Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индолы, анализ

    Методы анализа акридина представляют интерес при выделении, акридина из сложных нефтехимических и коксохимических смесей, в которых анализ акридина затрудняется присутствием, близких к нему по свойствам соединений, например, производных пиридина, хинолина, индола, карбазола и др. [c.121]

    Для производства фталевого ангидрида и суперпластификатора можно использовать технический нафталин с температурой кристаллизации 79°С (ТА) и ниже - даже 76°С (92,35% нафталина) — нафталин технический марки В (ТВ). Для приготовления фталевого ангидрида не опасны содержащиеся в сырье метилнафталины, образующие при окислении те же продукты, что и нафталин (фталевый и малеиновый ангидрид), а также тионафтен. Не представляют опасности тионафтен и метилнафталины и при изготовлении суперпластификатора. При производстве фталевого ангидрида вредны непредельные соединения, нарушающие работу оборудования из-за образования смолки при окислении, а также индол и бензонитрил, изменяющие состав, структуру и свойства катализатора. Анализ состава нафталиновой фракции показывает возможность выделения нафталина либо ректификационными, либо кристаллизационными методами. [c.333]


    Спектральные методы занимают центральное место в химических исследованиях и анализе. Однако точное знание величины химического сдвига, например какого-нибудь протона пиридина, или точное знание максимума поглощения в УФ-спектре индола, ни в кой мере не способствует пониманию реакционной способности гетероароматических соединений, а лишь является результатом специально проведенного измерения. В этом разделе мы приведем лишь краткое обсуждение спектральных свойств гетероароматических соединений с привлечением небольшого количества спектральных данных. Более детальная информация может быть найдена в соответствующих обзорах [1] и оригинальных статьях. [c.25]

    Наиболее часто в качестве катализатора в этой реакции используют хлорид цинка в стехиометрических или ббльших количествах в растворителе при температуре 150 °С и выше. Выбор катализатора, растворителя и температуры для достижения оптимальных выходов индолов зависит в значительной степени от структуры субстрата. Если реакцИю проводить в присутствии хлорида фосфора(1П), фенилгидразоны кетонов могут быть превращены в 2,3-дизамещенные индолы при комнатной температуре [104]. Незамещенный индол нельзя выделить из реакции фенилгидразона ацетальдегида и хлорида цинка в растворе, но его можно получить с посредственным выходом при пропускании паров реагентов над стеклянными шариками, покрытыми катализатором [105]. Синтез Фишера может быть проведен при нагревании арилгидразонов без катализатора [103] некоторые арилгидразоны превращаются в индолы даже при попытке хроматографического анализа в газовой фазе [105]. [c.269]

    Индолы. Анализу спектров ЯМР индолов посвяи ено много работ [114, 137]. В индоле 2 п 3 водородные атомы вызывают появление триплетов (рис. 53), отделенных друг от друга и от сигналов других ароматических протонов. В индоле, как и в пирроле, протоны кольца взаимодействуют друг с другом и протоном группы N11. Это подтверждается тем, что сигналы от 2 и 3 протонов в N-мeтилиндoлe являются дублетами (рис. 53). [c.159]

    Соур (Sauer), Мелполдер и Браун [140] применили адсорбционное фракционирование, чтобы извлечь азотистые соединения из двух образцов печного топлива — каталитического и прямогонного топлива кувейтской нефти. Исследованпе концентратов методом масс-спектрометрического анализа показало, что помимо основных соединений (хинолина и пиридина) имеются и неосновные — карбазол, индол и пиррол. [c.44]

    Сложность и многокомпонентность объектов исследования, отсутствие точных методов анализа, относительно незначительные количества азоторганических соединений в нефтях обусловила довольно медленные темпы развития исследований в этой области. Все эти трудности стало возможным преодолеть в связи с применением в нефтехимии современных физических и физико-химических методов анализа. Появляются целые серии работ советских. 13—8] и зарубежных авторов 19—11]. Эти интенсивные исследования принесли интересные сведения о природе азотистых соединений нефтей были обнаружены АОС пиридинового и хинолкно-вого ряда, производные анилина, акридина, индола, карбазола, а также циклические амиды кислот. Азотистые основания, составляющие обычно 50—20% от общего азота нефтей, оказались наиболее доступными для изучения. Имеющиеся литературные данные связаны в основном с этим классом соединений. [c.109]


    Качественные реакции на акридин в присутствии гетероциклических и алифатических аминов в литературе отсутствуют, а количественные [1, 2, 3] требуют значительного времени и большого, количества р сходного вещества на анализ. Предлагаемая качественная реакция на акридин с четыреххлористым оловом, проста-в исполнении, обладаег высокой чувствительностью, позволяет определять акридин в присутствии индола, карбазола, пиридина, бензилпиридина, 2-метил-5-этилпиридина, хинолина, хинальди-на и бензохинолина. Пиридин, хинолин и их производные, а так же индол с четыреххлористым оловом вступают в реакцию с образованием белых кристаллических осадков карбазол с четыреххлористым оловом не взаимодействует. Присутствие алифатических аминов не мешает определению акридина, т. к. вышеназванные амины образуют с четыреххлористым оловом бесцветные осадки [4]. [c.121]

    Пример 3. Необходимо методом масс-спектрометрического изотопного анализа определить степень дейтерирования индола. Молекулярный и изотопный пики недейтериро-ванного индола приведены на рис. 5.40. Под ними в том же диапазоне масс приведены пики, взятые из спектра дейтерированного индола. Для подавления пика (М — 1), относительно интенсивного в спектре обычного индола, оба спектра снимали при энергии налетающих электронов <15 эВ. Из спектра недейтерированного индола можно заключить, что интенсивность пика (М - - 1), обусловленного почти исключительно распространенностью в природе изотопов и N, составляет 9,5% интенсивности молекулярного пика. Разумеется, что пик массы (М + 1) с такой же относительной интенсивностью имеется также и в спектре дейтерированной молекулы индола (пики с массовыми числами 118 и 119). Их можно сократить при выполнении расчетов по следующей схеме  [c.297]

    На основании анализа спектров замещенных индолов сигнал нри б = = 6,08 мо>1а т быть отнесен к 2 протону, а сигнал при б = 6,38 — к 3 протону. Влияние алкильных и фенильпых заместителей на сдвиги сигналов [c.159]

    Различные соединения имеют отличающиеся друг от друга удельные сдвиги (рис. 56). Анализ спектров 41 ЯМР с применением ЛСР невозможен в случае готероатомов с неподеленной парой, сопряженной с непредельными фрагментами молекул. К такому типу соединений относятся пирролы, индолы и карбазолы. Однако амины, пиридины, хинолины и их производные имеют весьма большие удельные сдвиги в характеристических областях и принципиально могут быть пдентифицированы. Полу- [c.166]

    Анализ аминокислотного состава включает полный гидролиз исследуемого Б. или пептида и количеств, определение всех аминокислот в гидролизате. Для гидролиза обычно используют 5,7 н. водный р-р НС1, а при анализе содержания триптофана-4 н. метансульфоновую к-ту, содержащую 0,2% ЗЧ2-аминоэтил)индола, или кипячение со щелочью. Количеств, определение аминокислот в гидролизате проводят с помощью аминокислотного анализатора. В большинстве таких приборов смесь аминокислот разделяют на ионообменных колонках, детекцию осуществляют спектрофотометрически по р-ции с нингидрином или флуориметрически с использованием флуоре-скамина или о-фталевого диальдегида. В последнем случае можно анализировать до 0,1-0,05 нмоль аминокислоты. [c.250]

    Особенно велико значение спектральных данных при обсуждении таутомерного равновесия (в частности, для пиридонов), строения активных состояний и промежуточных веществ (например, ЗН-индолий-катиона), при измерениях скоростей реакций (например, нитрования хинолина), измерениях рКа и изучении новых реакций. Широкое применение нашли спектральные методы для анализа гетероциклических соединений. [c.27]

    Физико-химические исследования. Специально был изучен распад индольных структур под действием электронного удара. Полученные закономерности позволили различать изомерные индолы, замещенные в ядре. Удалось также разработать метод полуколичественного анализа 4- и 6-замещенных изомеров. Детальный анализ спектров ПМР позволил произвести отнесение всех сигналов индольных и триптаминовых структур, что также было использовано в анализе изомерных смесей [90, 91]. Определение индексов Ковача в ГЖХ индолов, индолинов и триптаминов [92-97] позволило проводить количественный анализ смесей изомерных индолов с точным отнесением хроматографических пиков. Комплексное применение этих трех методов позволило нам надежно анализировать довольно сложные смеси индольных структур. [c.86]

    Я-Пиримидо[5,4-й]индол-4-ил)цитизин. Смесь 2.03 г (10 ммоль) 4-хлор-5Я-пиримидо[5,4-6]индола 1, 0.69 г (5 ммоль) К2СО3, 0.9 г (6 ммоль) NaJ и 2.1 г (И ммоль) цитизина в 50 мл изопропилового спирта кипятят с обратным холодильником в течение 12 ч. Содержимое колбы выливают в 100 мл воды и оставляют на 12 ч при комнатной температуре. Выпавший осадок отфильтровывают, промывают теплой водой (100 мл), сушат на воздухе и перекристаллизовывают из изопропилового спирта. Выход 67%, 205-206°С. Структура соединения 2 доказана методами ПМР, ИК, масс-спектроскопии и элементным анализом. [c.590]


    Протонные спектры азулена и ацеплейадилена, измереннйе с помощью приборов высокого разрещения, были подвергнуты тщательному анализу величины химического сдвига и константы связи были определены и рассмотрены, исходя из модели кольцевого тока [85]. Показано [86], что спектр ЯМР может быть использован при определении степени замещения индоль-ного ядра в а- и -положениях. Спектр фурана состоит из двух триплетов с / = 1,5 гц, причем линии водорода в а-положении появляются при более слабом поле, чем в р-положении. Эта тенденция. которая систематически наблюдается также в спектрах ряда замещенных фуранов, использовалась с целью подтверждения установленных другими способами структур сложных природных производных фурана. кафестола, кoлyмб нa и лимо-нина [87]. [c.312]

    Используя систему кодирования фирмы Varian , Сломп и Линдберг [77] составили таблицу результатов анализа различных органических азотсодержащих соединений. В ней приведены значения химических сдвигов для индолов, гидразинов, а также ароматических и ненасыщенных замещенных азотсодержащих соединений. [c.306]

    При пиролизе образовывалось три вида продуктов 1) летучие продукты которые регистрировались пламенно ионизационным хроматографическим детектором, количество их составля ло 5—10 % от исходного образца 2) относительно нелетучие продукты (40—50 %) — конденсат, растворимый в смеси мети ленхлорида и метанола, образующийся на стенках пиролизной трубки (анализ их с помощью масс спектрометрии не удался, но ясно, что это полярные соединения), 3) остаток черного цвета на пиролизной проволоке Наиболее представительными про дуктами в пиролизате являлись алкилбензолы алкены 1, н алканы, алкилфенолы, разветвленные алкены и алканы, в небольших количествах были обнаружены метоксифенолы, алифатические альдегиды и кетоны, инданы, алкилнафталины, ге-тероатомные соединения, такие как тиофены, фураны, пирролы, индолы большие количества газообразных продуктов (СН4 СО2 H2S, SO2) Показано, что керогены, образовавшиеся из морских организмов, дают, главным образом, алифатические структуры с относительно короткими углеродными цепями Разветвленные цепи в продуктах пиролиза таких керогенов встречаются в большем количестве, чем в керогенах других типов Керогены, образовавшиеся из наземных высших растений, образуют алкилфенолы и метоксифенолы в значительно больших количествах, чем другие керогены Воска высших растений проявляются в пиролизатах в виде длинноцепочечных алканов и алкенов, среди которых преобладают цепи с нечетным и четным числом атомов углерода, соответственно [c.171]

    К электрохимическим методам детектирования в КЭ относят амперометрический (прямое и косвенное определение), кондуктометрический и потенциометрический. Амперометрическое детектирование для КЭ впервые было предложено в 1987 г. для анализа катехоламинов [140] и может быть использовано для обнаружения электрохимически активных веществ. В основе метода лежит измерение тока, протекающего в электрохимической ячейке при происходящих на рабочем электроде реакциях окисления или восстановления величина тока прямо пропорциональна концентрации анализируемого соединения. Обычно в электрохимической ячейке находятся три электрода рабочий (из стеклоуглерода, угольной пасты или амальгамированного золота), вспомогательный и электрод сравнения типичные потенциалы детектирования 0,4-1,2 В. Подавляющее большинство амперометрических исследований в КЭ проводят по окислению (анализ ароматических гидро-ксисоединений, ароматических аминов, индолов, меркаптанов и т.д.) [58]. Детектирование по восстановлению практически не используют из-за мешающего влияния растворенного кислорода. Недостаток амперометрического детектирования — отравление рабочего электрода ввиду сильной сорбции промежуточных продуктов окислительно-восстановительных реакций поверхностью электрода, следствием является снижение его активности [44]. Замена угольного электрода медным позволяет увеличить срок службы рабочего электрода в неимпульсной схеме амперометрического детектирования [49]. [c.353]

    Из работающего масла ТПО удаляются с флегмовыми водами и полимерами. В полимерах, как показали анализы, содержится до 9 % ТПО. Присутствующие в масле индол, кумарон и другие гетероциклические соединения активно участвуют в образовании полимеров [ 4]. [c.43]

    Обнаруженные закономерности изменения ХС н гидроксильных ФУПп были впервые использованы для оценки содержания азотсодержащих функциональных фупп Значения ХС Н ЫН-фупп алкилзамещенных индолов и карбазолов в растворе ГМФА-0 8 характеристичны и находятся в диапазоне 11,44—12,90 м д Анализ этих данных (см табл 1 22) показывает, что у стерически затрудненных [c.61]

    Росс и Бакмен [85] методом хроматографического анализа установили, что продуктами микробиологического распада эмульсионных красок, в которых в качестве стабилизатора применены казеин или а-протеин, являются различные аминокислоты, содержащие триптофан. Это указывает на разложение белков микрофлорой, преимущественно Proteus spe ies. Авторы предполагают, что резкий неприятный запах, выделяемый этими красками, появляется в результате дальнейшего превращения аминокислот, особенно триптофана, который распадается на скатол и индол. Те же авторы нашли в поврежденных красках, содержащих в качестве защитных коллоидов метилцеллюлозу и карбоксиметилцел-люлозу, сахара и производные сахаров (например, глюкозу и цело- [c.142]

    Наибольшая информация о природе азг тистых соединений нефтей в настоящее время накоплена для монофункциональных производных с эмпирической формулой nHjn+zN, где г — степень водородной ненасыщенности. Среди этих соединений идентифицированы две группы азотистые основания (пиридин и его бензопроизводные) и нейтральные азотистые соединения (производные индола, карбазола). Внутри каждой группы установлены структуры, имеющие алкильное и нафтеновое замещение. Наиболее точные сведения получены для алкилзамещенных структур — на уровне индивидуального состава. Впервые идентификация соединений азотистых оснований проведена в 30-х годах [7]. Она позволила достоверно установить структуры нескольких десятков алкилзамещенных пирпдинов и хинолинов с использованием в основном химических методов идентификации. С появлением хромато-масс-спектрометрического метода анализа были достигнуты значительные результаты по идентификации индивидуального состава азотистых соединений. Число иден- [c.135]

    В соответствии с данными функционального анализа и результатами спектроскопического исследования молекулы азотистых соединений продуктов разделения К-4 всех нефтяных пластов представлены главным образом индоль-ными производными (фракции С1) и циклическими амидами — производными пиридона (фракции Сз). Возможность такого порядка выхода азотсодержащих соединений на силикагеле согласуется с кислотно-основным механизмом адсорбции, в соответствии с которым слабоосновные соединения сильнее удерживаются на кислотных центрах указанного адсорбента, чем соединения азота нейтрального характера (карбазолы) [85]. Молекулы азотистых соединений К-5, десорбированные спиртобепзольпой смесью (С ), аналогичны по относительному удерживанию компонентам фракций С. . Вследствие этого, а также на основании данных функционального и спектрального анализов структуры средних молекул этих элюатов можно отнести к пиридоновым производным. Извлечение их в концентраты К-5 объясняется более насыщенным характером люлекул такого типа и в связи с этим. лучшей растворимостью комплексных соединений в углеводородной среде [86]. Основные различия средних структурных единиц молекул бензольных фракций исследуемых нефтей заключаются а) в нанвысшей степени цикличности для пласта ЛВв+7(Яо = 7,3) и наинизшей — для БВд(71Гд = 5,2) б) в числе ароматических колец, равном трем для пластов АВе+, и БВд и двум для Ю1, одно из которых в случае азотсодержащих соединений является пиррольным в) в большем числе атомов углерода в алифатическом замещении для БВд и меньшем — для других двух нефтей. [c.155]

    Основные научные исследования посвящены синтезу и изучению свойств (функциональному анализу) гетероциклических соединений. Совместно с В. В. Челинцевым изучал (1914) действие сложных эфиров на пирролмагннйбромид. Установил (1926) строение магнийор-ганического комплекса реактива Гриньяра. Предложил (1947) селективно действующий сульфирующий агент — пиридинсульфотри-оксид для сульфирования фурановых соединений. Разработал методы синтеза многих производных фураиа, пиррола, тиофена, индола. Совместно со своим сотрудником Е. И. Клабуновским осуществил [c.488]

    Примеры приложения методов корреляционного анализа для обработки кинетики и равновесий реакции в этом ряду еще более малочисленны. В работах [87—89J был поднят вопрос о том, каким образом передается влияние заместителей в бензольном ядре индола на реакционный центр в положениях 2 и 3 пиррольного кольца. Отсуи и Джаффе [87] установили, что константы ионизации и скорости омыления эфиров 2-ицдолкарбоновых кислот подчиняются следующим соотношениям, вытекающим из (1V.3). [c.261]

    Для идентификации и количественного анализа кислых компонентов в смесях с нейтральными соединениями было предложено [61] после хроматографического разде-ления исходной смеси на аналитической колонке пропускать поток газа-носителя через реактор (100 X 0,5 см), заполненный гидроокисью калия на кварцевом порошке (115 100). В этом реакторе происходит селективное поглощение кислых компонентов. Путем сравнения хроматограмм, полученных на аналитической колонке и на колонке со щелочным реактором, можно идентифицировать и количественно определить кислые и нейтральные компоненты анализируемой смеси. В качестве примера в работе приведены результаты анализа малых количеств фенола и крезолов в тяжелом масле каменноугольной смолы и показано, что этот метод пригоден и для анализа таких соединений, содержащих активный водород, как инден, флюорен, пиррол, индол и карбазол, а также для идентификации кетостероидов и эстрогенов в смеси стероидов. [c.82]

    Выделение катехоламианов из биогенного материала обычно проводят ионообменной хроматографией с использованием ряда колонок, пригодных для многих параллельных проб. Количественный анализ продуктов хроматографического разделения представляет собой очень сложную операцию, которая была автоматизирована двумя различными путями. Оба метода (один с применением этилендиамиидихлоргидрата и другой — триокси-индола) подвергались неоднократным проверкам и критике, разбор которых не входит в задачи настоящей работы. В настоящем разделе рассматриваются только те методы, которые посвящены разделению катехоламинов на индивидуальные компоненты. Методы применения жидкостной колоночной хроматографии в целях очистки соединений не рассматриваются. [c.288]


Смотреть страницы где упоминается термин Индолы, анализ: [c.147]    [c.26]    [c.124]    [c.130]    [c.92]    [c.102]    [c.21]    [c.144]    [c.557]    [c.302]    [c.121]    [c.18]    [c.18]    [c.256]    [c.292]    [c.59]    [c.10]    [c.26]    [c.254]    [c.154]    [c.352]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Индол

Индолы, анализ липофильные



© 2025 chem21.info Реклама на сайте