Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спины релаксация

    В работах [55—56] исследовали реакции алюминийалкилов и ИСЦ с помощью метода электронного парамагнитного резонанса. Установлено, что в суспензии образуются парамагнитные частицы, в то время как выделенные твердые продукты не дают сигналов ЭПР из-за спин-решеточной релаксации ионов трехвалентного Т1. [c.217]

    В жидкостях тензор О, след которого равен нулю, усредняется до нуля. Больщие флуктуирующие поля, обусловленные большими спин-спиновыми взаимодействиями, меняющими свое направление, в молекуле с соответствующим расщеплением при нулевом поле вызывают эффективную релаксацию. Таким образом, линии в спектре обычно настолько широки, что их не удается зарегистрировать. Спектры ЭПР триплетных состояний (за некоторыми исключениями) в растворе наблюдать не удается, если только два спина не отстоят один от другого на большое расстояние (т.е. О и Е малы). [c.45]


    Уширение, обусловленное спин-решеточной релаксацией, возникает по причине взаимодействия парамагнитных ионов с термическими колебаниями решетки. Изменение во времени спин-решеточной релаксации в различных системах достаточно велико. Для некоторых соединений это время настолько велико, что их спектры удается наблюдать при комнатной температуре. Поскольку, как правило, время релаксации увеличивается с уменьшением температуры, хорошо разрешенные ЭПР-спектры многих солей переходных металлов можно получить лишь при температурах жидкого азота, водорода или гелия. [c.47]

    Комплексы Мп(П) представляют собой примеры систем с медленно релаксирующими электронами (1/т я Л,). Если сигнал ЯМР вообще наблюдается, то он имеет вид одиночной очень широкой линии. Однако в спектрах ЭПР, где наблюдаются переходы электронных спинов, эта медленная релаксация гарантирует длительное время жизни возбужденного состояния и, таким образом, получение узкой спектральной линии. Итак, линии спектров ЭПР систем с медленной релаксацией узкие, а линии спектров ЭПР систем с быстрой релаксацией широкие. Было бы удивительно, если бы удалось осуществить и эксперимент ЭПР, и эксперимент ЯМР с одним и тем же соединением и при одной и той же температуре. Эти методы дополняют друг друга. [c.165]

    Уширение, обусловленное спин-решеточной релаксацией, возникает в результате взаимодействия парамагнитных ионов с тепловыми колебаниями решетки. Пределы изменения времени спин-решеточной релаксации для различных систем велики. Время жизни отдельных соединений настолько велико, что позволяет наблюдать спектр при комнатной температуре, тогда как в случае других систем это невозможно. Поскольку время релаксации обычно растет с понижением температуры, для получения хорошо разрешенного спектра многие соединения переходных металлов необходимо охладить до температуры жидкого азота или гелия. [c.204]

    В этом разделе дается краткий обзор некоторых результатов, полученных при исследовании различных "-комплексов методом ЭПР. Более полное обсуждение читатель может найти в работах [19, 20]. Прежде чем приступить к рассмотрению результатов, следует упомянуть, что спин-орбитальное взаимодействие — главный фактор, определяющий электронную релаксацию в этих системах. При ознакомлении с этим разделом читатель может столкнуться с Такими утверждениями, как расщепление в нулевом поле вызывает быструю релаксацию или анизотропия 3-фактора ведет к небольшим временам жизни электронного спинового состояния и т.д. Все эти выражения говорят об очевидных эффектах спин-орбитального взаимодействия в молекуле. Ранее уже обсуждалась связь спин-орбитального взаимодействия с релаксационными эффектами. Комплексы ионов переходных металлов второго и третьего периодов значительно более сложны для исследования методом ЭПР, поскольку в этом случае значения констант спин-орбитального взаимодействия много больше. [c.233]


    В тетраэдрическом поле лигандов возникает основное состояние Е(х — у , 1 ), в котором спин-орбитальное взаимодействие первого порядка отсутствует. При такой геометрии подмешивание расположенных поблизости возбужденных состояний К основному состоянию за счет спин-орбитального взаимодействия второго порядка приводит К низким временам спиновой релаксации для электрона и широким полосам поглошения. Комплексы обычно должны быть исследованы при температурах, близких к температуре жидкого гелия. Возбужденное состояние расщепляется под действием спин-орбитального взаимодействия. Если поле лигандов искажено (например, как в то основное состояние становится орбитальным синглетом, а возбужденные состояния не подмешиваются. При более высоких температурах наблюдаются узкие спектральные линии ЭПР. [c.234]

    Известно очень мало примеров спектров ЭПР октаэдрических комплексов -ионов из-за сильного спин-орбитального взаимодействия в основном состоянии Основным состоянием тетраэдрических комплексов является 2, поэтому следует ожидать больших времен релаксации и большей легкости в регистрации спектров ЭПР. Спектры этих систем можно согласовать с 5 = 1 и спин-гамильтонианом [c.234]

    Основное состояние для высокоспинового / -комплекса с симметрией 0 представляет собой 7 (F). При интенсивном спин-орбитальном взаимодействии измерения ЭПР возможны лишь при низких температурах. При S = 3/2 и трех орбитальных компонентах в Т получается в общем 12 низко лежащих спиновых состояний. При низких температурах, необходимых для регистрации спектра из-за проблем спиновой релаксации, заселен только низко лежащий дублет, что дает лишь одну линию при эффективном S = 1/2 с д-фактором 4,33. Имеется обзор, посвященный исследованию таких систем [42]. [c.243]

    Введем в уравнения (1Х.18) и (IX.19) члены, учитывающие спин-решеточную релаксацию. Рассмотрим образец, находящийся в постоянном магнитном поле в отсутствие переменного поля. Равновесное распределение спинов по уровням осуществляется благодаря взаимодействию спинов с решеткой. Непрерывно происходят как переходы спинов с нижнего уровня на верхний (при этом тепловая энергия решетки расходуется), так и обратные переходы, сопровождающиеся передачей энергии решетке. Обозначим константы скорости (вероятности за 1 с) переходов ( + )->(—) и (—) ( + ) через а1 и аг соответственно. Тогда, в отсутствие переменного поля [c.233]

    Уравнение (1Х.22) описывает процесс спин-решеточной релаксации и показывает, как , если оно почему-либо оказалось неравным п , приближается к своему равновесному значению. Этот процесс описывается экспоненциальной зависимостью и характеризуется временем спин-решеточной релаксации 7 ь за которое разность п— уменьшается в е раз. Объединив уравнения (IX.22 и 1Х.18), получим кинетическое уравнение, описывающее поведение спиновой системы, подвергающейся действию переменного поля с учетом спин-решеточной релаксации  [c.233]

    Определение времени спин-решеточной релаксации. Для измерения Г, применяют так называемую импульсную последовательность 180°, т, 90° (т —задержка между 180 п 9Ь°-ными импульс ь ми) 180°-ный импульс поворачивает вектор намагниченности М вдоль оси 2, далее следует релаксация намагниченности от значения —Мо до М. Последующий 90°-ный импульс поворачивает вектор [c.257]

    Сигнал ЯМР наблюдался при нагреве образцов до температур 150-200 С. Огибающая спада сигналов спин-эхо от протонов можег быть разделена на две, иногда фи компоненты и описана А = Z 1=1-3 Аи ехр ( -t / Tj, ), где Тз, - Тгд.Тгв, времена спин-спиновой релаксации фракций жидкой фазы в коксах, А<й -амплитуды, характеризующие процентное содержание фаз Ра и Рв имеющих соответствующие времена релаксации. Наблюдаемые протонные фракции А и В характеризуются временами релаксации соответственно 7.4 0.7 мсек и 0.86 0.7 мсек.  [c.106]

    Время спин-решеточной релаксации измерялось с помощью последовательности радиочастотных импульсов 90°— г — 180°—X 1—90°—т—180° и 90°—т—90°. Для измерения спин-спиновой релаксации использовалась последовательность 90°— X—180°. [c.103]

    НИИ и время спин-решеточной релаксации Т , в то время как у неграфитирующихся веществ эти параметры изменяются непрерывно. Выше 450 С начинается интенсивное образование ароматических структур и рост молекулярной массы [2-83]. Менее упорядоченный, плохо графитирующийся углерод образуется при быстром увеличении концентрации ПМЦ. [c.90]

    В любой реальной системе магнитные моменты взаимодействуют с локальными магнитными полями, флуктуирующими вследствие теплового движения атомов и молекул. В результате энергии магнитных моментов (спиновой системы) переходит в энергию теплового движения атомов и молекул (решетки). После выключения поля Я] между системой магнитных моментов и решеткой устанавливается тепловое равновесие, соответствующее температуре тела. Этот процесс называется спин-решеточной релаксацией.  [c.268]


    Он характеризуется временем спин-решеточной релаксации Ху описывающем спад продольной намагниченности. Время Х, поэтому, называют еще продольным временем релаксации.  [c.268]

    Спин-решеточная релаксация препятствует установлению на сыщения, когда поглощения энергии не происходит. Магнитные моменты соседних ядер, а также другие магнитные моменты, которые могут быть в образце, создают вокруг себя магнитные поля, в результате чего каждое а ядро находится в своем локальном поле Н, несколько отличном от Яо. В переменном поле с частотой V поглощение энергии определяется соотношением [c.269]

    Спин-решеточная релаксация препятствует установлению насыщения. Если же вероятность перехода настолько мала, что выполняется условие то при поглощении энергии переменного поля не будет практически нарушаться равновесное распределение [c.213]

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Для расщепления, показанного на рис. 13.11, Б, в спектре должны наблюдаться две линии. Конкретным примером систем такого типа служит основное состояние 2 комплекса никеля(П) в поле 0 - Спин-орбитальное взаимодействие подмешивает возбужденные состояния, которые расщепляют конфигурацию Напо.иним, что расщепление в нулевом поле очень анизотропно и обеспечивает. механизм релаксации для электронного спинового состояния. Поэтому спектр ЭПР комплексов никеля(П) с симметрией 0 трудно регистрировать, и при исследовании, как правило, необходимо их замораживать до температуры жид- [c.221]

    Нами замечено, что при концентрациях в продукте ароматических углеводородов выше О,6-0,8% интенсив-( ность поглощения снижается, а атом случае парамагнитные частицы сближаются друг с другом так. что электронные облака неспаренных электронов перекрываются. Одновременно может происходить обмен электронами между отдельными частицами, так как сильное спин-спиновов взаимодействие резко измен яет время релаксации. [c.52]

    Ядерная магнитная релаксация. Ядра, входящие в атомы и молекулы, обладают магнитными моментами и спинами. Вся совокупность спинов образует спиновую систему вещества. Спп-повая система — это статистическая система, температура которой может отличаться от температуры молекулярного окружения, называемого реп1еткой. При изучении ядерной магнитной релаксации принимается модель не зависящих друг от друга, процессов обмси энергией внутри спиновой системы и обмен энергией между сниновой систе.мой и решеткой. Снин-сниновое взаи- [c.98]

    Наблюдение производится методом ядериого магнитного ре-.юнанса. Объект помещается в сильное магнитное поле. Спины ядер начинают прецессировать вокру вектора напряженности магнитного поля с определенной частотой. Затем подается слабое магнитное ноле, вектор напряженностн которого нерпендн-кулярен начальному вектору. Это поле меняется с некоторой частотой. Прн совпадении частот прецессии н слабого поля система начинает сильно поглощать энергию — наступает резонанс. Затем слабое поле выключается и система релаксирует к равновесному состоянию. По скоростям релаксации определяются значения Т , и То и затем рассчитываются времена корреляции броуновского движения. С помощью ядерной магнитной релаксации их можно измерять в широком диапазоне температур и частот. Измеренные времена корреляции позволяют определить размер частиц. Метод ядерной магнитной релаксации применим не всегда, поскольку нужно учитывать релаксацию молекул как дисперсной фазы, так и дисперсионной среды. Интерпретация результатов оказывается затруднительной. Метод применим для высокодисперсных систем с частицами от молекулярных размеров до десятков нанометров. Исследования нефтяных систем этим методом только начинаются [140]. Проведенные этим методом исследования дисперсности масляных фракций нефти и их фенольных растворов позволили установить, что размеры образующих их ССЕ составляют величины порядка 10 нм [141]. [c.99]

    Выявлена обратная зависимость между парамагнитностью и растворимостью асфальтенов [267]. По данным ЭПР для всех асфальтенов наблюдается большое время спин-решетчатой релаксации, что подтверждает вывод о значительной делокализации неспаренного электрона, имеющего малую константу спин-орби-тального взаимодействия. [c.283]

    Спнн-решеточная релаксация — это любой процесс, в результате которого избыток энергии спинов передается другим степеням свободы отдельных молекул, жидкости или твердому телу ( решетке ). Физические механизмы передачи энергии могут быть различными. Одним из путей передачи энергии спинов решетке является спин-орбитальная связь, благодаря которой осуществляется взаимодействие спина с решеткой. Заметим, что процессы релаксации всегда стремятся изменить значение Ы+1М- в сторону (Л +/Я )равн. [c.232]

    Спи и- спиновая релаксация — это процесс, прн котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия безызлучательно передается какому-либо другому спину, находящемуся на нижнем уровне. Спин, получивший энергию, переходит на верхний уровень. Вследствие этого процесса происходит перераспределение энергии по всей спиновой системе. В основе спин-спинового взаимодействия лежит тот факт, что в любой реальной системе парамагнитная частица находится не только во внешнем магнитном поле, но также подвергается воздействию локальных магнитных полей, создаваемых соседними парамагнитными центрами. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации T a T a — среднее время жизни спина на верхнем уровне, обусловленное спин-спиновой релаксацией. Аналогичным образом может быть определено и — как среднее время жизни спина на верхнем уровне, обусловленное спин-решеточной релаксацией, [c.234]

    Сильное спип-спнновое взаимодействие, которое осуществляется прн больших концентрациях (средних пли локальных) парамагнитных центров, увеличивает вероятность спин-решеточной релаксации и уменьшает величину Ti. [c.234]

    Проявление обменного в.заимодействия в спектрах ЭПР. Если парамагнитные частицы находятся в очень близком соседстве, так что электронные облака неснарепных электронов перекрываются, может происходить обмен электронами между отдельными частицами. В жидкой фазе обмен электронами происходит во время столкновений пара магнитных центров. Если частота обмена невелика, обменное взаимодействие приводит к уишрепию спектра, так как парамагнитные центры находятся в различных быстро изменяющихся локальных нолях. Если частота обмена высока, разброс в величинах локальных магнитных полей для разных частиц перестает проявляться. Электрон оказывается в некотором усредненном магнитном поле. Благодаря этому ширина линии уменьшается, происходит так называемое обменное сужение спектра. Б условиях быстрого обмена в спектре перестает проявляться н разброс локальных нолей, связанный с различной ориентацией спинов собственных ядер парамагнитных центров. Это приводит к исчезновению сверхтонкой структуры. Так как при обмене осуществляется сильное спнн-сниновое взаимодействие, ири этом резко уменьшается время релаксации. [c.236]

    Время Гг, характеризующее передачу энергии между связанными частицами, называют временем сиин-сииновой релаксации. Поскольку относительные фазы ядер изменяются за время (А ) , то для снинового обмена требуется интервал времени такого же порядка. Этот процесс вызывает дальнейшее уширение резонансной линии на величину Ядок- Время спин-сииновой релаксации можно определить так же, как время фазовой памяти состояния ядерного сиина. Время 7г называют также временем поперечной релаксации, поскольку оно характеризует степень уменьшения поперечных компонент вектора намагниченности. [c.256]

    Такой тип релаксации обычно сильно проявляется в твердых телах и очень вязких жидкостях, когда взаимодействующие частицы оказываются во множестве локальных полей соседних магнитных диполей. В твердых телах обычно 7 2<с7 1, т. е. спин-спиновое взаимодействие оказывается сильнее спин-решеточного и дает основной вклад в ширину линии. В жидкостях вследствие быстрого движения молекул локальные магнитные поля усредняются и основным вкладом в и1ирину линии является спин-решеточная релаксация. [c.257]

    Измерение времени спин-спиновой релаксации. Время спин-сииновой релаксации Гг измеряют методом спинового эха и его мо-диф1и<ации. Метод состоит в том, что на спиновую систему воздействуют импульсной последовательностью 90°, г, 180° и в момент временн 2т наблюдают эхо-сигнал . Амплитуда сигнала — эхо зависит от Гг, которое определяют из зависимости амплитуды эхо от т. Так же, как и при измерении Гь в последовательности 180°, т, 90° необходимо повторять импульсную последовательность с различными временами задержки т. Методика спин-эхо обладает ограниченными возможностями вследствие влияния процессов молекулярной диффузии. Перемещение ядер вследствие диффузии из одной части иоля в другую приводит к уменьшению амплитуды эхо-сигнала. Амплитуда эхо-сигнала будет спадать не по простому экспоненциальному закону, что сказывается на измерении Гг. Существуют другие импульсные последовательности, которые позволяют понизить влияние диффузии на измерение Гг. Такой последовательностью является 90°, т, 180°, 2г, 180°, 2т,. .. . Величины Г[ и Гг практически мало зависят от химических свойств образца. [c.258]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]

    Основной эффект, который вносит поверхность, заключается в уменьщенпп подвижности адсорбированных молекул. Результатом этого является экспериментально наблюдаемое уменьще-пие времени релаксации у поверхности по сравнению со свободной жидкостью. Установлено экспериментально и теоретически, что релаксационные характеристики Г, пТ. изменяются в породах пропорционально размерам пор пли общей величине удельной поверхности, которая и определяет адсорбционные с1 -И"1ства, Жидкости в порах реальных иород-коллекторов представляют собой сложную спиновую систему, состоящую из двух-трех подсистем, возникающих вследствие влияния поверхности коллектора. В этом случае релаксационная кривая представляет сложную экспоненту, которая мож т быть разложена на две-три [4]. Каждая из таких составляющих характеризует процентное содержание выделенной спин-системы и время ее сиин-решеточной релаксации. Простейшая модель жидкости в порах — двухфазная. Компонента с более коротким временем релаксации отвечает связанной жидкости, а компонента с более длинным — свободной. В трехкомпонентной модели поровое пространство коллектора делится на три группы с различной удельной поверхностью, причем молекулы жидкости, находящиеся в порах разных групп, характеризуются различной степенью подвижности. Основные трудности в этой модели возникают при разложении кривой спада амплитуды сигнала на три экспоненты, которые преодолеваются путем применения программ нелинейного регрессионного анализа. Кроме того, в этой модели появляется новый параметр — критическое время спин-решеточной релаксации. Жидкость в порах, характеризуемых временем релаксации, меньше критического, является связанной. [c.102]

    В нашей работе использовалась двухкомпонентная модель. Определение связанной воды и времени релаксации одного образца занимает время до 20 минут. Для аппроксимации данных по измерению спин-решеточной релаксации в рамках двух-< 1азной системы процедура следующая. В полулогарифмических координатах (рис. I) строят кривую спада разности равновесной [c.102]

    Annapai ypa позволяет измерять время спин-сппновой релаксации T a в диапазоне от 10 до нескольких секунд, время спин-решеточной релаксации Ту от Ю" до десятков секунд. Точность измерения времени релаксации не хуже +10%. [c.103]

    Данное обстоятельство подтверждается также значениями времен спин-решеточной Т и спин-спинбвой релаксации Г2 фракций каменноугольного пека и нафталина [2-83]. [c.95]

    С другой стороны, в любой реальной системе ядра всегда взаимодействуют с атомами и молекулами. Это взаимодействие приводит к постепенному переходу энергии спиновой системы в тепловое движение атомов и молекул, т. е. при выключении поля Н в системе магнитных моментов устанавливается тепловое равновесие, соответствующее температуре тела. Этот процесс называется спин-рвшвточной релаксацией. Данное название обусловлено тем, что в твердом теле (кристалле) тепловое движение представляет собой колебания кристаллической решетки, однако оно используется для всех случаев установления теплового равновесия между спиновой системой и остальными степенями свободы тела. [c.213]

    При наложении переменного поля Я], для которого характерна частота v, возникает некоторая намагниченность, перпендикулярная постоянному полю Яо. Скорость установления этой намагниченности характеризуется поперечным временем релаксации хг, которое по порядку величины равно (уАЯ1/2) или (уАЯ ) . Следовательно, Хг (называемое также спин-спиновым временем релаксации), как и ширина линии, определяется магнитным дипольным взаимодействием ядерных спинов. При сильном сужении линии ЯМР полимеров (при высоких температурах) Тг стремится к Ть [c.216]


Смотреть страницы где упоминается термин Спины релаксация: [c.164]    [c.166]    [c.99]    [c.256]    [c.258]    [c.19]    [c.92]    [c.271]    [c.213]   
Вода в полимерах (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спин-эхо

Спины



© 2025 chem21.info Реклама на сайте