Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изолейцин содержание в белках

    Различия ( 10 %) между препаратами белых и зеленых белков распространяются на 13 аминокислот, и среди них 10 имеют содержание свыше или равное 3 %. Основные различия приходятся на серии (+72% в зеленых протеинах), пролин (+24 %), изолейцин ( + 22 %), тирозин ( — 30 %) и аргинин (-36 %). [c.251]

    Применение. Витамин 8,2 применяют при лечении злокачественной анемии, цирроза печени, при нервных и психических расстройствах. Он широко используется в кормопроизводстве. В настоящее время большинство комбикормов для свиней и птиц обогащают витамином В а, особенно благоприятное действие на животных оказывает сочетание витамина с малыми дозами антибиотиков, в частности, биомицина. Витамин В]з воздействует на кроветворную функцию и на обмен белков, принимает участие в регуляции оптимального содержания в организме животного метионина, валина, треонина, лейцина, изолейцина. [c.46]


    Содержание лейцина, изолейцина и валина в различных белках [c.293]

    С другой стороны, аспарагиновая и особенно глутаминовая кислоты, а также лейцин, изолейцин и пролин обычно находятся в белках семян растений в количествах более 5—8%, и часто общее содержание этих пяти аминокислот составляет 60—70% количества аминокислот в белках растений. [c.218]

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]

    Глобины Г. отличаются от других белков сравнительно высоким содержанием гистидина (6—10%) и отсутствием или низким содержанием изолейцина. Глобины животных различных видов отличаются аминокислотным составом, последовательностью ами- [c.418]

    Некоторые белки отличаются своеобразными особенностями аминокислотного состава. Так, например, сальмин, принадлежащий к группе протаминов, характеризуется высоким содержанием аргинина и отсутствием таких распространенных компонентов белков, как глутаминовая кислота и лейцин, хотя в нем присутствуют остатки изолейцина и валина (см. табл. 1). Кератин [c.25]

    Антагонизм между природными аминокислотами отмечен также у животных. У крыс, получавших рационы с высоким содержанием лейцина, наблюдалось торможение роста при добавлении к рациону изолейцина действие лейцина частично снималось [205]. Если, помимо изолейцина, добавляли еше и валин, то нормальный рост восстанавливался полностью [273]. При соответствующих условиях питания можно наблюдать антагонизм между фенилаланином и изолейцином, фенилаланином и вали-ном, треонином и фенилаланином [273, 296]. При увеличении количества белка в рационах, содержащих казеин и желатину или казеин и окисленный казеин, у крыс возникают нарушения, говорящие о неправильном соотношении между аминокислотами. Наступающее при этом торможение роста, повышенная экскреция триптофана с мочой и снижение уровня содержания триптофана в плазме крови устранялись при добавлении к рациону триптофана, но не снимались никотиновой кислотой [288, 297]. [c.146]


    Гидролиз пищевых продуктов. Чаще всего при определении аминокислотного состава пищевых продуктов используют кислотный гидролиз в 6 н. растворе НС1, проводимый в запаянных ампулах при температуре ПО—120°С в продолжение 22—24 ч [38, 48, 61]. Необходимо отметить, что гидролиз — наиболее несовершенная операция в аминокислотном анализе, так как в белках содержится несколько лабильных аминокислот (треонин, серин, цистин, метионин, гистидин, триптофан, тирозин), которые, по мнению многих авторов, заметно разрушаются даже при кратком кислотном гидролизе другие (валин, лейцин, изолейцин), наоборот, с трудом высвобождаются из полипептидных цепей при длительных сроках гидролиза (в течение 70—80 ч). Поэтому для определения истинных количеств аминокислот в белках при особо точных исследованиях гидролизуют несколько (3—4) проб белка при различных сроках (20—80 ч). Путем построения графиков зависимости количества аминокислот от длительности гидролиза находят истинное значение содержания лабильных аминокислот, экстраполируя кривую к начальному моменту гидролиза. [c.190]

    Хотя название азота означает не поддерживающий жизни , па самом деле это необходимый для жизнедеятельности элемент. В растительных организмах его содержится в среднем 3%, в живых организмах до 10% от сухого веса. Азот накапливается в почвах (в среднем 0,2 вес.%). В белке животных и человека среднее содержание азота составляет 16%. Человек и животные не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и поэтому для них основным источником этих аминокислот являются белки растений и микроорганизмов. [c.8]

    Так как аминокислотный состав различных белков варьирует (см. табл. 1) в широких пределах, то можно было ожидать значительных отличий в содержании аминокислот при различных рационах. Однако анализ важнейших продуктов питания показывает, что общее содержание аминокислот в смеси белков хорошо сбалансировано и колеблется в небольших пределах. Белки молока, сыворотки, яиц, мяса, рыбы, мозга, проростков зерна, соевых бобов и фибрина содержат 1—2% цистина и цистеина, 5—7% аргинина, 2—3% гистидина, 5—8 о/о лизина, 3—5% тирозина, 1—2% триптофана, 4—6% треонина, 4—6% валина, 10—20% лейцина и 3—5% изолейцина [45]. Очевидно, белки всех этих пищевых продуктов могут заменять друг друга в [c.369]

    Таким образом, изучение содержания отдельных аминокислот у видов рода копеечник позволило обнаружить, что они накапливают в преобладающих количествах аспарагиновую и глутаминовую кислоты, аланин, пролин, фенилаланин, метионин, валин и аспарагин, а также в отдельных органах растений гистидин, глицин, серии, лейцин, изолейцин, аргинин, треонин. Определение содержания свободных аминокислот и аминокислот белка у пяти видов рода копеечник в разные фазы вегетации позволило выявить их изменения в процессе индивидуального развития растения. Общим для всех видов является максимальное содержание [c.56]

    Содержание аминокислот и порядок их соединения в разных белках может сильно различаться. Но чаще всего в растительных белках встречается 20 аминокислот аланин, аргинин, аспарагиновая кислота (или аспарагин), валин, гистидин, глицин, глутаминовая кислота (или глутамин), изолейцин, лейцин, лизин, метионин, оксипролин, пролин серин, тирозин, треонин, триптофан, фенилаланин, цистеин и цистин Некоторых из перечисленных аминокислот нет в отдельных раститель ных белках, в некоторых белках содержатся другие аминокислоты не входящие в число перечисленных. Аминокислотный состав опре деляет полноценность белков при использовании их в питании или на корм. [c.430]

    Питательная ценность белков, т. е. биологическая их полноценность, зависит от аминокислотного состава и, в первую очередь, от содержания незаменимых аминокислот, которые не могут быть синтезированы самим животным организмом, а должны поступать в достаточном количестве с пищей. Напомним, что незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин и аргинин. В табл. 22 показано содержание незаменимых и других аминокислот в некоторых растительных и животных белках. Из этой таблицы видно, что для обеспечения пищи всеми необходимыми аминокислотами необходимо иметь в рационе не один вид белка, а их набор. [c.442]

    Таким образом, два вида бактерий, ДНК которых содержит одну и ту же информацию о последовательности аминокислот в белках, могут отличаться по содержанию [Г] + в ДНК на 33% только за счет исключительного использования того или иного из кодонов-синонимов. Разницу в содержании [Г] + [Ц] у бактерий более 33% следует относить на счет различной первичной структуры кодируемых белков. Как видно из табл. 27, более частое использование пролина, аргинина, аланина и глицина для построения белков соответствует более высокому содержанию [Г] + [Ц], тогда как в белках бактерий с более низким содержанием [Г]- -[Ц] следует ожидать более частой встречаемости фенилаланина, метионина, аспарагина, тирозина, изолейцина и лизина. Исследование суммарного аминокислотного состава белков разных видов бактерий подтвердило, что различное содержание [Г] + [Ц] в их ДНК может быть частично объяснено подобными различиями в первичной структуре белков. [c.441]


    Больным назначают диету с заменой белков на смесь очищенных аминокислот, не содержащую лейцина, изолейцина и валина. После того как содержание этих трех аминокислот в плазме снизится до нормального уровня, можно вводить их в пищу, например, в составе молока и других продуктов, но лишь в таком количестве, чтобы обеспечить (но не превысить) потребности в аминокислотах с разветвленной цепью. Нет сведений о том, можно ли впоследствии ослабить ограничения в диете и когда именно. Если лечение было начато в первую неделю жизни ребенка, удается значительно смягчить тяжелые проявления болезни. [c.341]

    Если содержание белков в растительном корме ниже нормы, то во избежание перерасхода кормов и повышения себестоимости животноводческой продукции количество белка в корме компенсируют введением белковьк добавок в виде препаратов незаменимых аминокислот либо белковой массы с более высоким содержанием ряда аминокислот по сравнению с эталоном. Незаменимые аминокислоты наиболее сбалансированы в белках семян сои. Относительно высокую биологическую цеьшость имеют также белки зерна риса и гороха. В белках зерна пшеницы и ячменя очень мало лизина, метионина и изолейцина, а в белках кукурузы еще и триптофана. Для балансирования кормов (в которых основной компонент — зерно злаковых культур) по белку и незаменимым аминокислотам применяют концентрированные белковые добавки — комбикорма. Для их приготовления используют мясокостную и рыбную муку, отходы мясной и молочной промышленности, жмыхи масличных растений, отруби, шроты зернобобовых культур. [c.9]

    По всей видимости, существует довольно сильная изменчивость аминокислотного состава, о чем сообщалось разными исследователями. В белках гороха и конских бобов в меньшей степени представлены валин, изолейцин, фенилаланин и серосодержащие аминокислоты, чем в белках сои (табл. 12.5). Наоборот, эти белки богаче лизином, особенно белки гороха, что предопределило современный масштаб распространения этой культуры в качестве кормового средства. Мосс и Бодэ [45] показали, что содержание основных аминокислот в конских бобах находится в линейной зависимости от содержания белков. Довольно большие сортовые различия по количеству серосодер- [c.582]

    ТЫ — аминокислоты, которые не синтезируются в организме. Содержание их в пищевых продуктах необходимо для роста, развития и поддержания нормального физиологического состояния человека, животных и некоторых микроорганизмов. Аминокислоты, которые могут синтезироваться в организме, называются заменимыми аминокислотами. Основным источником аминокислот являются белки, которые расщепляются в н елу-дочно-кишечном тракте до аминокислот. Белки, в состав которых входят все Н. а., называются полноценными белки, которые не содержат хотя бы одну из незаменимых аминокислот, являются неполноценными. Н. а. богаты животные белки — молоко, мясо. Н. а. для человека и всех животных являются восемь аминокислот лизин, треонин, триптофан, метионин, фенилаланин, лейцин, валии, изолейцин. Для роста молодых крыс, кроме того, необходим еще аргинин для роста цыплят необходимо до 15 аминокислот. Г1ри отсутствии в организме (пище) отдельных Н. а. могут развиваться некоторые заболевания, например, при отсутствии триптофана развивается катаракта. [c.171]

    Глобин принадлежит к группе гистонов, так как он растворяется в разбавленных кислотах (изоэлектрическая точка 7,5). Примерно одну пятую часть молекулы белка составляют основные аминокислоты, среди которых преобладает лизин. В большинстае гистонов преобладает аргинин. Аминокислотный состав гемоглобина лошади приведен в табл. 42 (стр. 657). Содержание серы (щистива) в глобинах колеблется IB гемоглобине лошади— 0,39%. в гемоглобине кошки — 0,62%, в гемоглобине курицы — 0,86%. Гемоглобин здорового взрослого человека так же, как и гемоглобин лошади, не содержит изолейцина фетальный гемоглобин (HbF) содержит примерно восемь остатков этой аминокислоты. Гемоглобин S, который находится в крови больных серповидной анемией (болезнь, характеризующаяся массовым распадом эритроцитов), является продуктом врожденного нарушения нормального метаболизма. Гемоглобин S значительно менее растворим, чем гемоглобин А, его изоэлектрическая точка лежит заметно выше (на [c.671]

    СОДЕРЖАНИЕ ЛЕЙЦИНА, ИЗОЛЕЙЦИНА И ВАЛИНА В РАСТИТЕЛЬНЫХ БЕЛКАХ (Вы шслет) иа содержание 16.0 о азота) [c.299]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Одновременно со снижением содержания азота при повышенных концентрациях НАМ наблюдается изменение аминокислотного состава белка. Количественное содержание лизина, гистидина, аланина, валина, метионина, изолейцина, тирозина и феналалани-на не изменялось под влиянием химических мутагенов. Содержание аспарагиновой и глутаминовой кислот достоверно снижалось во все годы исследований (таблица). Поскольку аспарагиновая и глутаминовая кислоты являются предшественниками других аминокислот, то снижение их содержания существенно сказывалось на синтезе белка. Содержание треонина, серина, пролина [c.84]

    Существенным показателем питательной ценности белков зеленой массы является их аминокислотный состав. Исследования показали, что белки зеленой массы многолетнего люпина содержат все незаменимые аминокислоты. Сумма незаменимых аминокислот в белках составляет около 50% (табл. 4). Мутант М-1827 имеет наибольшую сумму незаменимых аминокислот — 37,9%, превышающую на 1,59% сумму незаменимых аминокислот в белках стандартного сорта. Наибольший интерес представляет повышенное содержание в белках М-1827 таких незаменимых аминокислот, как лизин — 6,81 против 5,8% у стандарта аргинин—4,88 против 4,37% у стандарта треонин—3,68 против 3,29% у стандарта. У М-1827 отмечали несколько пониженное содержание изолейцина по сравнению со стандартом, однако в целом отселектированные образцы имеют высокий аминокислотный состав белков зеленой массы, являясь хорошим дополнением к другим кормам в качестве белковой подкормки. [c.150]

    В настоящее время в результате применения новых методов исследования установлено, что в состав белковых молекул входят следующие аминокислоты глицин, аланин, валин, лейцин, изолейцин, серин, треонин, цистин, цистеин, метионин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин, оксилизин, фенилаланин, тирозин, пролин, оксипролин, гистидин и триптофан. Ввиду того что количество азота этих аминокислот составляет в некоторых исследованных белках более 99 % общего содержания азота, нет оснований предполагать наличие в этих белках заметных количеств каких-нибудь других еще не известных соединений. Эти данные, однако, нельзя обобщать и переносить на другие белки. Об этом свидетельствует хотя бы нахождение таких соединений, как аминоэтанол — в гидролизате грамицидина (см. гл. XV) — и диодтирозин и дибромтирозин — в гидролизате кораллов [59] и спонгина [60]. [c.30]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    У белков семян (см. табл. 25) присутствие -больших количеств амидных групп (особенно в глиадине и зеине), повидимому, указывает на важную роль глутамина и аспарагина в азотистом обмене прорастающего семени. Можно предположить, что в начале прорастания ферментативная система, ответственная за выработку этих амидов — аспарагина и глутамина,—либо отсутствует, либо не очень активна. Интересно отметить наблюдавшийся [766] факт понижения проницаемости некоторых клеточных оболочек для двухвалентных ионов по сравнению с проницаемостью для одновалентных амидов. Значительные вариации в составе гистонов печени и тимуса (аланин, глицин, валин, лейцин, изолейцин, треонин и глутаминовая кислота) не позволяют оценить те различия, которые обнаруживаются при сравнении аминокислотного состава этих гистонов с гистоном саркомы. Во многих отношениях гистон саркомы обнаруживает большое сходство с аминокислотным составом нор1мальных гистонов в частности, это справедливо по отношению к содержанию изолейцина в гистоне тимуса теленка и саркомы крысы. Из всех белков (40 или более), сгруппированных в табл. 14—25, только два содержат более 10%, а 32 — меньше чем 5% изолейцина. С другой стороны, в гистонах тимуса и саркомы содержится 20,5 и 17,9% изолейцина соответственно. [c.231]

    Применение динитрофенильных производных, введенных в практику Зангером [25] с целью идентификации и количественного определения концевых аминогрупп, позволяет получить ценные сведения о количестве открытых цепей в белке. Кроме того, такие меченые аминокислоты служат в качестве реперных точек при исследовании неполного гидролиза (1346). В этом отношении полезными являются также е -аминогруппы лизина. Путем неполного гидролиза, осуществляемого с помощью кислоты и различных типов ферментов, оказалось возможным разрывать длинные полипептидные цепи в различных точках и путем анализа установить единственно возможную конфигурацию. Этим способом Зангер и Таппи[99]и Зангер и Томпсон [100] определили порядок чередования аминокислот в двух типах цепей, входящих в состав инсулина (табл. 27). Такой подход к проблеме структуры белка был облегчен широким применением новейших микрометодов хроматографии на бумаге и силикагеле и ионофореза. Таким образом, оказывается, что одна из крупнейших проблем химии белка поддается изучению с помощью весьма простых и экономичных методов. Цепи в инсулине имеют различную длину, причем цепь с N-концевым фенилаланином (цепь В) состоит из 30 остатков, а соответствующая глициновая цепь (цепь А) — из 21 остатка. Порядок чередования аминокислот и их содержание даны в табл. 27. Можно отметить следующее. Цепь А не содержит лизина, гистидина, аргинина, треонина, фенилаланина и пролина все эти компоненты входят в состав цепи В, в которой, в свою очередь, совсем нет изолейцина. Не наблюдается ни регулярного чередования аминокислот, ни тенденции к чередованию полярных и неполярных групп. Три ароматические аминокислоты (фен.фен.тир.) расположены последовательно, и два остатка глутаминовой кислоты связаны с двумя остатками ци-стеина (глу.глу.цис.цис.). В обеих цепях содержится шесть цистеиновых остатков, четыре из которых расположены врозь, а только что упомянутые два — рядом друг с другом в молекуле нативного белка все они существуют в форме цистина, но какие из них расположены между пептидными цепями, а какие в самих пептидных цепях — неизвестно. Часть дикарбоновых кислот присутствует в виде амидов — четыре в цепи А и две в цепи В. [c.255]

    Гистограммы (рис. 3), полученные в настоящее время, по крайней мере, для пятидесяти белков, показывают, что некоторые из выводов Бейли должны быть изменены. Нельзя считать случайным тот факт, что некоторые функциональные группы (аминокислотные остатки), повидимому, распределяются в белках таким образом, что соответствующие гистограммы представляют собой одну или несколько накладывающихся друг на друга нормальных кривых распределения. Это ясно видно из суммарного содержания лейцина и изолейцина, анионных и липотропных групп. Если такое распределение является отражением определенной закономерности, то оно может быть свидетельством в пользу того, что а) механизм синтеза белка является в известной степени общим для всех типов клеток и что б) такой механизм, Вероятно, обеспечивает избирательность и не допускает синтеза всех стереохимически возможных белков. [c.260]

    Характеристика аминокислотного состава различных растительных белков дается в табл. 7.1, из которой видно, что наиболее сбалансированное содержание незаменимых аминокислот имеют белки зерна сои, у нее отмечается лишь некоторый дефицит по метионину и триптофану. Относительно высокую биологическую ценность имеют также белки зерна риса и гороха. В то же время широко возделываемые в нашей стране зерновые культуры — пшеница, кукуруза, ячмень — отличаются несбалансированным аминокислотным составом белков. В белках зерна пшеницы и ячення очень мало содержится лизина, метионина и изолейцина, а в белках зерна кукурузы еще и триптофана. [c.258]

    Микробиологический синтез лизина. Белки семян зерновых культур (пшеницы, ячменя, кукурузы и др.) не сбалансированы по содержанию незаменимых аминокислот и прежде всего лизина. Поэтому для удовлетворения потребностей животноводства в нашей стране, как и в ряде других стран (Япония, США, Франция, Испания, Югославия), организовано крупнотоннажное производство этой незаменимой аминокислоты. В основу производства положены технологии с использованием одноступенчатого микробиологического синтеза, которые включают промышленное культивирование ауксотрофных мутантов бактерий из рода СотупеЬас1егшт, способных к сверхсинтезу этой аминокислоты. Обычно у диких штаммов, из которых получены ауксотрофные мутанты, сверхсинтеза лизина не наблюдается, так как у них действуют механизмы саморегуляции. В клетках бактерий аминокислота лизин синтезируется из аспарагиновой кислоты через ряд промежуточных этапов, связанных с образованием полуальдегида аспарагиновой кислоты, дигидропиколино-вой кислоты и а,8-диаминопимелиновой кислоты, являющейся непосредственным предшественником лизина. Полуальдегид аспарагиновой кислоты является также одним из предшественников в синтезе аминокислот— треонина, метионина и изолейцина (схема I). [c.276]

    Конформационная специфика гидрофильных остатков не может быть полностью объяснена только невалентными взаимодействиями. Боковые цепи, содержащие группы -ОН (Ser, Thr), -СОО" (Asp, Glu), -NH3 (Lys) и т.д., в белках участвуют в образовании водородных связей с собственной основной цепью и с боковыми цепями других остатков, электростатических взаимодействий и солевых эффектов. В качестве примеров остатков с гидроксильной группой рассмотрим конформационные состояния в белках боковых цепей серина и треонина. Прежде всего оценим их конформационные возможности в свободном состоянии с точки зрения невалентных взаимодействий. Контактный радиус атома О (1,5 А) лишь немного больше радиуса Н (1,2 А) кроме того, связь С-О (1,43 А) длиннее связи С-Н (1,09 А). Поэтому группа -СН2ОН в отношении невалентных взаимодействий с основной цепью близка к метильной группе, и конформационная свобода Ser практически не уступает Ala. Следовательно, все ротамеры относительно %i (-60, 180, 60°) по невалентным взаимодействиям у Ser должны быть приблизительно равновероятны. У остатка Thr, подобно Val и Пе, разветвление в боковой цепи начинается у атома С . Поэтому у него, как и у остатков валина и изолейцина, наиболее вероятными должны быть те состояния, в которых атомы и С не находятся между связями N- и С -С, что имеет место при = 60°. В согласии с расчетом монопептида Thr боковые цепи этого остатка чаще всего встречаются в положении %i = 180° (60%). Далее следует Xi —60° (30%) и Xi - 60° (10%). Упомянутое стерическое ограничение отсутствует у серина, и в распределении конформаций у него по углу % все три ротамера (-60, 180 и 60°) представлены достаточно полно (соответственно 45, 25 и 30%). У остатков Ser и Thr, как известно, выражена тенденция избегать в белках внутренние витки а-спиралей. Гомополипептиды Ser и Thr не образуют а-спиралей, а существуют в форме -структуры. В сополимерах с а-спиральными остатками они дестабилизируют, а при большом содержании разрушают а-спирали. Тем не менее на нерегулярных участках белков у Ser и Thr конформации R и Б представлены с равными весами. Следовательно, отсутствие соответствующих а-спиральных полипептидов связано не с меньшей вероятностью нахождения остатков в конформации R, чем в В, а иными причинами, обусловленными кооперативным характером взаимодействий в а-спирали. [c.188]

    Оптимальное содержание незаменимых аминокислот в пищевом белке зависит в определенной степени от возраста, пола, профессии человека и других причин. Например, по мнению экспертов ФАО и ВОЗ. для взрослого мужчины оптимальным считается содержание в 1 г пищевого белка следующего количества 8 незаменимых аминокислот (в мг) изолейцина - 40, лейцина - 70, лизина -55, метионина в сумме с цистином (метионин у взрослого человека может в организме заменяться цистином) — 35, фенилаланина в сумме с тирозином (фенилаланин также может заменяться тирозином) — 60, триптофана — 10, треонина -40, валина - 50 [8]. Для грудных детей дополнительно считаются незаменимыми гистидин и цистин [23]. Аргинин и гистидин не являются незаменимыми аминокислотами для взрослого человека, но недостаток аргинина сказьюается на сперматогенезе, а недостаток гистидина приводит к развитию экземы и ряду других отрицательных явлений [б]. [c.9]

    Кроме вариабельности в содержании непосредственно белков, что в той или иной степени отражается на содержании аминокислот, имеет большое значение видовая или сортовая вариабельность аминокислот одного и того же продукта. Кроме того, в отличие от метода определения белков метод определения аминокислот дает значительно большой вклад в общую вариабельность аминокислотного состава. Выше бьши подробно рассмотрены причины расхождений в аминокислотном анализе, в том числе проведение одного гидролиза вместо пяти, отсутствие анализа стандартных образцов продукта и внешнего стандарта и т. д. В результате в высокобелковых продуктах (мясо, рыба, птица, зерно и зернобобовые) при определении лизина, лейцина, изолейцина, треонина, валина, аргинина, глицина, пролина, серина, гистидина, аспарагиновой и глутаминовой кислот, фенилаланина, аланина, тирозина, общий коэффициент вариации (относительное среднеквадратичное отклонение) равен 10%, при определении метионина — 15 %, триптофана и цистина — 25% [12]. Для низкобелковых (овощи и фрукты) вариабельность значительно выше — 20, 25 и 30% соответственно [12]. Эти расчеты хорошо совпадают с прямыми экспериментальными данными по межлабораторному испытанию определения состава аминокислот ряда высокобелковых продуктов (казеин, белок яиц, соя, [c.287]

    Сравнение аминокислотного состава целых стенок и клеток (табл. 19) показало их значительное различие по общей сумме (62 и 30% от сух. в-ва) аминокислот. Белки клеточных стенок характеризуются более низким содержанием незаменимых аминокислот. В расчете на белок стенки в отличие от целых клеток содержат больше аспарагиновой кислоты, аланина, серина и тирозина, но меньше лизина, валииа, аргинина, метионина, цистина, изолейцина и триптофана. Эти результаты согласуются с данными Г. Грау и С. Вилкинсона [Grau, Wilkinson, 1965], [c.92]

    Примерно удвоилось. В условиях логарифмического роста бактерии активно синтезировали белок и содержали полный набор ферментов для синтеза всех аминокислот. При анализе суммарного бактериального белка было установлено, что радиоактивности отдельных аминокислот, как и следовало ожидать, пропорциональны их относительному содержанию в препарате белка. Если же, однако, в культуральную среду добавляли немеченую аминокислоту, например Ь-изолейцин, то включение радиоактивной метки в остатки изолейцина снижалось более чем на 95 /о аналогичные опыты были проведены и с другими аминокислотами. Эти эксперименты показали, что в процессе роста бактерии преимущественно использовали добавленные аминокислоты и что эти аминокислоты каким-то образом оказывают ингибирующее действие на свой собственный синтез из молекул-предшествен-ников. [c.10]

    Из содержащихся в свекле азотистых веществ в жоме остается общего азота 50%, белкового — 80, растворимого—30%. Амидный и аммиачный азот полностью переходят в диффузионный сок. К растворимому азоту относится азот аминокислотный, бетаина, пуриновых оснований и нитратный. Находящийся в жоме протеин представлен альбуминами и глобулинами. Кроме простых белков, в жоме содержится незначительное количество протеидов, главным образом в виде нуклеопро-теидов. В нуклеиновых кислотах этих соединений имеются азотистые структурные элементы, пурин, пиримидин, рибоза (пентоза) и фосфорная кислота. В сыром жоме общее содержание аминокислот колеблется в пределах 0,3—0,5%. В состав аминокислот входят аланин, валин, лейцин, изолейцин, аспарагиновая, глютаминовая кислоты, лизин, аргинин, фенилаланин, тирозин, пролин и триптофан. Амидный азот обнаруживается преимущественно в глютамине и аспарагине. Амиды в свекле и жоме содержатся в сравнительно небольшом количестве. Кроме аминокислот и амидов, жом содержит бетаин— растительное основание , включающее ряд азотистых соединений. [c.19]

    Аминокислотный состав белка (табл. 10) характеризуется высоким содержанием лизина, треонина, лейцина, тирозина и фенилаланина. Лимитирующими являются изолейцин, а также серусодержащие аминокислоты цис-тин и метионин. По общей сумме незаменимых и частично незаменимых аминокислот (31,2%) дрожжевой белок практически удовлетворяет требованиям ФАО (31,4%). [c.63]


Смотреть страницы где упоминается термин Изолейцин содержание в белках: [c.152]    [c.188]    [c.408]    [c.446]    [c.36]    [c.655]    [c.33]    [c.264]    [c.93]    [c.93]   
Биохимия аминокислот (1961) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Белки содержание

Изолейцин



© 2024 chem21.info Реклама на сайте