Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фактор современные представления

    В соответствии с современными представлениями реакция алкилирования протекает по сложному многомаршрутному -меха-низму, причем долевое участие отдельных направлений зависит от природы и структуры катализаторов, алкилирующих агентов и растворителей, соотношения компонентов и условий проведения реакции, структуры образующихся комплексов, распределения электронной плотности в атакующей группе и ароматическом углеводороде, геометрических факторов (как от объема алкильного заместителя, так и от объема комплекса катализатора и алкилирующего агента) и т. д. Изменение условий реакции алкилирования и теоретически обоснованный состав компонентов исходной реакционной смеси позволяют управлять соотношением термодинамических и кинетических факторов, что дает возможность априорно определять состав целевых продуктов. [c.218]


    В свете современных представлений нефть состоит из низко-и высокомолекулярных углеводородных и неуглеводородных компонентов. Это дисперсная система, характеризующаяся сложной внутренней организацией, способной изменяться под воздействием внешних факторов [12]. [c.7]

    Согласно современным представлениям на механические характеристики материала влияют три группы факторов [29]  [c.21]

    Согласно современным представлениям мицеллярные растворы ПАВ не являются монодисперсными. В равновесном растворе мицеллы имеют различные числа агрегации (т. е. количества молекул ПАВ в мицелле). Однако, в отличие от полидисперсных лиофобных систем, для растворов ПАВ характерно равновесное распределение мицелл по размерам, которое может обратимо смещаться под влиянием различных факторов. [c.39]

    Наблюдаемые изменения термодинамических функций мицеллообразования обусловлены совокупным действием многих факторов, каждый из которых вносит свой вклад в суммарную энтальпию и энтропию процесса. Среди этих факторов согласно современным представлениям важное значение имеют структурные изменения растворителя (воды), происходящие под влиянием растворенных дифильных молекул ПАВ. [c.51]

    Рассмотрим в порядке возрастания числа атомов в парамагнитной частице с одним неспаренным электроном некоторые достаточно простые радикальные системы. Ряд интересных проблем возникает при использовании спектров ЭПР в исследованиях двухатомных радикалов типа АН и АВ, позволяющих проверить современные представления об их электронном строении. Определены компоненты тензоров --фактора и сверхтонкого взаимодействия гидроксильного радикала ОН и ион-радикала ЫН в разных средах, характеризующие распределение электронной и спиновой плотности. К так называемым л-радикалам типа АВ относят, например, N2 , Ог, N0, СЮ и др., а к ст-радикалам — Рг , СЬ , РС1 , ХеР, КгР и др. Из данных спектроскопии ЭПР по этим радикалам сделан, в частности, вывод об убывании относительной электроотрицательности атомов в ряду Кг>Р>Хе>С1. [c.68]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]


    Связь структурного фактора с электронными свойствами металлов. Одним из физических свойств металлов, непосредственно связанных с ближним порядком и энергией взаимодействия частиц, является электропроводность. Развитие квантовой теории твердого тела привело к выводу, что электропроводность жидких металлов можно вычислить теоретически по экспериментальным данным для структурного фактора а(5), задавая Фурье-образ потенциальной энергии взаимодействия электронов с атомами расплава. Основная идея, на которой базируются расчеты электропроводности, состоит в том, что рассеяние электронов проводимости жидкого металла описывается структурным фактором, аналогичным для рентгеновского излучения или нейтронов. Заметим, что структурный фактор рассеяния электронов проводимости ограничен значениями 5, которые для одновалентных металлов находятся слева от первого максимума а 8), а для двух (и более) валентных металлов —справа от него. В то же время, по данным рассеяния медленных нейтронов и рентгеновских лучей длиной волны X = 0,5—0,7 А, структурный фактор определяется до 5 = 15—20 А"1. Выясним, чем же обусловлено такое различие а(5). По современным представлениям, электроны проводимости металла нельзя рассматривать как свободные. Их движение в кристалле модулировано периодическим силовым полем решетки. Непрерывный энергетический спектр свободных электронов в -пространстве распадается на зоны разрешенных энергий — зоны Бриллюэна, разделенные интервалами энергий, запрещенными для электронов. На шкале энергий Е к) зоны Бриллюэна изображают графически в виде полос разрешенных значений энергии и разрывов между ними (рис. 2,13). В трехмерном/г-пространстве они имеют вид многогранников, форма которых определяется симметрией кристаллических решеток, а размеры — параметрами решетки. Для гранецентрированной кубической решетки первая зона Бриллюэна представляет собой октаэдр, а для объемно-центрированной решетки — кубический додекаэдр. [c.52]

    Изменение прочности во времени подчиняется достаточно строгой закономерности. Разрушение происходит не только в результате механической работы, но в значительной степени в результате теплового движения элементов структуры. Тепловое движение разъединяет элементы структуры, а деформирующая сила способствует этому процессу и фиксирует его в определенном направлении, Согласно современным представлениям, прочность не характеризуется предельной величиной, носящей характер константы. Разрушение твердых тел может происходить при различных нагрузках. Скорость этого процесса зависит от величины приложенного напряжения. При механическом разрушении противодействие оказывают межмолекулярные и химические связи. Роль каждого из этих факторов зависит от температуры и скорости деформации. При этом температурная и скоростная зависимости прочности значительно более резко выражены для межмолекулярных взаимодействий. [c.71]

    При высоких скоростях вращения ротора и достато.чной разности давления между полостью ротора и рабочей камерой в отверстиях статора развивается кавитация, являющаяся по современным представлениям, одним из основных интенсифицируют факторов процессов диспергирования, эмульгирования, растворения, перемешивания,, гомогенизации. [c.31]

    Современные представления о проницаемости полимерных материалов, основанные на феноменологических теориях диффузии и растворимости низкомолекулярных веществ в полимерах, а также на данных о структурных особенностях высокомолекулярных соединений, позволяют высказывать предположения о порядке величины ожидаемой проницаемости в системах газ — полимер или пар — полимер. Приведенные в монографии сведения дают возможность, в известной степени, учитывать при прогнозировании проницаемости влияние внешних условий и отдельных рецептурных факторов. [c.9]

    По современным представлениям основными факторами, обусловливающими возникновение и развитие процесса преоб- [c.26]

    По современным представлениям, под старением понимается разновидность статической усталости твердых тел, наблюдаемая в отсутствие механической нагрузки [35]. Этот процесс развивается под действием различных внешних факторов, которые воспроизводятся в естественных или искусственных условиях. Оценка сопротивления пластмасс процессам старения проводится по соответствующим нормативам. В качестве критерия такой оценки обычно используется безразмерный коэффициент старения, характеризующий разрушение структуры изделия в процессе старения  [c.76]

    Рассмотрение другой стороны проблемы — физико-химической основы получения композиционных наполненных материалов, связанной с поверхностными явлениями на границе раздела полимер — твердое тело, — было впервые дано нами в монографии Физико-химия наполненных полимеров , изданной в Киеве в 1967 г. [10]. В этой монографии была предпринята попытка предложить единый физико-химический подход, основанный на современных представлениях о строении и свойствах макромолекул, для рассмотрения совокупности факторов, определяющих йак формирование структуры наполненных полимеров, так и их свойства. [c.6]


    Весьма обстоятельно рассмотрены механизмы важнейших органических реакций — ионных, радикальных и др., механизмы процессов замещения, присоединения, отщепления, перегруппировки и т. д. Большое внимание уделено стереохимии органических соединений рассмотрено влияние пространственных факторов на ход различных химических реакций. Изложены современные представления о процессах восстановления и окисления, о влиянии растворителей на механизм реакций, каталитических эффектах и других явлениях. [c.4]

    Рассмотрены современные представления о природе агрегативной устойчивости дисперсных систем. Сопоставлены результаты феноменологических, модельных и теоретических исследований факторов устойчивости коллоидных растворов. [c.156]

    Современные представления о взвешенном слое строятся на предположении о том, что слой можно рассматривать как сложную диссипативную структуру, которая возникает в результате диссипации части энергии, подводимой к системе сплошной фазой. Гидромеханическая неустойчивость системы, как правило, связана с неравномерным подводом энергии, что и приводит к возникновению различного рода флуктуаций. Причинами флуктуаций могут быть неравномерность скорости жидкости на входе в слой, пристеночные эффекты, каналообразование — все эти факторы претерпевают непрерывное изменение во времени. По существу, мы имеем дело со статистическими диссипативными структурами. Однако рассматриваемые системы являются статистически стационарными, то есть случайные процессы изменения во времени основных гидродинамических параметров относятся к классу стационарных в широком смысле случайных процессов [36]. [c.195]

    Защищенные частицы золей имеют примерно ту же величину ДП, что и макромолекулы ВМВ. По современным представлениям коллоидная защита является следствием возникновения пли усиления разных факторов стабилизации гидратации поверхности частиц [13 (стр. 305), 39, 40], увеличения -ф -потепциала частиц [13 (стр. 305), 41], взаимного отталкивания гибких макромолекул, адсорбированных на частицах золя [42]. Адсорбция защитного вещества на поверхности частиц продуктов гидролиза многовалентных металлов может сопровождаться химическим взаимодействием с образованием в поверхностных слоях гидрофильных комплексов [43, 44]. [c.116]

    По современным представлениям, в образовании избыточного ила в аэротенке принимают участие взвешенные, коллоидные и растворенные вещества. Кроме того, прирост ила зависит от полноты окислительного процесса, которая 1В свою очередь зависит от концентрации ила, продолжительности аэрации, условий снабжения ила кислородом, температуры и других факторов. В связи с этим Академией коммунального хозяйства им. К. Д. Памфилова предложено количество образующегося избыточного активного ила определять по формуле [c.139]

    Хотя к растворам вируса табачной мозаики применимы некоторые современные представления о дальнодействующих силах (см. разд. VI-3), при интерпретации свойств этих растворов необходимо учитывать также энтропийные факторы, рассматриваемые ниже. Кроме того, имеются данные, указывающие на образование линейных димеров даже в очень разбавленных растворах [25]. Если окажется, что в более концентрированных растворах увеличивается степень ассоциации вирусных частиц, то схему, представленную на рис. VI-1, придется модифицировать. [c.253]

    Согласно современным представлениям [18, 19], нефть, а также тяжелые и остаточные ее фракции содержат высокомолекулярные углеводородные и неуглеводородные соединения в виде физико-химических ассооиатов. От размеров этих ассощ1атов, определяемых свойствами среды и возддаствием внешних факторов, зависят свойства всей нефтяной дисперсной системы. [c.22]

    Лек1щя 34. Современные представления о механизме элементарного акта химической реакции. Теория активных соударенил. Энергия активации и стерический фактор в рамках этой реакции. [c.211]

    Лютцау В.Г. Современное представление о структурном механизме деформационного старения и его роль в развитии разрушения при малоцикловой усталости //Структурные факторы малоциклового разрушения металлов.-М. Наука, 1979.-с.5-21. [c.412]

    По современным представлениям [41-44], базирующимся в значительной мере на работах А. Ф. Иоффе, Н. П. Давиденкова и Я. Б. Фридмана, переход металла в хрупкое состояние наблюдается, когда разрушающее напряжение (сопротивление отрыву) становится равным пределу текучести. На микроскопическом уровне хрупкое разрушение происходит путем скола по плоскостям преимущественной ориентации решетки металла [45]. Важная роль при этом принадлежит механизмам ограничения пластического деформирования. Эти механизмы могут иметь различную природ , причем домиктфовакие любого из них определяется совок> пно стью большого числа факторов (температурой, скоростью деформирования, химическим воздействием и т. д). Общепризнанно, что на степень стеснения пластических деформаций оказывают влияние наличие в металле дефектов, конструктивных концентраторов напряжений, повышение плотности дислокаций, мелкодисперсные выделения [46]. [c.25]

    Огромное практическое значение микрогетеро-генных и грубодисперсных систем общеизвестно различные эмульсии, пены и пенопласты, кремы, всевозможные порошкообразные вещества (цементы, пигменты, наполнители, сажа, инсектофунгиси-ды и др.), волокнистые системы, изоляционные материалы, многие виды искусственной кожи приобретают все большее значение в народном хозяйстве. Такие характерные процессы для микрогетеро-генных систем, как флотация, гравитационное обогащение руд, фильтрация, усиление каучуков и пластмасс, пропитывание пористых систем, гранулирование порошков, получение пленок из дисперсий высокополимеров и эмульгирование, могут быть успешно рассмотрены только в курсе коллоидной химии на основе современных представлений о защитных факторах, агрегативной устойчивости дисперсных систем, механизме усиления, структурообразовании и т. д. [c.4]

    Подгруппа хрома (Сг, Мо, ). В последовательности хром — молибден — вольфрам температуры плавления и кипения сильно возрастают (см. табл. 18). В три раза увеличивается интервал температур, в котором устойчива жидкая фаза. В конденсированных фазах подгруппы хрома происходит обобществление не только з-элек-тронов, но и части -электронов с образованием -зон. В последовательности хром — вольфрам-доля -электронов, участвующих в образовании -зон, растет. По современным представлениям именно этот фактор повышает устойчивость твердой и жидкой фаз в металлах подгрупп хрома и соседних подгрупп 171. Электропроводность при плавлении уменьшается незначительно, в основном за счет разупорядочения решетки. В точке плавления металлы имеют ОЦК структуру. (Относительно хрома сведения разноречивы возможно существование устойчивой высокотемпературной ГЦК модификации). Малая энтропия плавления указывает на вероятность сохранения фрагментов ОЦК структуры в жидкой фазе. [c.192]

    Изучая влияние разных факторов на состав остаточной нефти, авторы [31-33] пришли к нескольким важным выводам. Во-первых, благодаря длительному времени контакта флюидов в пласте, происходит заметное окисление компонентов нефти. Во-вторых, глубина окисления падает с увеличением концентрации асфальтенов. Это можно объяснить, в первую очередь, ингибирующей способностью свободных радикалов, которые, согласно современным представлениям о строении смолоасфальтеновых веществ [43], образуют ядра дисперсных частиц асфальтенов. Авторами было установлено также, что степень окисления компонентов нефти растет с уменьшением минерализации воды. [c.38]

    По современным представлениям, диффузия водорода в решетке металла происходит посредством перемещения протона [44, 69]. Этот фильтрующийся ион водорода вызывает значительные искажения кристаллической решетки металла, а в ряде случаев (при повышенной температуре) является активным химическим элементом. Указанные факторы вызывают охрупчивание большинства конструкционных материалов, включая сталь. Водород, поступающий из внешней среды, адсорбируется в атомарном состоянии на наружной поверхности металла и проникает в кристаллическую решетку. В присутствии промоторов наводороживания, к которым относится, например, сероводород HaS, молизация водорода на поверхности затрудне- [c.40]

    Каков же механизм возникновения адгезионной связи между полимерным покрытием и металлической поверхностью Существует несколько теорий, различным образом трактующих природу этого явления. За рубежом главным образом придерживаются адсорбционной теории, разработанной Н. А. Дебройном, который рассматривает адгезионную связь как адсорбционную. По мнению советских ученых [36], адсорбционная теория ошибочна по своей сути, поскольку теория адгезии должна охватывать любые основные факторы, влияющие на величину адгезии, между тем адсорбционные явления не всегда сопутствуют возникновению адгезионной связи. По наиболее современным представлениям, развитым Б. В. Дерягиным, Н. А. Кротовой, В. П. Смилгой [36], адгезия во всех случаях является результатом межмолекулярного взаимодействия поверхностей разнородных материалов и обусловливается силами химической связи, или силами Ван-дер-Ваальса. Поэтому нельзя противопоставлять электронную теорию адгезии химической теории. [c.29]

    В 1866 г. аббат Грегор Мендель (1822—1884) предложил простую теорию передачи наследственных признаков, основанную на результатах опытов по скрещиванию двух сортов гороха, которые он проводил в саду августинского монастыря в Брюнне в Моравии (ныне Брно, Чехословакия). Он установил, что результаты опытов можно объяснить, если допустить, что каждое растение второго поколения получает от каждого из двух родительских растений некий задаток или фактор (называемый теперь геном), определяющий развитие одного наследственного признака. Согласно современным представлениям, гены линейно расположены в более крупных структурах — хромосомах, которые можно увидеть в ядрах клеток при помощи сильного микроскопа. [c.452]

    Природа МКК сложна н определяется многими факторами [15, 16]. По современным представлениям основными причинами МКК являются обеднение границ зерен хромом и другими легирующими элементами за счет образоваиия и выделения по границам зерен карбидов хрома, или 6-феррнта либо о-фазы растворение избыточных фаз, возникновение сегрегаций по границам зерен, повышенный уровень дефектности решетки по границам зерен аусте-нита. В зависимости от окислительных условий среды МКК протекает по тому или иному механизму. Так, в восстановительных средах основной причиной МКК считается обеднение границ зерен хромом, а в сильиоокнслитель-ных средах—отрицательное влияние сегрегаций таких примесных элементов, как кремний, фосфор и др. [c.316]

    Лютцау В.Г. Современные представления о структурном механизме деформационного старения и его роли в развитии разрушения малоцикловой усталости. В кн. Структурные факторы малоциклового разрушения. - М. Наука, 1977.-с. 5-19. [c.79]

    Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов (см. главу 2) последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада—аминокислот, подробно рассмотренному в главе 12. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности MOHO-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка. [c.469]

    Современные представления, основанные на результатах глубоких структурно-функциональных исследований, отводят ингибиторам важнейшую роль в функционировании основных биохимических механизмов, определяющих и регулирующих физиологическое состояние клетки, ее реакции и взаимодействия как с соседними клетками, так и факторами окружающей внещней среды. Следует отметить, что к наиболее значимым научным открытиям в области фармакологии за последние 4 года, согласно авторам журнала "S rip", отнесены протеаз-ные ингибиторы.[126]. [c.234]

    В данном разделе кратко рассмотрены в самом общем виде факторы, определяющие возникновение критических напрян<ений, приводящих к крекингу макромолекул полимеров, и в первую очередь связи этих факторов с особенностями фазовых и физических состояний полимеров. Оценка этих факторов основана на современных представлениях о механичеаких свойствах полимеров. [c.52]

    Авторы данной работы, изучаюнще эту проблему в разных, но смежных направлениях, попытались критически рассмотреть и систематизировать современные представления о факторах устойчивости коллоидных растворов и обобщить полученные ими новые экспериментальные и теоретические результаты. [c.140]

    Многие результаты теоретических и экспериментальных работ по гидратации ионов (некоторые из этих работ приведены в табл. 2 и 3) можно интерпретировать на основе современных представлений о структурных и динамических свойствах воды. Особый интерес представляет способность некоторых ионов разрушать структуру воды, образовывая с ней комплексы, включаться в существующую структуру воды, увеличивать или уменьшать степень упорядочения растворителя на значительном расстоянии. Ионы классифицируются как "структуроразрушители" и "структурообразователи" в зависимости от того, разрушают ли они структуру воды с образованием менее специфической структуры со слабой координацией молекул, стабилизируют существующую структуру или же приводят к новой гидратной структуре с сильной координацией. Однако такое разделение не всегда оправдывается в различных измерениях. В настоящее время почти нет сомнений в том, что в растворе могут существовать гидратированные группы со специфической локальной координацией ионов и молекул воды. Некоторые ионы могут разрушать структуру воды путем комбинации кулоновского взаимодействия, поляризационных и стерических факторов. Так, имеются свидетельства того (табл. 3), что ионы с сильными полями образуют гидратные комплексы с ближним порядком, аналогичным порядку в соответствующих кристаллогидратах, но с различной степенью ковалентного связывания иона ме-тадла с кислородом воды. Сильные поля таких ионов могут вызывать упорядочение растворителя за первым гидратным слоем. Имеются также данные, указывающие на то, что при низких концентрациях и температурах "водоподобные" области могут сосуществовать с гидратированными ионами. Такие ионы также увеличивают среднюю энергию активации диффузии молекул И jO и действуют как "положительные гидрататоры", по терминологии Самойлова [3, 4]. С другой стороны, большие ионы с низким зарядом могут разрывать структуру воды, вызывая уменьшение средней энергии активации диффузии, т.е. действуя как "отрицательные гидрататоры". Очевидно также, что в некоторых случаях (табл. 3) ионы могут включаться (путем внедрения или замещения) в существующую структуру воды и при этом не разрушать ее. [c.194]


Библиография для Фактор современные представления: [c.510]   
Смотреть страницы где упоминается термин Фактор современные представления: [c.228]    [c.131]    [c.64]    [c.220]    [c.2]    [c.124]    [c.10]    [c.145]    [c.505]   
Гетерогенный катализ (1969) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Современные представления о НМС



© 2025 chem21.info Реклама на сайте