Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство к аминам

    Далее, протонное сродство аминов в газовой фазе [41], определенное масс-спектрометрическим методом, изменяется в той же последовательности. В настоящее время в этой области накоплено значительное количество данных [42]. Интересно заметить, что алкильное замещение соответствующим образом влияет и на тенденцию аминов к отщеплению протона [43], т. е. в отсутствие сольватации алкильные группы оказывают аналогичное стабилизирующее действие как на [c.260]


    Аналогичным образом оксиран и его гомологи реагируют с фосфинами (например, с трифенилфосфином), которые являются еще более сильными нуклеофилами, чем аммиак и амины. Однако в данном случае вследствие большого сродства фосфора к кислороду реакция не заканчивается присоединением реагента, а идет дальше, и образуются алкен и трифенилфосфин-оксид  [c.160]

    Все многообразие зависимостей поверхностного натяжения от концентрации может быть представлено кривыми трех типов (рис. 43). Для поверхностноактивных веществ (ПАВ) характерны кривые типа 1. ПАВ менее полярны по сравнению с растворителем, обладают меньшим, чем растворитель, поверхностным натяжением. Интенсивность взаимодействия молекул растворителя с молекулами ПАВ меньше, чем молекул растворителя между собой. По отношению к воде, полярному растворителю, поверхностно-активными веществами являются органические соединения, состоящие из углеводородного радикала (гидрофобная или олеофильная часть) и полярной группы (гидрофильная часть) карбоновые кислоты, их соли, спирты, амины. Такое дифильное строение молекулы является характерным признаком ПАВ. Углеводородные цепи, не имеющие постоянного дипольного момента, гидрофобны, взаимодействуют с молекулами воды слабее, чем между собой, и выталкиваются на поверхность. Поэтому органические вещества, не обладающие полярной группой (например, парафины, нафтены), в воде практически нерастворимы. Полярные группы типа —ОН, —СООН, —NH и др. обладают высоким сродством к воде, хорошо гидратируются, и наличие такой группы в молекуле обусловливает растворимость ПАВ. Таким образом, растворимость ПАВ в воде зависит от длины углеводородного радикала (растворимость уменьшается с увеличением длины в гомологическом ряду). Например, карбоновые кислоты i — С4 неограниченно растворяются в воде растворимость кислот С5 — С12 заметно падает с ростом числа С-атомов, а при длине углеводородной цепи более i2 они практически нерастворимы. Увеличение длины углеводородного радикала молекулы ПАВ на одну СНа-группу приводит к увеличению поверхностной активности в 3,2—3,5 раза (это правило называется правилом Дюкло — Траубе). [c.205]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Е то время как лантанидам свойствен эффект чередования экстрагируемости четных и нечетных элементов, объясняемый переменным сродством этих элементов к лиганду [607]. Спектры экстрактов указывают на то, что в органической фазе существуют главным образом соединения M02(N03)3 [608, 609] или M (N03)a" [608,. 610, 611]. В спектрах невозможно отличить нитратные группы из нитрата амина либо нитрата актинида [610] или лантанида [607, 608]. [c.66]

    Циклические поли амины - соединения, содержащие атомы азота в качестве донорных атомов. Атом азота в амине является более мягким основанием, чем атом кислорода, и обладает сродством к мягким катионам, таким, как ионы переходных или тяжелых металлов, тогда как краун-эфиры имеют сродство к жестким катионам, таким, как ионы щелочных и щелочноземельных металлов. [c.64]

    Относительно воды к поверхностно-активным веществам относятся многие органические соединения (жирные кислоты с большим углеводородным радикалом, соли этих кислот (мыла), сульфокислоты и их соли, спирты, амины). Обладающая значительным дипольным моментом и хорошо гидратирующаяся полярная группа обусловливает сродство ПАВ к воде. Гидрофобная углеводородная группа (радикал) является причиной пониженной растворимости этих соединений. [c.160]

    Труднее представить себе обратную ориентировку молекул, так как маловероятно, чтобы полярная группа, имеющая большее сродство к воде, стремилась бы к адсорбции на поверхности металла, а гидрофобная часть молекулы, которую, наоборот, раствор стремится вытолкнуть на границу раздела, была бы направлена в сторону раствора. В пользу предположения об указанном характере ориентировки молекул говорит также известный факт отсутствия ингибирующего действия у низших представителей ряда первичных, ароматических и гетероциклических аминов очевидно, это указывает на незначительное сродство аминных полярных групп к металлу. Если даже допустить, что ингибитор при адсорбции повернут к поверхности металла аминной группой, то с увеличением длины алифатической цепи молекулы ингибитора нужно было бы ожидать меньшего, а не большего эффекта, потому что вода стремилась бы вытолкнуть гидрофобную часть молекулы к границе раздела фаз. В этом случае из-за возникновения изгибающего момента связи аминной группы с металлом должны были бы ослабевать, а ингибирующий эффект — уменьшаться. Однако опытные данные противоречат этому. Изложенные представления об ориентировке молекул на границе раздела металл — раствор кислоты позволяют более полно описать механизм действия органических ингибиторов коррозии. [c.130]

    Пены находят широкое применение, в частности, в процессах флотации руд металлов, твердого топлива и других полезных ископаемых. Пенная флотация частиц минералов происходит вследствие их адгезии к пузырькам воздуха, которые вместе с частицами поднимаются на поверхность раствора. Порода хорошо смачивается водой и оседает во флотомашинах. Флотационные реагенты по характеру действия делят на три класса собиратели,регуляторы и пенообразователи. Собиратели способствуют адгезии частиц к пузырькам газа. Их молекулы имеют полярную часть, обладающую специфическим сродством к данному минералу, и неполярную — углеводородный радикал, который гидрофобизнрует поверхность частицы и обеспечивает ее сродство к пузырьку газа. Регуляторы применяют для увеличения избирательности флотационного процесса они изменяют pH (кислоты, щелочи), подавляют смачиваемость минералов и активизируют их флотацию (соли с флотационно-активными ионами), улучшают смачиваемость породы, уменьшают вредное влияние находящихся в пульпе ионов и т. д. Пенообразователи, или вспениватели, повышают дисперсность пузырьков и устойчивость пены. Обычно это соединения, содержащие в молекуле гидроксильные группы (спирты, фенолы), трехвалентный азот (пиридин, ароматические амины), карбонильную группу (кетоны). [c.351]

    По химическим свойствам растворители делят на четыре основные группы протофильные, протогенные, амфипротные и апротон-ные. Растворители, обладающие большим сродством к протону, называют протофильными (аммиак, амины, пиридин, гидразин и др.). В их среде облегчается процесс диссоциации кислот. Растворители с явно выраженной тенденцией в передаче протона называют протогенными (уксусная, муравьиная кислоты и др.). В таких растворителях облегчается процесс диссоциации оснований. Если растворители могут и отдавать, и присоединять протон в зависимости от природы растворенного вещества, то их называют амфипротными (вода, спирты). В амфипротных растворителях воз- [c.108]

    Реакция образования координационного соединения в реальных условиях довольно редко протекает по схеме (4.1) в связи с многообразием форм существования в растворе центрального иона М или лиганда Ь в зависимости от pH и состава раствора. Многие лиганды (анионы слабых кислот, амины и т. д.) обладают значительным сродством к протону и в растворе могут прото-нироваться  [c.75]


    Поверхностно-активными веществами относительно воды являются многие органичедщй,соединения, а именно жирные кислоты с достаточно большим углевод ор ДНым jJaдикaлuм, соли этих жир-ных кислот (мыла), сульфокислоты и их соли, спирты, амины. Характерной особенностью строения молекул большинства поверхностно-активных веществ является, их днфильность, т. е. строение молекулы из двух частей — полярной группы и неполярного углеводородного радикала. Обладающая значительным дипольным моментом и хорошо гидратирующаяся полярная группа обусловливает сродство поверхностно-активного вещества к воде. Гидрофобный углеводородный радикал является причиной пониженной растворимости этих соединений. Наименьшее значение поверхностного натяжения водного раствора поверхностно-активных веществ может достигать 25 эрг/см , т. е, почти равняться- поверхностному натяжению углеводородов.  [c.117]

    Поверхностно-активными веществами по отношению к воде (подавляющее количество полезных ископаемых обогащается в воде) являются многие органические вещества-эфиры, амины, жирные кислоты, мыла и др. Молекулы ПАв содержат полярную группу и неполярный радикал, т. е. ПАВ являются веществами, в молекулы которых одновременно входят какие-либо полярные гидрофильные группы (ОН, СООН, МНаЗОзН и т. д.) и неполярная углеводородная цепь. Таким образом, молекула ПАВ имеет двойственную природу (дифильна). Полярная группа вызывает сродство молекул ПАВ к полярной фазе данной системы, например [c.193]

    По протонному сродству метиламин (2П ккал1моль) близок к аммиаку (206 ккал/моль). Подобно последнему (IX 1 доп. 24), он является хорошим растворителем ряда неорганических веществ. По мере накопления (или удлинения) радикалов R эта функция аминов быстро ослабевает. В том же направлении — по ряду NHa > NHjR > [c.555]

    Неионогенные ПАВ — это соединения, практически не образующие в водном растворе ионов. Растворимость их в воде определяется наличием в воде нескольких молярных групп, имеющих сильное сродство с водой. Группа неноногенных ПАВ объединяет довольно большое количество соединений, принадлежащих к различным классам веществ. В частности, к данной группа ПАВ относятся одно- и многоатомные спирты, кислоты органические, амины, альдегиды и кетоны, простые эфиры сложные эфиры глюкозидов, сложные эфиры одно- и многоатомных спиртов и кислот, амиды кислот, нутрилы, нитросоединения, алкил-галогениды, оксиэтильные производные веществ, имеющих активный атом водорода (спиртов, кислот, аминов, фенолов и др.) сополимеры окиси этилена и окиси пропилена, так называемые плюроники и проксанолы. [c.12]

    Органические соединения можно расположить примерно в следующем порядке по возрастанию сродства к полярным адсорбен- ам галогенпроизводные углеводородовСпростые эфиры<третич- ВЫе амины, нитросоединения<сложные эфиры<кетоны, альдеги- Ды<первичные амины<амиды кислот<спирты<карбоновые кис-410ты. [c.101]

    В другом методе вторичный амин превращают в три мети лсиляльно производное. Из-за большего сродства кремрия к кислороду, чем к азоту образование енампна оказывается благоприятным и проходит в мягки условиях [23]  [c.26]

    Амино-2-нафтол-4-сульфокислота и 1-амино-8-наф-тол-3,6-дисульфокислота - диазосоставляющие в синтезе азокрасителей, все остальные А.-азосоставляющие. А, у к-рых группы ОН и NH2 находятся в разных циклах нафталинового ядра, активно вступают в азосочетание с диазосоединениями, причем азогруппа направляется в орто-положение к фуппе NHj в кислой среде, к группе ОН-в щелочной. Поэтому в зависимое и от использованной реакц. среды можно получать два ряда моноазокрасителей, различающихся по цвету. Как правило, А. сочетают дважды (сначала в кислой qjefle, в к-рой ориентирующее действие оказьшает группа NHj, а затем в щелочной) и синтезируют пенные дисазокрасители. Во всех случаях азогруппа в образующихся азосоединениях находится в орто-положении к группе ОН или NHj, вследствие чего возможно образование комплексов с металлами. Поэтому такие азосоединения-ценные протравные красители для шерсти. Кроме того, азосоединения, получаемые из 2-ами-но-5-нафтол-7-сульфокислоты, обладают большим сродством к непротравленному хлопку. Это св-во усиливается у ее N-ацилпроизводных. [c.140]

    При восстановлении Na2S204 в водно-щелочной среде многие О. превращ. в гидроксиантрагидрохиноны (лейкосоединения), обладающие высоким сродством к разл. волокнам и применяемые гл. обр. в кубовом крашении (см. Антрахиноновые красители). Лейкосоединения легко алкилируются альдегидами, при взаимод. с МНз, аминами и этаноламином замещают гидроксил на группу NH . [c.349]

    Другой пример аллостерического действия в случае гемоглобина был уже рассмотрен в предыдущем разделе. Эффект Бора можно считать результатом действия протонов, играющих в данном случае роль аллостерических эффекторов, присоединяющихся к амино- и имидазоль-ным группам, которые участвуют в образовании солевых мостиков. Физиологическим эффектором является также двуокись углерода, обратимо связывающаяся с концевыми МНг-группами а- и р-субъединиц с образованием карбамино(карбамат, —NH—G00 )-групп [77, 78]. Сильнее сродство к СОг выражено у дезокси-формы гемоглобина. Вследствие этого отдача кислорода оксигемоглобином облегчается в тканях, богатых СОг. Гемоглобин переносит значительную часть СОг к легким, где его оксигенация облегчает отщепление СОг от карбами-но-групп. [c.313]

    Пиридин образует кристаллические, обычно гигроскопичные соли с большинством протонных кислот. Для незамешенного пиридина в водном растворе значение р 5,2, что свидетельствует о том, что основность пиридина много меньше, чем основность насыщенных алифатических аминов, для которых значения рА а обычно лежат в интервале 9—11. Поскольку сродство пиридина к протону в газовой фазе очень близко к сродству к протону алифатических аминов, наблюдаемое в растворе отличие связано с относительно сильной сольватацией аммонийных алифатических катионов [3]. Такое отличие может быть связано с возможностью мезомерной делокализации положительного заряда в пиридини-евом катионе и, как следствие, с меньшей потребностью во внешней стабилизации посредством сольватации. [c.105]

    Химические реагенты, используемые при флотации, называются флотореагентами. Важнейшими из них являются собиратели (коллекторы), используемые для гид-рофобизации частиц минералов. Собиратели представляют собой органические веш ества, молекулы которых состоят из двух частей — неполярной (углеводородной, содержаш ей 10-20 атомов углерода) и полярной (карбоксильная или амино-группа). Поверхность более гидрофильных минералов имеет большее сродство к воде и поэтому не притягивает к себе полярную группировку собирателя, а на поверхности менее гидрофильных минералов закрепляется полярная группировка, причем неполярная группировка ориентируется в противоположную от частицы сторону и адсорбируется на поверхности пузырька воздуха. В результате частицы более гидрофобных минералов окружаются со всех сторон пузырьками воздуха и всплывают на поверхность, а более гидрофильные осаждаются на дно флотомашины. Неполярные жидкости (масла, керосин) также используют в качестве собирателей для гидрофобных веществ (уголь, самородная сера) или добавок, усиливающих гидрофобизацию частиц руды. [c.29]

    Аналогичные комплексы образует серебро с сульфопроизводными соединений, содержащих вместо азота фосфор или мышьяк с Л1-(СбН5)2РСвН430з и л -АйСвН ЗОд. Эти комплексы характеризуются ступенчатыми константами устойчивости, равными соот ветственно 1,4-10 0,9-10 и 2,5-10 2,3-10 . Сродство ионов серебра к фосфину значительно больше, чем к аминам [517]. [c.45]

    С развитием химии краун-эфиров были достигнуты успехи в координационной химии и химии комплексных соединений переходных металлов, а также в использовании комплексных катализаторов в промышленности. Кроме того, был исследован механизм связывания ионов металлов производными порфи-рина, таким)., как гемоглобин и хлорофилл. Производные порфирина (50) имеют скелет, состоящий из циклических аминов с атомами азота в качестве доноров, которые обладают сродством к мягким катионам, в частности ионам [c.25]

    Прямые красители обладают свойством удерживаться без протрав целлюлозными волокнами это сродство к целлюлозным волокнам называют субстантивностью. Прямые красители удерживаются целлюлозными волокнами силами адсорбции и, по-видимому, водородными связями. Чтобы окраски были прочны, эти силы должны быть достаточно велики это имеет место только при определенном строении молекул красителей. Молекулы прямых красителей плоские (или почти плоские), содержат достаточно большую цепь сопряженных двойных связей (обычно не менее восьми), имеют электронодонооные амино- и гидроксигруппы. [c.246]

    Окрашивание живых клеток микроорганизмов (витальная окраска) — трудоемкий процесс и поэтому используется редко. Предполагают, что при фиксировании увеиичивается число свободных амино- и карбоксильных груйп, в результате повышается сродство клетки к красителю. [c.26]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    Протофильные, или основные, растворители — это химические соединения основного характера, которые обладают ярко выраженным сродством к протону. У основных растворителей акцепторные свойства по отношению к протону преобладают над донор-ными. Молекулы такого рода растворителей могут отдавать протоны лишь основаниям, имеющим более сильное сродство к протону. Самой большой величиной протонного сродства отличаются ЫНз-ионы (419 ккал1г-ион), превосходящие в этом отношении ОН -ионы (383 ккал1г-ион). К протофильным растворителям относятся жидкий аммиак, пиридин, гидразин и многие амины. [c.22]


Смотреть страницы где упоминается термин Сродство к аминам: [c.308]    [c.373]    [c.102]    [c.124]    [c.301]    [c.166]    [c.59]    [c.155]    [c.52]    [c.1276]    [c.1546]    [c.188]    [c.163]    [c.163]    [c.166]    [c.200]    [c.924]    [c.185]    [c.648]    [c.158]    [c.192]    [c.216]   
Справочник полимеров Издание 3 (1966) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2024 chem21.info Реклама на сайте