверхностью катализатора (А или Б), может присоединять атом водорода и образовывать полугидрированный интермедиат Г моноадсорбированный радикал, напоминающий металлорганическое соединение. Эта реакция, как и предшествующие ей процессы, обратима, и интермедиат либо присоединяет еще один атом водорода и превращается в насыщенный продукт, который немедленно десорбируется, либо теряет атом водорода и вновь переходит в адсорбированную форму исходного ненасыщенного соединения или его изомера, отличающегося положением двойной связи. В условиях низкотемпературного гидрирования стадия превращения полугидрированной формы Г в алкан практически необратима  [c.27]


Смотреть страницы где упоминается термин Металлорганические с связями: [c.307]    [c.160]    [c.416]    [c.359]    [c.219]    [c.1118]    [c.142]    [c.86]    [c.90]    [c.806]   
Углублённый курс органической химии книга2 (1981) -- [ c.173 , c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте