Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота коррозионные свойства

    Другим видом сырья является уксусная кислота, коррозионные свойства которой описаны в главе I. Наряду с чистой, товарной уксусной кислотой применяется также регенерированная кислота, полученная в процессе переработки отходов производства уксусного ангидрида. Употребляется также уксусная кислота, возвращаемая из цеха триацетилцеллюлозы в этой кислоте обычно имеется примесь уксусного ангидрида в количестве до 3%. В качестве вспомогательного сырья используется серная кислота. [c.118]


    Коррозионное действие на топливную аппаратуру двигателя сернистых топлив при повышенных температурах (до сгорания в двигателе) является еще одной эксплуатационной проблемой, которую можно решать применением присадок. При повышении температуры ускоряются окисление топлива и превращение продуктов окисления сернистых соединений в более агрессивные вещества (сульфокислоты и серную кислоту) [2, 3, 29— 33]. Этот процесс к тому же каталитически ускоряется некоторыми металлами. Продукты коррозии металлов в условиях топливной системы переходят, как правило, в твердую фазу, что установлено исследованием осадков и отложений в сернистых дизельных и реактивных топливах. Продукты коррозии — не единственные составляющие осадков, образующихся при высокотемпературном окислении сернистых топлив, но составляют в них значительную долю. Поэтому коррозионные свойства топлив при высоких температурах следует считать одним из проявлений высокотемпературных свойств [36], и способы борьбы с коррозией и ее последствиями в этих условиях также связаны с другими проявлениями высокотемпературных изменений топлив [32—37]. [c.185]

    Пассивным называется металл, являющийся активным в электрохимическом ряду напряжений, но тем не менее корродирующий с очень низкой скоростью. Пассивность — это свойство, лежащее в основе естественной коррозионной устойчивости многих конструкционных металлов, таких как алюминий, никель и нержавеющая сталь. Некоторые металлы и сплавы можно перевести в пассивное состояние, выдерживая их в пассивирующей среде (например, железо в хроматном или нитритном растворах) или с помощью анодной поляризации при достаточно высоких плотностях тока (например, железо в серной кислоте). [c.70]

    В состав электролита помимо чистой серной кислоты или чистого бисульфата аммония входят поверхностно-активные добавки (промоторы), такие, как фторид, хлорид, роданид и цианид аммония. Анионы этих солей, адсорбируясь на активных центрах поверхности платины, повышают перенапряжение выделения кислорода и этим увеличивают выход по току 5208. Анионы р- и С1- в ходе технологического процесса почти не расходуются. Однако они повышают агрессивность среды, будучи активаторами коррозии, и это затрудняет их использование. Роданид аммония, наоборот, приходится непрерывно вводить в анолит, поскольку анионы СЫ5 легко окисляются на аноде. Впрочем, продукты разложения роданида также обладают промотирующим действием. В отличие от галогенидов роданид не влияет на коррозионные свойства электролита, в отличие от циа- [c.186]


    Химические свойства. Поверхность хрома покрыта очень тонкой (и поэтому прозрачной) пленкой оксида. Она химически весьма устойчива — даже кислоты разрушают ее с трудом. Благодаря этой пленке хром является одним из самых коррозионно-стойких металлов. Даже во влажном воздухе он совершенно не изменяется. Разбавленная соляная и серная кислоты с хромом начинают реагировать только через некоторое время (после разрушения пленки)  [c.112]

    Так как коррозионная стойкость хромистой стали зависит от пассивирующего свойства хрома, то эта сталь обладает стойкостью лишь в таких средах, которые способствуют образованию защитных пленок. Если же среда препятствует образованию пленки или ионы агрессивной среды (например, ионы хлора) настолько малы, что могут проникать через поры пленки, то хромистая сталь разрушается. Так, в азотной кислоте любой концентрации и концентрированной серной кислоте, в воздухе, в парах воды, в большинстве органичес- [c.58]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]

    Принцип взаимосвязи коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и в вопросах селективности растворения отдельных компонентов этих сплавов при их пассивации. Было установлено [ 99], что при потенциалах переходной области (несколько положительнее срд ) растворение сплава Ре -28% С г в 1 н. серной кислоте происходит с преимущественным переходом в раствор железа. То же наблюдалось и для стали Х13 при ее растворении в 0,1 н. серной кислоте [66] При этом в работе [ 66] был сделан вывод, что при потенциале пассивации поверхность стали вследствие обогащения хромом имеет состав 21 ат.% по хрому. [c.21]

    Коррозионно-активной является атмосфера, содержащая сернистый газ, который окисляется до серного ангидрида, образующего при взаимодействии с влагой серную кислоту. На скорость атмосферной коррозии в значительной степени влияют состав и свойства пленок продуктов коррозии на поверхности металла. [c.30]

    Чугуны, легированные никелем. Эти чугуны, известные под названием нирезист, при высоких температурах (до 810°С) примерно в десять раз устойчивее серого чугуна и применяются для изготовления газопроводов, компрессоров и др. Чугуны, легированные никелем, часто имеют аустенитную структуру, определяющую их повышенную коррозионную устойчивость. Они не склонны к графитизации, не обладают магнитными свойствами, а при содержании никеля выше 20% не чувствительны к резким колебаниям температуры. Их коррозионная устойчивость в серной кислоте растет с повышением концентрации кислоты, а в соляной кислоте уменьшается с повышением ее концентрации. [c.104]

    N1 как легирующий элемент играет очень важную роль в коррозионностойких сталях. Он практически не подвержен коррозионному воздействию воды и водных растворов солей. Сам по себе и в составе сплавов на основе Ре этот металл обладает повышенной сопротивляемостью воздействию серной кислоты невысоких концентраций. Благодаря данному свойству № были разработаны стали, имеющие высокую коррозионную стойкость в серной и фосфорной кислотах различных концентраций при повышенных температурах, что позволило создать новые процессы производства ряда продуктов в химической и нефтехимической промышленности. [c.23]

    Алюминий и его ставы обладают хорошей коррозионной стойкостью в атмосфере, нейтральных средах за счет амфотерных свойств образующейся пленки гидроксида алюминия. В растворах азотной, фосфорной и серной кислот он имеет достаточно высокую коррозионную стойкость, а в соляной, фтористоводородной, концентрированной серной, муравьиной, щавелевой кислотах растворяется. При закалке алюминия примеси. меди и кремния переходят в твердый раствор, что повышает его коррозионную стойкость. Алюминий легируют медью (дуралюмин), магнием (магналии), цинком, кремнием и марганцем, главным образом для улучшения механических свойств. [c.87]

    Стойкость керамических изделий в кислых и щелочных средах определяется их химическим составом, а также объемом и типом пор. Чем выше доля открытой пористости керамики, тем меньше ее коррозионная стойкость. Закрытые (изолированные) поры снижают агрессивное воздействие внешней среды. Количество видов керамики, стойкой к коррозионному воздействию среды, достаточно велико. Исследование кислотоупорных свойств керамических материалов определяют по их стойкости в кипящей концентрированной серной кислоте. Изделия, предназначенные для эксплуатации в условиях щелочных сред, обрабатывают 10%-м раствором гидроксидов натрия и калия. [c.103]


    Присадка СБ-3, добавляемая в автолы в количестве 10% на готовое масло, в несколько раз улучшает моющие свойства и снижает коррозионность базового масла. В производстве этих присадок применяются в качестве, сульфирующего агента серная кислота или серный ангидрид, а для нейтрализации — гидрат окиси бария или хлористый кальций. [c.103]

    Наиболее важными характеристиками, определяющими химические свойства материалов, используемых для изготовления канализационных труб, являются стойкость к коррозионным воздействиям и разложению при контакте с водой. Как внутренняя, так и внешняя поверхности труб должны хорошо противостоять электрохимическим и химическим воздействиям со стороны окружающего грунта и транспортируемых по ним сточных вод. На рис. 10.12 показан процесс коррозии в трубах бытовой канализации. Коррозия протекает на участке, примыкающем к верхней части трубы. Деятельность бактерий в анаэробных сточных водах приводит к выделению сероводорода это явление чаще наблюдается в районах с теплым климатом, а также когда канализационные трубопроводы проложены с малыми уклонами. Конденсирующаяся на внутренней поверхности труб влага абсорбирует сероводород, который под действием аэробных бактерий превращается в серную кислоту. Если материал трубы не отличается стойкостью к химическим воздействиям, то серная кислота в конечном итоге разрушает ее. Наиболее эффективной мерой для предотвращения коррозии является выбор труб, изготовленных из материала, хорошо сопротивляющегося коррозионным воздействиям, например, керамики или пластмассы. Трубы более крупных размеров изготовляются из железобетона в этих случаях на внутренние поверхности труб наносят защитные покрытия из каменноугольных, виниловых или эпоксидных смол. Образование сероводорода в канализационном трубопроводе можно в известной степени предотвратить посредством его укладки с максимально допустимым уклоном, а также путем вентилирования коллектора. Коррозия нижней части трубы обычно обусловлена кислотосодержащими производственными сточными водами. Наилучшим решением проблемы защиты труб в этом случае является ограничение спуска кислотосодержащих стоков в городскую канализацию. Для защиты от коррозии бетонных труб могут использоваться коррозионно-стойкие облицовочные материалы, например керамические плитки, укладываемые в нижней части труб. [c.264]

    Коррозионные свойства азотной и серной кислот по отношению к углеродистым и легированным сталям хорошо изучены. [c.75]

    Для производства эфиров обычно используется полученная лесохимическим способом уксусная кислота-сырец, обладающая более активными коррозионными свойствами, в частности к меди и ее сплавам, чем чистая кислота. Концентрация серной кислоты составляет 76—78% и 92—94%. Серная кислота 76— 78%-ной концентрации обладает высокой коррозионной активностью по отнощению к черным металлам, поэтому при ее применении необходимы защитные футеровки (большей частью силикатные). [c.125]

    Для работы в агрессивных растворах используют литые высоколегированные сплавы, например, сталь 0,6 28 r55Ni8Mo5 u, которая имеет повышенную коррозионную стойкость в горячей серной кислоте. Литейные свойства таких сталей лучше, чем 08Х18Н9ТЛ. При введении в сплав меди и кремния их жидкотекучесть возрастает [c.221]

    При температуре до 35°С коррозионная стойкость титана в аэрированных растворах фосфорной кислоты удовлет-ворнтельпа при концентрации не выше 30% (рис. 91). С повышепием температуры граница устойчивости титана значи-телыю смещается в сторону меньших концентраций. При 100° С устойчивость титана сохраняется в кислоте концентрации меиее 3%. Зависимость скорости коррозии титана от концентрации серной кислоты имеет сложный характер. Это объясняется тем, что серная кислота меняет свои свойства с изменением степени гидрата- [c.283]

    Титан, легированный танталом, обладает высокими коррозионными свойствами. Так, сплав, содержащий более 50 вес. % Та, стоек в 1орячих коицентрироваиных растворах серной, фосфорной и соляной кислотах. Подобный эффект достигается также при легировании титана 30—40% Мо. В течение нескольких лет он успешно используется для изготовления аппаратуры, работающей с растворами азотной кислоты. [c.216]

    Оксидные покрытия на алюминии получают при комнатной температуре анодным окислением алюминия (анодированием) в соответствующем электролите, например разбавленном растворе серной кислоты, при плотности тока 100 А/м или более. Образующееся покрытие из А12О3 может иметь толщину 0,0025—0,025 мм. Для улучшения защитных свойств полученный таким образом оксид подвергают гидратации. Для этого анодированное изделие обрабатывают несколько минут в паре или горячей воде (такой процесс называется наполнением пленки). Повышенная коррозионная стойкость достигается, если наполнение пленки производится в горячем разбавленном хроматном растворе. Оксидные покрытия можно окрашивать в различные цвета непосредственно в ванне анодирования или впоследствии. [c.247]

    Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов N1—Мо—Ре лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполь зуют на практике. [c.362]

    Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]

    Анодная и катодная реакции коррозионного процесса являются первичными процессами электрохимической коррозии. При коррозии возмояшы и вторичные процессы, связанные с образованием вторичных, зачастую труднорастворимых продуктов коррозии, существенно снижающие скорость коррозионного разрушения металлов. Так, железо и стали, растворяясь в крепкой (70 % и выше) серной кислоте, образуют нерастворимый в ней сульфат, защищаюнщй поверхность от воздействия среды. При коррозии сталей в средах с pH > 5,5 на поверхности образуется труднорастворимый-вторичный продукт — гидроксид железа (II), который в результате взаимодействия с растворенным в среде кислородом образует еще более труднорастворимый продукт — бурый гидроксид железа (III), обладающий хорошими защитными свойствами [42]. [c.24]

    На кинетику, скорость и механизм электрохимической коррозии влияют свойства металла, нефтепродуктов, а также температура, время, давление, скорость движения среды, присутствие замедлителей коррозии. В атмосфере воздуха, воды и нефтепродуктов, содержащих коррозионно-активные компоненты, большинство металлов неустойчиво, в том числе железо,и медь, являющиеся основными компонентами конструкционных материалов технических средств складов и нефтебаз. Коррозионная стойкость металла не определяется его положением в периодической системе. Большинство наименее устойчивых металлов расположены в I группе периодической системы Ыа, К, НЬ, Сз, а наиболее устойчивые находятся в УИ1 группе Кб, Оз, 1г, Р1, однако и в I группе имеются стойкие ко многим агрессивным веществам металлы (Аи, Ag, Си), а в УИ1 есть металлы, легко поддающиеся коррозии (Ре). Коррозионная стойкость металлов не зависит от их положения в ряду напряжений. Так, алюминий Е = = —1,67 В) и свинец Е = 0,12 В) устойчивы в разбавленной серной кислоте, а железо Е = 0,44 В) неустойчиво. В растворах едкого натра глюминий неустойчив, а магний и железо относительно устойчивы и т. д. [c.112]

    Алюминиевые бронзы применяют в качестве коррозионно-устойчивого материала для изготовления деталей, соприкасающихся со слабой серной кислотой, сернокислым алюминием, органическими кислотами и раствцрами солей. Наличие железа и марганца сообщает бронзе повышенные механические свойства и позволяет термически упрочнять ее. [c.55]

    За счет высокой коррозионной стойкости детали арматуры из титана (корпуса, втулки, штоки, сальники, золотники) противостоят коррозии в 15—26 раз дольше, чем нержавеющие стали (Х18Н9Т). Коррозионные свойства сплава АТ-3 испытаны во многих средах, в том числе в среде, содержащей раствор серной кислоты при 350 °С. В течение длительного времени при испытаниях в условиях радиации на образцах сплава не было признаков коррозии, а также коррозионного растрескивания под напряжением. Высокой коррозионной стойкостью сплав обладает в едком натре, в водном растворе аммиака, в азотной, хлорной, уксусной кислотах и средах, содержащих серу при 50 °С. [c.74]

    Свойства и применение. Обладает высокой коррозионной стойкостью в азотной кислоте различных концентраций, и в ряде окислительных сред. В 30%-ной азотной кислоте применяют до температуры 80 °С в 60%-иой — до 60 °С. Обладает высокой стойкостью в подкисленных растворах аммиачной селитры при температтоах до 150 °С, в нейтральных растворах аммиачной селитры и плаве при различных температурах, включая 185 °С, в 98%-ной серной кислоте до 50 °С. Обладает высокой стойкостью в хлоридных (против растрескивания) и щелочных средах. Используется для изготовления оборудования в производствах азотной кислоты, аммиачной селитры, капролактама, карбамида в пищевой, нефтехимической, фармацевтической и других отраслях промышленности. Изготавливают колонное, емкостное и теплообменное оборудование, трубопроводы и др. Рекомендуется как заменитель стали типа 18—10, интервал эксплуатации сварных изделий от —70 до -300°С [c.322]

    Введение серной кислоты в азотнокислотный окислитель уменьшает его коррозионное воздействие на металлы, но одновременно приводит к ухудшению других свойств окислителя. Серная кислота не является окислителем (в молекуле серной кислоты отсутствует активный кислород, так как все атомы кислорода связаны с горючими атомами серы и водорода), поэтому присутствие ее в азотнокислот-ном окислителе приводит к недопустимо большому снижению его энергетических показателей. [c.47]

    Сильно снижает коррозионную активность азотнокислотных окислителей фтористый водород HF. Фтористый водород в нормальных условиях представляет собой газ, обладающий высокой токсичностью и хорошей растворимостью в воде. Введенный в количестве 0,5—1,0% в азотнокислотный окислитель, он резко снижает его коррозионное воздействие на алюминий и его сплавы. На стенках алюминиевых емкостей образуется тонкий и очень прочный слой фторида алюминия AIF3, являющийся хорошей защитой металла от коррозионного воздействия азотнокислотного окислителя. Фтористый водород имеет довольно низкую температуру кипения (20°С), поэтому из жидкостей он поступает и в паровую фазу в количестве, достаточном для образования защитной пленки на той части поверхности емкости, которая не омывается жидкостью. Это свойство является большим преимуществом фтористого водорода по сравнению с такими ингибиторами, как ортофосфорная и серная кислоты. [c.48]

    В последнее время ряд корреляционных соотношений установлен не только между способностью некоторых классов органических веществ тормозить чисто коррозионный процесс и сг-константами, но и другими практически важными характеристиками торможением наводороживания, коррозионного растрескивания, механическими характеристиками и т. п. [76]. В [89] показано, что между логарифмом коэффициентов торможения наводороживания и коррозионного растрескивания высокопрочных сталей в серной кислоте и сг-константами Гаммета, существует линейная зависи.мость с увеличением электроакцепторных свойств за.местителя в молекуле фосфониевой соли эффективность торможения наводороживания и коррозионного растрескивания возрастает (рис. 20). [c.48]

    В процессе травления низкоуглеродистых сталей с целью удаления с них окалины 5 % кислоты расходуется на собственно растворение окалины и 55 % на растворение стали. Считают, что травлении теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 4—6 т. Снижение потерь металла при травлении — важнейший резерв экономии. Поэтому травление сталей в серной и соляной кислотах должно осуществляться обязательно с применением ингибиторов. Но не только это диктует необходимость использования ингибиторов. Дело в том, что процесс травления сопровождается обычно побочными явлениями, такими как неравномерность растворения металла, перетравлнвание его (особенно в серной кислоте), что приводит к увеличению микрошероховатости поверхности и, в конечном счете, к снижению качества стали. Неравномерность травления, растравливание поверхности способствует появлению будущих очагов локальных коррозионных процессов. Поглощение металлом выделяющегося при травлении водорода вызывает изменение физико-механических и физико-химических свойств электропроводности, магнитной восприимчивости, микротвердости, пластических и прочностных свойств и т. п. Все эти нежелательные явления могут быть эффективно предотвращены введением в травильные растворы ингибиторов. Большинство ингибиторов разработаны преимущественно для серной кислоты. [c.101]

    Титан — тугоплавкий металл серебристого цвета. Температура плавления 1668 4°С. Как отмечалось, его коррозионная стойкость является одним из наиболее ценных свойств. При комнатной температуре титан не- растворяется в минеральных кислотах, водных растворах щелочей он нерастворим и в горячих водных растворах щелочей. Растворяется при нагревании в разбавленных соляной и серной кислотах с образованием соединений Ti (III), окрашенных в фиолетовый цвет. Эти соединения являются неустойчивыми при взаимодействии с кислородом воздуха Ti (III) постепенно окисляется до Ti (IV), соединения которого бесцветны 2Ti l3 + 2H l + /гОг ТЮЦ+НгО. Для ускорения окисления титана к сернокислому или солянокислому растворам, полученным после растворения титана, добавляют какой-либо окислитель, например азотную кислоту. [c.119]

    Влияние серосодержащих ГАС на свойства топлив (бензинов, авиационных керосинов, дизельных и котельных топлив) во всех случаях отрицательное. Их присутствие снижает химическую стабильность топлив, полноту их сгорания и обусловливает наличие в продуктах сгорания оксидов серы, которые в присутствии водяных паров (от сгорания водорода) дают слабую, очень коррозионно-акгивную серную кислоту. Пары кислоты и избыточное количество оксидов серы зафязняют атмосферу, что отрицательно влияет на человека и окружающую его природу. [c.93]

    Коррозионная стойкость алюминия велика в концентрированных растворах азотной и серной кислот, которые обладают высокими 01сислительными свойствами. [c.201]

    Анодные поляризационные кривые, снятые на сплавах системы Гв-Мо-л й в растворе 4н серной кислоты сохраняют особенности, присущие основе сплавов - железу. Причем, кривые, снятые для гомогенизированных, двухфазных сплавов, в пределах ошибки эксперимента повторяют зависимости, набладаемые для литых образцов. Вяи-яние упрочняющей интерметаллидной фазы 1 2 ( Ло) при переходе из однофазной А двухфазную область не проявляет себя ни в виде дополнительного максимума, ни в виде активационного участка. В сплавах, богатых железом, анодный процесс контролируется растворением железа и обогащением поверхности электроположительного молибдена. Сначала растворяется железо, затем оба компонента, но скорость анодного процесса в целом определяется ионизацией молибдена. Этот механизм подтверждают данные, полученные с пааощью спектрофотометрического метода анализа раствора после выдержки сплава, содержащего 20 ат. молибдена, в 4н серной кислоте при заданных потенциалах. Добавки ниобия до 5 ат. не оказывают заметного влияния на коррозионные свойства железа. Ори увеличении концентрации происходит постепенное снижение на два порядка критических токов коррозии 0 замедление процесса перепассивации. [c.5]

    Синтетический этиловый спир раньше пшоучали методом сернокислотной гидратации. В этом многостадийном технологическом процессе использовали серную кислоту, опасную для обслужива-гощего персонала и проявляющую коррозионные свойства. Теперь этот метод заменили односта дийным методом прямой гидратации. Разработан также метод пряной гидратации пропилена в изопро-тловып спирт также без использования серной кислоты. [c.282]


Смотреть страницы где упоминается термин Серная кислота коррозионные свойства: [c.78]    [c.173]    [c.292]    [c.173]    [c.148]    [c.314]    [c.200]    [c.566]    [c.9]    [c.146]   
Технология минеральных удобрений и кислот (1971) -- [ c.18 , c.19 ]

Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.15 , c.16 ]

Справочник сернокислотчика Издание 2 1971 (1971) -- [ c.168 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты свойства

Серная кислота свойства



© 2025 chem21.info Реклама на сайте