Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углекислый газ очистка

    В промышленной практике для очистки газов от окислов азота используют в качестве восстановителей СН4, СО, ЫНз, Н2, получая продукты восстановления — азот, воду и углекислый газ. [c.493]

    Для очистки многокомпонентных смесей органических веществ выгоднее применять термический и каталитический способы обезвреживания, которые основаны на полном окислении органического соединения до воды и углекислого газа. [c.166]


    При переработке природного газа, поступающего на ГПЗ прп давлении около 6 МПа, весь поток газа проходит очистку от сероводорода и углекислого газа раствором диэтаноламина. При указанном давлении работает и оборудование системы абсорбции. В этом случае компрессорный цех на входе завода отсутствует. [c.9]

    Ранее диффузия водородсодержащего газа через мембраны из палладия и его сплавов с серебром была в основном лабораторным методом получения водорода. Однако в последнее время этот метод начали применять в промыщленности [36, 48, 49]. Значительной сложностью при разработке диффузионного разделения было создание мембраны, которая не отравлялась бы примесями, присутствующими в водородсодержащем газе. Основными компонентами, снижающими проницаемость диффузора, являются сероводород, непредельные углеводороды, углекислый газ и пары воды. Поэтому в схему установки диффузионного разделения включают блок очистки сырья. Оптимальные условия работы диффузоров из палладия следующие давление 35—40 ат, температура 300—400° С. [c.112]

    Углеводородный природный газ, добы- ф ОчиСТКа и ОСушка ваемый из газовых месторождений, со- природного газа стоит главным образом из метана с не-большой примесью более тяжелых углеводородов. Кроме того, в нем присутствуют азот, углекислый газ, сероводород, гелий и аргон. Любой природный газ содержит также пары воды. Газовая залежь в толще горных пород окружена водой и находится в контакте с влажными глинами, песками и другими минералами. Поэтому газ в залежи насыщен водяными парами. [c.287]

    При одном из мокрых способов очистки применяют раствор углекислого натра (соды). Сероводород поглощается согласно следующей реакции  [c.288]

    Очистку ведут таким образом, что раствор углекислого натра, стекая вниз, встречается с поступающим навстречу ему газом. Сероводород при этом удаляется из газа, а обработанный раствор регенерируется путем пропускания через него воздуха, вместе с которым из раствора удаляется сероводород. Регенерированный раствор вновь используется для очистки газа. [c.288]

    В некоторых случаях пирогаз, т. е. продукт пиролиза газообразного сырья, первоначально промывается абсорбционным маслом для удаления углеводородов С4 и выше. Одной из основных целей этой промывки является удаление диеновых углеводородов. В дальнейшем производится двухступенчатая очистка от углекислого газа и сероводорода, очистка от ацетилена путем его гидрирования. Следующие стадии очистки заключаются в окончательном удалении из газа следов тяжелых углеводородов и в его осушке. [c.305]


    Молекулярные сита используются для осушки и очистки непредельных углеводородов — этилена и пропилена — от углекислого газа, сероводорода и некоторых других веществ. [c.313]

    Карбонат натрия (кальцинированная сода) применяется в производстве стекла, мыла, при варке целлюлозы, для обработки бокситов в производстве алюминия, для нейтрализации кислых компонентов при очистке нефтепродуктов и т. д. Гидрокарбонат натрия используется как источник углекислого газа при выпечке хлеба, газировании, огнетушении. Гидрокарбонаты выполняют важную физиологическую функцию, регулируя кислотность крови. [c.136]

    Перечисленные выше газы используются в качестве топлива и исходного сырья химической промышленности. Они важны, например, как один из источников получения азото-водородной смеси для синтеза аммиака. При пропускании их совместно с водяным паром над нагретым до 500 °С катализатором (главным образом РеаОз) происходит взаимодействие по обратимой реакции НаО -)- СО СОа + Нг + Ю ккал, равновесие которой сильно смещено вправо. Образовавшийся углекислый газ удаляют затем промыванием смеси водой (под давлением), а остаток СО —аммиачным раствором солей меди. В результате остаются почти чистые азот н водород. Соответственно регулируя относительные количества генераторного н водяного газов, можно получать N3 и На в требуемом объемном соотношении. Перед подачей в колонну синтеза газовую смесь подвергают сушке и очистке от отравляющих катализатор примесей. [c.513]

    Сорбция газов и паров имеет большое промышленное значение, например, в очистке газов углекислого газа, выделяющегося из бродильных чанов и применяющегося для газирования напитков, воздуха, водорода, идущего на гидрогенизацию. [c.75]

    Очистка углекислого газа [c.53]

    Очистка углекислого газа.......... [c.386]

    Часто для исключения подачи карбоната натрия на очистку в обратном рассоле оставляют значительно больше гидроксида натрия, чем требуется для осаждения магния, и подвергают обратный рассол карбонизации, пропуская через него газы, содержащие не менее 6% (об.) углекислого газа. Для этого могут использоваться отходящие газы котельных, газы из печей для плавления гидроксида натрия, образующиеся при обжиге известняка, и в других процессах. Содержащийся в обратном рассоле гидроксид реагирует с диоксидом углерода по реакции  [c.64]

    Аппарат Киппа 18 для получения двуокиси углерода. К нему присоединена трубка 16 емкостью 2—3 мл, наполненная двууглекислым натрием и перхлоратом магния. Трубка служит для очистки углекислого газа от примесей паров соляной кислоты и воды. Между очистительной трубкой и реометром на шланге надет винтовой зажим 15, с помош ью которого регулируют подачу двуокиси углерода в хроматограф. [c.49]

    Азотнокислый аммоний реактивной квалификации можно получить очисткой технического продукта. Растворяют 200 г продукта в 100 мл воды ори 80—90 °С, добавляют 10 г углекислого бария и нагревают смесь почти до кипения в течение 2 ч до полного осаждения сульфатов и железа. Горячий раствор фильтруют через складчатый фильтр. Дальнейшие операции проводят, как указано в п. 1. [c.34]

    Метод очистки технического углекислого лития основан на аномальной растворимости его в воде .  [c.216]

    Для очистки сточных вод, содержащих органические соединения с БПК = 5- - 10 г/л, применяется анаэробный биохимический процесс в метантенках. Процесс наиболее полно протекает при 45—55°С без доступа воздуха (термофильное сбраживание). Часто метантенки исгюльзуют для обработки осадков из первичных и вторичных отстойников, после чего осадки легко фильтруются, отделяются и обезвреживаются. В результате распада органических соединений образуются метан, углекислый газ, водород, азот, сероводород, которые сжигают с использованием теплоты отходящих газов для обогрева метантенков. [c.496]

    Цех очистки этилена был предназначен для очисгки этанэтиленовой фракции от углекислого газа и серосодержащих соединений 10%-ным раствором едкого натра, от метана и окиси углерода ректификацией и от ацетилена и кислорода методом гидрирования метан-водородной фракции на катализаторе. Реактор гидрирования представлял собой аппарат колонного типа высотой 6800 мм, диаметром 800 мм толщина стенок обечайки составляла 15 мм. Объем реактора 3,85 м . [c.334]

    Мочевина производится из углекислого газа, получаемого при моноэтаноламинной очистке синтез-газа в производстве ам-мика и синтетического аммиака. При этом, как уже упоминалось выше, аммиак из системы синтеза будет направляться на производство мочевины под давлением 200 ат. Процесс синтеза мочевины проводится при температуре 180—200° С и давлении 200 ат. [c.337]


    Описан процесс получения сульфонатной присадки путем непрерывного сульфирования дистиллятного масла газообразным серным ангидридом в реакторе типа Ротатор с рециркуляцией кислого масла. Серный ангидрид затем нейтрализуют раствором аммиака, сульфонат аммония экстрагируют изопропиловым спиртом. Обменной реакцией сульфоната аммония с гидроксидом кальция получают сульфонат кальция, из которого в результате карбонатации углекислым газом в растворе ксилола и метилового спирта образуется высокощелочная сульфонатная присадка. Для упрощения процесса перед сульфированием вводят 1—3 % (масс.) низкомолекулярных ароматических углеводородов (толуол, ксилол и др.), что снижает окисляющее действие серного ангидрида, повышает степень сульфирования и позволяет отделить кислый гидрон от вязкого масла без добавления каких-либо растворителей [а. с. СССР 405933]. Чтобы ускорить очистку присадки и повысить ее эффективность перед обработкой углекислым газом в реакционную смесь, состоящую из сульфоната щелочноземельного металла или аммония, минерального масла, гидроксида щелочноземельного металла, воды, углеводородного растворителя и промотора (уксусная кислота), вводят 0,01—0,1 % (масс.) поли-силоксана [а. с. СССР 468951]. [c.79]

    От двуокиси углерода газ можно очищать с помощью ами-нового раствора, однако более экономична, по крайней мере при 10%-ном и выше содержании СОг, скрубберная очистка его с помощью горячего раствора углекислого калия (процесс Бен-филд ) или добавки к этому раствору различных ускорителей процесса гидратации газа (процессы Ветрокоук и Кэтакаб ). [c.32]

    Выбор амина. В соответствии с рекомендациями [И] при выборе параметров абсорбционной очистки следует иметь в виду два основных механизма абсорбции углекислого газа. Большая часть СО2 поглощается растворами МЭА и ДЭА с образованием карбамата с достижением степени поглощения 0,5 моль/моль. Превращение карбаматной структуры в бикар-бонатную с последующим протеканием кислотно-основной реакции позволяет достичь степени поглощения 1 моль/моль. При этом повышается равновесная концентрация Oj в газовой фазе за счет замедления скорости хемосорбции. С третичными аминами взаимодействие Oj по карбаматному типу невозможно из-за отсутствия подвижного атома водорода у азота, [c.24]

    Степень влияния температуры на селективность процесса определяется природой амина и в большей степени заметна при использовании третичных аминов. Влияние температурного фактора на селективность МДЭА-очистки сырого газа от кислых компонентов связана с различным характером взаимодействия третичного амина с углекислым газом. Если первичные и вторичные амины способны быстро напрямую реагировать с СО2 с образованием карбамата (соли замещенной карбаминовой кислоты), то третичные амины, у которых нет подвижного атома водорода в аминовой группе, не могут образовывать карбаматы, а образование карбоната и бикарбоната лимитируется медленной стадией образования и диссоциации угольной кислоты. Взаимодействие НгЗ с любыми аминами протекает с образованием гидросульфида и сульфида мгновенно. Повышение температуры до некоторого предела (до 70 °С) будет прежде всего сказываться на образовании малоустойчивой угольной кислоты, что и приводит к значительному снижению степени извлечения СО . Степень извлечения Нз8 [c.26]

    Прием и хранение кальцинированной соды. Кальцинированная сода (углекислый натрий) ЫэгСОз используется как заменитель щелочи при подщелачивании нефти и нейтрализации продуктов после кислотной очистки. Кальцинированная сода имеет более низкую стоимость, чем каустическая, и поэтому ее применение экономически весьма эффективно. [c.234]

    На известном крупнейшем газовом месторождении США — Хьюготон — для гидравлического разрыва пласта был применен углекислый газ. Жидкостью гидроразрыва служит вода. Углекислый газ, смешиваясь с водой, образует раствор. После того, как возникает разрыв пласта, высокая концентрация углекислоты в воде способствует скорейшей очистке пласта от воды, а добавки (песок и др.), создавая хорошо проницаемую зону вдоль трещины, увеличивают приток газа к скважине. В результате применения этого способа дебит некоторых скважин увеличился в несколько раз. [c.130]

    Этаноламины — это производные аммиака. Если в молекуле аммиака КИд один атом водорода заменить группой С2Н5О, то получится моноэтаноламин КН2(С2Н50). При замене двух атомов водорода на группы С2Н5О получится диэтаноламин, а при замене трех атомов водорода — триэтаноламин. Все этаноламины обладают свойством поглощать сероводород и углекислый газ, поэтому для очистки газов часто применяют их смесь. [c.288]

    Промышленный генератор СО2 позволяет получать при сжигании чистых (неодоризованных) СНГ чистый углекислый газ исключительно простым способом. При окислении СНГ при избыточном количестве воздуха образуется смесь СО2, паров воды и азота, которая может сразу же компримироваться и вдуваться непосредственно в напиток, так как пары воды конденсируются, а азот, обладающий меньщей, чем СО2, растворимостью, пройдет через жидкость, не абсорбируясь. При другом способе получения СО2 накапливается за счет абсорбции в одном из многочисленных селективных растворителей (моноэтаноламин, модифицированный карбонат калия, некоторые аминоспирты, сульфинол и т. п.), а затем регенерируется в виде концентрированного газа из растворителя. Дальнейшая очистка осуществляется при глубоком охлаждении (СО2 затвердевает при —78,5 °С, при этом отделяется большая часть газообразных примесей, имеющих более низкую точку кипения). Твердая двуокись углерода (сухой лед) используется для газирования напитков, в частности в тех случаях, когда масштабы розлива по бутылкам невелики, а организация местного производства СО2 неэкономична. [c.272]

    Цель способа — ускорение процесса и увеличение време ни pa6otы фильтрэлементов. Способ осуществляется следую щим образом. Г асло, подлежащее очистке, направляют в емкость, где нагревают до температуры 80 5°С с добавлением воды (80°С) в объемном соотношении 1 1. При перемешивании масла с водой подают углекислый газ (СО2) в количестве 3-4% от массы залитого масла, перемешивание ведут 15 мин. Затем в масло добавляют раствор хлорида натрия в кoличe t-ве 2-4% от массы залитого маспа и двуокиси углерода. Смесь [c.200]

    Содержание загрязнений в испарепиях (в основном углекислый газ и пары воды) значительно меньгие, чем в сточной воде и поэтому создание замкнутого цикла не окажет существенного влияния на работу очистных сооружений, превышения концентрации ядовитых для активного ила веществ не будет. Более сложная ситуация с очисткой иловой воды, полученной после обработки осадков, количество которой незначительно, но содержащиеся в ней растворенные загрязнения достигают четверти от всей массы загрязнений. [c.32]

    Ацетилбензиловый эфир уксусной кислоты. В смесь из 485 г 4-этилбензилового эфира уксусной кислоты, 5 г окиси хрома и 20 г углекислого кальция пропускают при 130—140° в течение 28 час. сильный ток воздуха через распылитель из пористого стекла. После охлаждения реакционной смеси отфильтровывают катализатор, прибавляют к фильтрату 10 г уксуснокислого натрия и 100 мл уксусного ангидрида и смесь кипятят в течение 2 час. с обратным холодильником. Затем разбавляют водой, экстрагируют бензолом и бензольный экстракт перегоняют. В результате перегонки получают 287 г 4-этилбензилового эфира уксусной кислоты (возврат 59%) ст. кип. 119—129° 2 мм) п 1,5011 и 118 г 4-аце-тилбензилового эфира уксусной кислоты с т. кип. 155—185° (12 мм), п g-1,5225 (степень превращения 23% выход 55% от теорет.). После тщательной очистки получают 4-ацетилбензиловый эфир уксусной кислоты с т. кип. 161 —163° (И л 1,5225 28 1,126 [88]. [c.63]

    Среди способов очистки отходящих газов на заверщающей стадии п ред сбросом их в атмосферу наибольщее распространение получили окислительные методы. Они осуществляются путем глубокого полного о-сисления органических примесей - углеводородов и кислородсодержа-ц ей органики - до углекислого газа и воды непосредственным прямым сжиганием и с использованием катализаторов процесса окисления [3-5]. Термический способ более прост в аппаратурно-технологическом оформлении и не имеет специфических ограничений по составу и концентрациям загрязняющих примесей в очищаемом газе. Однако проведение этого процесса при температурах 600-900°С делает его весьма энергоемким (габл. В.З) расход условного топлива составляет 25-40 кг на 1000 м выбросов при рабочей температуре процесса 600-900°С.  [c.7]

    Для электролитичеокого получения никеля высокой чистоты в качестве анода используют катодный никель высшего сорта НОО. Электролиз ведут в хлоридном 2,5-н. растворе никелевой соли и 1,5-н, растворе хлорида натрия при 55° С и плотности тока 150 а м в ваннах той же конструкции, как и обычное рафинирование никеля. Схема электролиза и очистки показана на рис. 269. Стекающий анодный раствор очищают от железа и кобальта газообразным хлором при непрерывной нейтрализации чистым карбонатом никеля. Полученный осадок гидроокисей подвергают двойной фильтрации, после чего раствор поступает в башню с кольцами Рашига, в которую снизу подают сероводород. Образующийся осадок сульфидов тщательно отфильтровывают на фильтр-преюсе. Раствор кипятят с добавкой хлорида бария и с пропусканием углекислого газа, затем после отстаивания его тщательно фильтруют от взвеси элементарной серы и сульфата бария. Очищенный раствор подогревают и направляют в ванну. [c.583]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона / поступает в блок подготовки газов 2, где происходит его очистка, устанавливаются объемная скорость и давление. В качестве газа-гюсителя используют гелий, азот, аргон, углекислый газ. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 5, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу вещества. Захватив пары анализируемой пробы, газ-носитель поступает в хроматографическую колонку 6 — металлическую или стеклянную трубку длиной обычно от 0,5 до 4 м и диаметром 2—8 мм, заполненную гранулированной насадкой. Во избе-жение конденсации паров пробы колонка помещена в термостат 7. Выходящий из колонки газовый поток содержит зоны отдельных компонентов, разделенные зонами чистого газа-носителя и отличающиеся от них по электрической проводимости, плотности или другим параметрам. Измерение этих параметров на выходе из колонки позволяет определить относительное содержание компонента в смеси. Устройство, непрерывно регистрирующее значение того или иного параметра газового потока, называется детектором 8. [c.49]

    Последние усовершенствования процесса следующие 1) применение повышенного давления при очистке газов, что уменьшает размеры аппаратуры и увеличивает количество поглощаемых реактивом вредных газов 2) применение противовспениваю-щих агентов, в частности олеилового спирта, предотвращающих перебросы в колонне 3) регенерация реагента перегонкой в присутствии углекислого натрия 4) совмещение процессов обезвоживания и химической очистки газа. [c.250]

    Плумбитная очистка. Плумбит натрия образуется при взаимодействии свинцового глета РЬО с раствором NaOH или углекислым натрием  [c.316]

    При промышленном производстве сахарозы измельченную свеклу подвергают обработке горячей водой. Полученный раствор содержит 12—15% сахара и много различных примесей. Примеси осаждают, обрабатывая раствор известковым молоком Са(0Н)2- После фильтрования получается раствор, содержащий сахарозу и сахараты кальция в него пропускают углекислый газ СО и сахараты разлагаются, образуя осадок СаСОз, который отделяют фильтрованием. Остающуюся в растворе сахарозу выделяют упарнванием в вакууме и центрифугированием образующихся кристаллов. Эти операции повторяют несколько раз отходом их является густая некристаллизующаяся — масса — свекловитая патока (меласса). Полученная сахароза представляет собой сахарный песок, который подвергают рафинированию (очистке) и прессованию. [c.258]

    СМС очень медленно разлагаются, вредные результаты их воздействия на природу и живые организмы непредсказуемы. Перевод ПАВ в пену, адсобция активным углем, использованием ионообменных смол, нейтрализация катионактивными веществами и др. недостаточно эффективны и очень дороги. Поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках и в естественных условиях (в водоемах) путем биологического окисления под действием гетеротрофных бактерий, которые входят в состав активного ила. Процесс идет до превращения органических веществ в углекислый газ и воду. При биохимической очистке окисление ведется в присутствии ферментов. Микробиологический метод основан на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфо-наты и др. [c.605]

    Для очистки дистиллята от органических примесей воду перегоняют вторично с добавкой перманганата калия и нескольких капель серной кислоты. Полученную таким образом дистиллированную воду перегоняют еще раз с прибавленпем гидроокиси бария, освобождая ее при этом от углекислоты и аммиака. Первые и последние погоны обычно отбрасывают, средние же вполне пригодны для работы. Углекислый и другие растворенные В бидистилляте газы можно удалять, продувая через такую воду в течение нескольких часов очищенный воздух, азот, кислород или водород. Хранят бидистиллят в сосудах из кварца или иенского стекла с притертыми пробками. Сосуды должны быть доверху заполнены чистой водой. [c.92]

    Для очистки газа от сероводорода используют моноэтаноламин (МЭА), ди-этаноламин (ДЭЛ) и триэтаноламин (ТЭА). Они хорошо растворимы в воде, и поэтому их применяют в виде водных растворов. При температурах 40—80 °С они хорошо поглощают сероводород, а при температурах 110—140 °С выделяют его. Наиболее распространена очистка от кислых компонентов МЭА и ДЭА. Растворы эти имеют pH =12,7, сами по себе они не агрессивны. Коррозионная агрессивность увеличивается по мере насыщения кислыми компонентами, повышения температуры и соответствующего снижения pH. Наиболее сильная коррозия как углеродистых, так и нержавеющих сталей, особенно в местах сварки, наблюдается при температуре, близкой к 100 °С. Наличие чистого сероводорода в растворах этаноламинов делает коррозионную агрессивность их ниже, чем в совокупности с углекислым газом. При этом общее содержание кислых газов в растворах этаноламинов не должно превышать 0,3—0,4 моля газа на 1 моль амина, особенно, если используют оборудование из углеродистых сталей. Превышение содержания кислых компонентов может привести к пересыщению раствора этаноламина, выделению их и, соответственно, резкому усилению коррозионных процессов. [c.174]


Смотреть страницы где упоминается термин Углекислый газ очистка: [c.9]    [c.180]    [c.306]    [c.226]    [c.180]    [c.288]    [c.49]    [c.61]   
Технология содопродуктов (1972) -- [ c.41 , c.46 , c.53 ]

Активные угли и их промышленное применение (1984) -- [ c.119 ]

Практикум по общей химии Издание 2 1954 (1954) -- [ c.30 ]

Практикум по общей химии Издание 3 (1957) -- [ c.30 ]

Практикум по общей химии Издание 4 (1960) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Углекислый



© 2025 chem21.info Реклама на сайте