Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сочетания метод прибор

    Ранее была показана возможность расчета скоростных полей в химических аппаратах методом электро-гидродинамической аналогии (ЭГДА) [1]. Сочетание методов, использующих практически одну и ту же аппаратуру и измерительные приборы, дает возможность комплексного исследования аппаратов на моделях. [c.234]


    Сочетание методов мягкой ионизации и тандемной масс-спектрометрии в настоящее время применяют очень часто, в основном благодаря относительной легкости использования тройных квадрупольных приборов. Этот вариант прекрасно подходит для идентификации и количественного определения лекарственных веществ и их метаболитов или для скрининга пищевых продуктов или объектов окружающей среды на загрязнители. Данный круг задач будет ниже кратко проиллюстрирован несколькими примерами, которые также демонстрируют, каким образом разрабатывается аналитическая методика. [c.302]

    Сочетание методов, использующих практически одну и ту же аппаратуру и измерительные приборы, дает возможность комплексного исследования аппаратов на моделях. [c.234]

    Сочетание метода газовой хроматографии с другими методами исследования. Иногда для хроматографического анализа нелетучих и малоустойчивых соединений их подвергают предварительному пиролизу в пиролитической ячейке. По анализу продуктов пиролиза судят, например, о структуре полимеров. Для идентификации компонентов смеси часто применяют методы инфракрасной спектроскопии или масс-спектрометрии. При этом компоненты смеси улавливают у выхода из колонки и снимают их характеристики на этих приборах независимо. Масс-спектрометры применяют также в качестве детекторов, которые дают информацию о природе разделяемых веществ. [c.341]

    В настоящее время во многих лабораториях имеются автоматизированные приборы-анализаторы, действие которых основано на сочетании метода ионообменной хроматографии со спектро-фотометрией. Эти приборы, напоминающие по размерам и форме небольшой шкаф, способны осуществить менее чем за 24 ч непрерывной работы полный качественный и количественный анализ сложной смеси аминокислот, получающейся при гидролизе белка. [c.17]

    Полноценный анализ неперегоняющихся или особо высококипящих компонентов нефти стал возможным благодаря комбинации масс-спектрометра с высокоэффективным жидкостным хроматографом, сочетанию в одном приборе двух методов, что дает больше информации о структуре нефтяных фракций нежели их раздельное применение [218]. [c.138]

    Теоретические методы физической х1- мии неразрывно связаны с использованием экспериментальных физических и химических методов. При исследовании строения вещества, структуры молекул, элементарных актов химического взаимодействия широко используются такие методы, как рентгенография, оптическая, радио- и масс-спектро-скопия, изотопные индикаторы, измерение дипольных моментов и т. д. Современные приборы и установки позволяют изучать вещество и его физико-химические превращения в условиях сверхвысоких и сверхнизких давлений и температур, в сильных электромагнитных и гравитационных полях и т. д. Обработка результатов опытов и решение ряда теоретических уравнений проводятся с широким привлечением электронных вычислительных машин. Тесное сочетание теории и экс- [c.6]


    Сочетание статистического метода с экспериментальным определением начальных фаз сильных отражении. Хотя приборов для непосредственной регистрации начальной фазы электромагнитной волны не существует, разработано несколько методов, позволяющих оценивать начальные фазы отдельных отражений путем изменения условий эксперимента. [c.147]

    Описать основные принципы и приборы для главных термоаналитических методов ТГ. ДТА, ДСК, АВГ, ТМА и некоторых их сочетаний. [c.467]

    Все сказанное относится и к прямому определению с помощью метода ЯМР. Для спектров ЯМР обычно характерно меньшее число сигналов, а природная концентрация ниже концентрации С. Никаких новых проблем здесь не возникает при условии наличия соответствующих приборов. В принципе тем же самым способом можно определять и Н в соответствующем диапазоне частот при условии селективного или шумового подавления спин-спинового взаимодействия ядер Н. Однако и и Н с большей чувствительностью и с большей информативностью определяются в сочетании с С. [c.477]

    Оптические методы. В связи с быстрым развитием ВЭТСХ, которая позволила стандартизировать многие стадии хроматографического процесса и привела к получению воспроизводимых результатов, стало возможным использовать точные количественные методы оценки разделенных веществ на тонкослойных хроматограммах. Этому также способствовали создание и выпуск рядом фирм специальных приборов для количественных определений в ТСХ. Оптические сканирующие методы основаны на измерении исходного излучения, прошедшего через слой сорбента (поглощение), отраженного от него (отражение), сочетании поглощения и отражения, флуоресценции, гашении флуоресценции. Возможно измерение пропускания света с длиной волны только больше 325 нм, так как стекло (подложка) и слой адсорбента поглощают УФ-излучение. Измерение по методу отражения можно проводить по всей области спектра от 196 до 2500 нм (ив области УФ-излучения). [c.370]

    Лабораторные Ж. а. отличаются от промышленных универсальностью, т. е. возможностью решения большого числа аналит. задач. В каждом конкретном случае определение состава жидкостей лаб. приборами осуществляется с использованием соответствующих методик анализа и индивидуальных градуировок. При нсследованни сложных смесей на основе комбинир. методов анализа часто используют сочетания разных приборов, различающихся принципом действия (напр., хромато-масс-спектрометры). Совр. Ж. а., как правило, автоматизированы, имеют микрокомпьютерные управление и обработку результатов измерений, снабжены разл. сервисными устройствами (напр., для предварит, подготовки пробы), расширяющими область применения и эксплуатац, возможности приборов. [c.150]

    Поэтому необходимо проведение подробного анализа продуктов с использованием одного или нескольких аналитических методов в качестве примера можно привести сочетание типовых приборов FTS 60 ( Fa, Bio Rad ) и TGA 1000 ( Fa. Polymer Laboratories ). В этом комплексном методе нет необходимости в приготовлении пробы образца во время нагревания образца через дериватограф проходит поток газа-носителя, уносящий продукты разложения полимера в камеру ИК-спектрометра. При анализе высвобождающихся при ТГА газообразных продуктов в ИК-спектрометре с Фурье-преобразованием можно сказать, какие вещества вьщеляются и при какой температуре. Поскольку газ-носитель и газообразные продукты разложения полимера имеют температуру порядка 200 С, конденсация паров затруднена. Наряду с кривой ТГА записывают [12] полный ИК-спектр всего выделившегося газа в области 4000-500 см и спектры функциональных [c.396]

    Интересными новыми методами исследования деструкции термостойких полимеров являются электротермический анализ (ЭТА) и масс-спектрометрический термический анализ (МТА) В первом случае изучают изменение электропроводности образца в условиях постоянного подъема температуры. Во втором — определяют скорость выделения продуктов распада, регистрируя общий ионный ток в масс-спектрометре как функцию времени и температуры при деструкции полимера. Для изучения механизма термораспада полимеров необходимо сочетание метода ТГА с ЭТА, а также МТА с дифференциальным термическим анализом и ТГА. Сравнительное изучение термостабильности различных полимеров возможно лишь при проведении опытов на одном приборе в одинаковых условиях. К сожалению, до настоящего времени этот вопрос остается открытым, так как методы исследования термостабильности не стандартизованы. [c.7]

    Существуют разные подходы при использовании газовой хроматографии для определения органических компонентов вод анализ непосредственно водного раствора или концентратов (всей суммы органических ингредиентов вод или отдельных аналитических групп) сочетание метода газовой хроматографии с предварительным специфическим концентрированием и фракционированием, позволяющим выделить отдельные классы органических соединений. Реализация того или иного направления определяется как возможностями метода газовой хроматографии, так и аналитическими задачами. Принципиальную основу решениш создает наличие в современных приборах универсальных и селективных детекторов, пригодных для анализа следовых количеств различных органических соединений. Особая роль в анализе водных растворов принадлежит высокочувствительному пламенно-ионизационному детектору универсального тина, позволяющему непосредственно анализировать водные растворы. [c.177]


    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Для снижения пределов обнаружения элементов применяют специальные добавки, приборы высокого разрешения, мелкозернистые и контрастные фотоэмульсии, в некоторых случаях предварительное концентрирование элементов или отделение матрицы с миоголинейчатым спектром. Весьма эффективно использование такого микрометода, как лазерный метод возбуждения с сочетанием вспомогательного искрового источника, позволяющего в 10- г вещества обнарул-сить 10 " г примеси. [c.99]

    От предшествующих стадий обогащения зависит и дисперсность утяжелителей, лежащая в пределах 200—0,05 мк. Для ее характеристики необходима дифференцированная классификация путем сочетания ситового и седиментационного анализов. Кумулятивные кривые распределения частиц но размерам имеют вогнутый характер, что свидетельствует о преобладании тонких фракций. И. Д. Фридман и Б. Д. Ш еткина предложили оценивать дисперсность по удельной поверхности. Величина ее, однако, условна и зависит от того, какую удельную поверхность рассматривать — кинетическую (внешнюю) или статическую (полную), в которую входит поверхность пор, в том числе тупиковых. Условность этого показателя усугубляет отсутствие для тонких порошков прямых измерений. Результаты измерений поэтому существенно зависят от выбранного метода. Удельная поверхность криворожского гематита, измеренная Е. Д. Ш,еткиной путем просасывания воздуха на приборе Т-3, применяемом в цементной промышленности, составляет 0,324, по адсорбции метиленовой сини — 1,4, по теплотам смачивания — 7,20 м г. Эти расхождения объясняются особенностями строения частиц, [c.49]

    Нам не нужно подробно рассматривать экспериментальные методы разделения сигналов поглощения и дисперсии, но полезно в общих чертах узиать об основах этого процесса. Как уже упоминалось несколько раз, при детектировании сигнала ЯМР из него вычитается некоторая опорная частота, в результате чего все сигналы попадают в звуковой диапазон и могут быть оцифрованы. Мы приравнивали эту частоту скорости вращеиия системы координат. Прибор, выполняющий это вьиитаине (обычно так называемый двойной балансный смеситель, но возможны и другие варианты), контролирует сочетание фаз сигнала и опорной частоты (это фазочувствительный детектор). Соответствую- [c.114]

    Обычно данные ДТА используют в сочетании с результатами термогравиметрич., масс-спектрометрич. и дилатометрич. исследований (см. Дериватография). Это позволяет, напр., делать выводы об обратимости фазовых превращений, изучать явления переохлаждения, образование метастабильных фаз (в т. ч. короткоживущих). Мат. соотношения между площадью пика на кривой ДТА и параметрами прибора и образца позволяют определять теплоту превращения, энергию активации фазового перехода, нек-рые кииетич. константы, проводить полуколичеств. анализ смесей (если известны ДЯ соответствующих р-ций). С помощью ДТА изучают разложение карбоксилатов металлов, разл. металлоорг. соединений, оксидных высокотемпературных сверхпроводников. Этим методом определили температурную область конверсии СО в Oj (при дожигании автомобильных выхлопных газов, выбросов нз труб ТЭЦ и т.д.). ДТА применяют для построения фазовых диаграмм состояния систем с разл. числом компонентов (физ.-хим. анализ), для качеств, оценки образцов, напр, при сравнении разных партий сырья. [c.533]

    Атомно-абсорбц Юнная спектрометрия (ААС) — один из ряда аналитических методов, характеристики которого могут быть улучшены, а в некоторых случаях улучшены значительно, прн сочетании с ПИА. Так, при использовании системы, состоящей лишь из соединительной линии между насосом/инжектором н пламенным прибором ААС (рнс. 7.4-6), можно достичь ряда преимуществ за счет повторимого и воспроизводимого ввода пробы. [c.451]

    Мы кратко рассмотрели важные характеристики различных типов спектрометров. В большинстве аналитических задач лучшим соотношением рабочие характеристики/цена характеризуются квадрупольные масс-спектрометры. Они являются наиболее распространенными анализаторами. Секторные приборы обладают рядом преимуществ, в частности, возможностью точного определения масс и лучшей селективностью, отчасти из-за лучшего разрешения. Времяпролетные анализаторы используют в сочетании с методами ионизации ПД и MALDI. Ионные ловушки сейчас выпускаются серийно для настольных ГХ- и ЖХ-масс-спектрометров. ИЦР-ФП-спектрометры (пока) не получили широкого распространения в аналитических лабораториях. [c.278]

    Хотя впервые сочетание газовой хроматографии с прямым элемент-специфич-ным детектированием с помощью оптической плазменной эмиссионной спектроскопии было осуществлено в середине 1960-х гг. Мак-Кормаком с сотр. [14.2-12] и Бахом и Диском [14.2-13], серийно вьшускаемый прибор, использующий этот гибридный метод, не был разработан до 1989 г. [14.2-14], после чего атомно-эмиссионный детектор (АЭД) стал самым современным дополнением к семейству спектроскопических газохроматографических детекторов. [c.614]

    Метод микропрепаративной газовой хроматографии в сочетании с УФ-спектроскоппей [15] позволил отнести большинство неидентифицированных углеводородов к тому или иному структурному типу и подтвердить данные хроматографии на капиллярной колонке. Микропрепаративпую хроматографию ароматических углеводородов проводили на приборе Цвет-4 . Использовали колонку длиной 2 м и диаметром 3 мм с 20% жидкой фазы SE-30 на хроматоне при линейном программировании температуры со скоростью 5° С/мип от 100 до 250° С. Раствор пробы в бензоле объемом 10 мкл вводили в испаритель, а элюируемые из колонки фракции углеводородов улавливали в металлических трубках диаметром 2,5 мм. Углеводороды затем вымывали изооктаном и исследовали па УФ-спектрофотометре. [c.161]

    В одном из известных методов определения молекулярного веса с помощью масс-спектрометра с одной фокусировкой магнитное поле прибора поддерживают постоянным, а соответствующие ионные пучки фокусируют, изменяя потенциал отталкивающей пластины. В идеальном случае масса иона, сфокусированного на коллекторе, обратно пропорциональна ускоряющему ионы потенциалу, т. е. Мп е) [а 1Уг , где Мп — масса иона единичного электронного заряда, аУп — ускоряющий ионы потенциал. В соответствии с этим = VЕсли величины ускоряющих" потенциалов 1 и Уг могут быть точно измерены, а величина М1 точно известна, то М2 удается определить с большой точностью. Однако на практике при использовании обычных масс-спектрометров с одной фокусировкой проблема, как правило, значительно усложняется, в основном вследствие существования других потенциалов в ионном источнике, необходимых для фокусирования ионного пучка и формирования ионов в трубку. В общем указанные потенциалы не претерпевают равномерных изменений при варьировании ионизационного потенциала, поэтому описанные выше простые измерения становятся недостаточно точными. Эту трудность удается преодолеть путем выведения всех небольших градиентов потенциала из ионного источника, как это делается при точных измерениях ионизационного потенциала [102]. Однако это сопряжено с понижением чувствительности прибора, так что исследуемый ионный пучок удается обнаружить лишь с трудом. Кроме того, для многих соединений высокого молекулярного веса напряжения, ускоряющие ионы, должны быть по возможности малыми. В некоторых случаях также понижается чувствительность секторных приборов при низких ускоряющих потенциалах, что в сочетании с указанным выше эффектом часто мешает использованию рассматриваемого метода. [c.12]

    В обзоре [46] произведена наукометрическая оценка доли использования различных методов при проведении анализов. В практике лабораторий отечественных предприятий преобладают хроматографические методы анализа. Это объясняется высокой избирательностью метода хроматографии, позволяющего определить большое количество компонентов в одной пробе, хорошей обеспеченностью лабораторий приборами и достаточно высокой экспрессностью анализа. Эти достоинства оправдывают применение сложных и дорогостоящих приборов, наборов адсорбентов и неподвижных фаз, организацию газового хозяйства. Из спектроскопических методов в наибольшей степени используются УФ -спектроскопия и фотоколориметрия, чаще всего в сочетании с химическим анализом или экстракцией. В значительно меньшей степени применяется ИК -спектроскопия. В отличие от других стран очень мало внимания уделяется люминесценции, а именно этот метод очень бурно развивается в последние годы. Практически отсутствует аналитическое применение спектров комбинаци- [c.27]

    Метод менее стандартизован и автоматизирован по сравнению с другими типами хроматографии, однако позволяет получать богатую, зачастую уникальную информацию. Первый полностью автоматизированный прибор для ТСХ был сконструирован и выпущен в продажу фирмой Вакег в 1972 году, однако до сих пор используется ручной вариант ТСХ. Тем не менее современные методы ТСХ включают автоматизированное многократное проявление, проявление с ускорением потока подвижной фазы, сочетания с ВЭЖХ, электронной и инфракрасной спектроскопией, спектрометрией комбинационного рассеяния. Разработаны [53] программы библиотечного поиска по величинам /2/и ультрафиолетовым спектрам. [c.106]

    В последние годы особое развитие получил метод, который называют масс-спектроскопией напряженных полимерных образцов (МСППО) в сочетании с ИК- и ЭПР -анализом он позволяет получить информацию о кинетике и механизме химических процессов, протекающих в полимерах под действием механических напряжений. В этом случае применяют быстродействующие приборы - масс-анали-заторы динамического типа. Образцы полимера с помощью подвешенного груза подвергают действию постоянного, ступенчатого щш постоянно возрастающего механического напряжения и масс-спектрометрически определяют локализацию накопления микроповреждений и кинетические параметры процессов. Применение масс- [c.145]

    Излучение источника фокусируется зеркалами на диспергирующее устройство (призма из высококачественного кварцй фракционная решетка). Там пучок разлагается в спектр, изображение которого тем же зеркалом фокусируется на выходной щели монохроматора. Выходная щель из полученного спектра вырезает узкую полосу спектра чем уже щель, тем более монохроматична выходящая полоса. С помощью зеркала монохроматизированный пучок разделяется на два одинаковых по интенсивности луча один проходит через кювету сравнения, а другой - через кювету с образцом. Вращающейся диафрагмой перекрывают попеременно то луч сравнения, то луч образца, разделяя эти лучи во времени. После прохождения кювет световой поток зеркалами направляется на детектор, которым обычно служит фотоэлемент или фотоумножитель. После детектора сигнал усиливается и поступает на специальное электронное устройство -разделитель сигналов, где он раздваивается на два канала сигнал образца и сигнал сравнения. В обоих каналах сигналы усиливаются и подаются на самописец, который регистрирует отношение степени пропускания световых лучей через кювету образца к пропусканию светового потока через кювету сравнения. Логарифм данного отношения равен разности оптических плотностей образца и эталона эту величину можно записать, если перед самописцем установлено логарифмирующее устройство. В этом случае спектр будет представлять зависимость оптической плотности от длины волны или волнового числа и зависит от концентрации измеряемого образца. Для получения спектра, не зависящего от концентрации раствора, экспериментально полученный спектр перерисовывают по точкам, пользуясь законом Бугера-Ламберта-Беера, в спектр в координатах lg (или )- X (или V), Нерегистрирующие спектрофотометры - однолучевые приборы, измеряющие по отдельным точкам (спектрометрический метод). В сочетании с измерительной системой по схеме уравновешенного моста это наилучшие приборы для точных количественных измерений, которые осуществляются путем сравнения сигналов при попеременной установке в световой пучок образца и эталона. Основной их недостаток состоит в большой затрате времени для записи спектра, а не полосы поглощения при единственном значении длины волны. [c.185]

    В других методах разделения (анализа) ионов масс-спект-рометрия чаще всего используется в сочетании с газо-жидко-стной хроматографией. В масс-спектрометрах с квадруполь-ным анализатором разделение ионов осуществляется с помощью электронного фильтра (квадрупольного масс -анали затора), который представляет собой четыре стержнеобразных электрода. Проходящие через такой анализатор ионы одновременно подвергаются возд ствию радиочастотного поля, которое при заданной частоте пропускает через анализатор только ионы с определенным т/г. Изменяя частоту радиочастотного поля, можта чрезвычайно быстро сканировать весь спектр высокая скорость сканирования является основным преимуществом таких анализаторов. Кроме того, масс-спектрометры с квадрупольным масс-анализатором сравнительно компактны, просты, надежны и дешевы их недостатком является невысокая (по сравнению с приборами с магнитным сектором) разрешающая способность. В масс-спектрометрах с масс-селек-тивной ионной ловушкой ионы удерживаются в ловушке в течение нескольких микросекунд, накапливаются в ней и затем последовательно выталкиваются из ловушки этим достигается высокая чувствительность, что особенно важно в сочетании с газо-жидкостным хроматографом. [c.179]

    Для определения хрома масс-спектральным методом используют главным образом приборы, в которых ионы получаются путем электронного удара и искрового разряда. Первые обычно используют в сочетании с предварительным концентрированием хрома в виде летучих соединений. Так, при анализе нержавеющей стали с использованием прибора с двойной фокусировкой типа МС-9 из анализируемой пробы выделяют хром в виде гексафторацетила-цетоната хрома(1П) [629]. Предел обнаружения 0,05 нг Сг. 8-Окси-хинолинат хрома(П1) применяют для определения нанограммовых количеств хрома [923] качественно этим методом можно определить 5-10" 3 хрома. Метод определения хрома в лунных образцах и геологических материалах включает процесс превращения. Сг (III) в летучий хелат по реакции с 1,1,1-трифторпентандио-ном-2,4 в запаянной трубке, экстракцию его гексаном и последующий анализ паров экстракта методом изотопного разбавления на масс-спектрометре [736]. Погрешность метода — 1 отн.%. [c.98]

    Энергия гидратации. Энергию, выделяющуюся при взаимодействии отдельного иона с молекулами воды, определяют путем измерения при различных температурах и давлениях распределения молекулярных масс гидратированных ионов, образующихся в газовой фазе при взаимодействии иона с парами воды. Соответствующий прибор в сочетании с масс-спектрометром после преодоления ряда технических трудкостей был разработан Кебарле с сотрудниками. Однако число ионов, для которых можно использовать этот метод, ограничено. Экспериментальные данные приведены на рис. 4.8. Для ионов щелочных металлов, ионов галогенидов и других абсолютное значение АНщп) непрерывно уменьшается с ростом п, и нет никаких расхождений с числами гидратации, определенными рентгенографически и методом ЯМР. Очевидно, что у этих ионов первая и вторая гидратационные сферы энергетически не отличаются. [c.213]

    В зависимости от решаемой аналитической задачи (отнесение к индивидуальным химическим соединениям пиков на хроматограмме смеси, состав которой ориентировочно известен групповой анализ полная идентификация компонентов) с целью качественного анализа могут использоваться как чисто хроматографические приемы (сравнение параметров удерживания, получение для групп веществ коррелящ)онных зависимостей типа параметр удерживания — физико-химические характеристики, использование селективных детекторов, реакционная хроматография, пиролитическая хроматография), так и варианты, сочетающие газовую хроматографию с другими физико-химическими методами анализа (препаративный сбор фракций с их последующим исследованием, хромато-масс-спектрометрия, сочетание хроматографа с ИК-спектрометром и др.). На современном уровне развития методологии аналитической химии, аналитического приборостроения, вычислительной техники наибольшую достоверность идентификации обеспечивают комбинированные методы. Однако их аппаратурное оформление достаточно сложно, приборы имеют высокую стоимость и реально эксплуатируются только в крупных аналитических центрах либо при решении неординарных задач. Поэтому рассматриваемые ниже чисто хроматографические приемы качественного анализа и в настоящее время широко применяют в аналитической практике. [c.214]

    Изучение природы дефектности и разработка на базе существующей методики получения пьезокварца синтетического материала высокой чистоты обусловили создание методов получения специальных сортов синтетического кварца. Использование без-дислокационных затравок и шихтового материала повышенной чистоты в сочетании с подбором оптимальных параметров процесса и применение специальных кристаллодержателей позволили разработать и внедрить в промышленное производство процессы выращивания оптического монокристального кварца, а также уникальных по размерам и ориентации монопирамидальных кварцев для акустоэлектронных приборов, [c.13]


Смотреть страницы где упоминается термин Сочетания метод прибор: [c.32]    [c.311]    [c.203]    [c.29]    [c.195]    [c.62]    [c.220]    [c.423]    [c.564]    [c.120]    [c.462]    [c.354]    [c.708]    [c.467]    [c.598]    [c.127]   
Технический анализ в производстве промежуточных продуктов и красителей Издание 2 (1949) -- [ c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте