Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты, активный центр групп активного центра

    Поскольку индольная флуоресценция триптофана наиболее интенсивна среди природных аминокислот, она в основном ответственна за флуоресценцию большинства белков и находит различные применения в биологии и медицине, например в качестве пробы для выяснения структурных и конформационных изменений в белках, оценки совместимости антител в иммунологии и выяснения механизма действия ферментов [136, в, 15]. Примером, в частности, может служить гидролаза — лизоцим, содержащий шесть остатков триптофана, в том числе три, по-видимому, ассоциированы с активным участком. Присоединение субстрата приводит к голубому смещению в эмиссионном спектре на 10 нм, от 335 к 325 нм, сопровождающемуся повышением квантового выхода. Такое поведение интерпретируется как указание на взаимодействие между карбоксильными и индольными группами активного центра, которое исчезает при присоединении к субстрату [16]. [c.494]


    Следует напомнить об известных трудностях идентификации функциональных групп активных центров ферментов по величинам рК, полученным из изучения зависимости скорости реакции от pH. Во-первых, одна и та же группировка в белках разного строения может иметь неодинаковое значение рК из-за влияния соседних групп. Некоторую помощь в этом случае может оказать измерение теплоты диссоциации ионогенных групп, рассчитываемой по измерениям температурной зависимости рК. К сожалению, для холинэстераз эти термодинамические константы достаточно надежно не измерены. Согласно данным Шукудза и Шинода [122], теплоты диссоциации основной группировки ацетилхолинэстеразы эритроцитов и холинэстеразы сыворотки крови человека составляют соответственно 8,5 и 6,5 ккал1моль. Эти величины выше или ниже найденной для диссоциации имидазольной группы гистидина в других белках (6,9—7,5 ккал моль [123]). Если признать, что в обеих холинэсте-разах в качестве основной группировки активного центра выступает имидазол гистидина, то трудно понять столь существенное различие в величинах теплот диссоциации. Во-вторых, даже если измерение активности фермента при разных pH рассматривать в качестве своеобразного титрования функциональных групп активного центра, то полученные результаты нельзя безапелляционно считать отражением прямого участия этих групп в каталитическом акте. Можно представить, что ионы Н и ОН -среды выполняют свою функцию, вызывая не только протонизацию или депротонизацию функциональных групп активного центра, но также и более общую функцию создания и поддержания специфической для каждого фермента третичной структуры. Можно думать, что в создании третичной структуры фермента большую роль играют ионные связи между такими группировками, которые расположены вне активного центра и непосредственно не участвуют в реакции с субстратом. Такие ионогенные группировки при взаимодействии могут сближать друг с другом (или наоборот удалять друг от друга) определенные функциональные группы белка, которые непосредственно участвуют в каталитическом акте. Внешне эта непрямая роль кислотно-основных группировок фермента будет отражаться в форме обычной зависимости кинетических констант (и, V, Кт) от pH, но по существу такая зависимость не дает оснований для решения вопроса, является ли она следствием влияния pH на конформацию белка в районе активного центра или диссоциацию группировки, прямо участвующей в реакции с субстратами. [c.184]


    При воздействии кавитационного ультразвука происходит необратимая инактивация лизоцима [64], вызванная, видимо, разрушением какой-либо важной для каталитической активности функциональной группы активного центра фермента. В роли такой лабильной группы могут выступать, например, остатки триптофана 62, 63 или 108 активного центра лизоцима, модификация которых приводит к потере ферментативной активности [66—69]. Умень-ше(гие ферментативной активности лизоцима ирй озвучивании раствора фермента следует кинетике первого порядка [64]. [c.160]

    Ион цинка гораздо прочнее связывается с большинством органических лигандов, чем ион Mg + (табл. 4-2). Он имеет заполненную Зс -орбиту и стремится образовать четыре ковалентные связи тетраэдрической симметрии, часто с азот- или серусодержащими лигандами. В отличие от Mg +, который быстро и обратимо взаимодействует с ферментами, Zn + обнаруживает тенденцию к образованию прочных связей внутри металлоферментов. В настоящее время известна трехмерная структура некоторых металлоферментов. Во всех этих ферментах ион Zn + в активном центре окружен тремя имидазольными группами, а четвертая координационная связь остается свободной для взаимодействия с субстратом. Значительный интерес представляет также и тот факт, что второй атом азота имидазольной группы во многих случаях образует водородную связь с карбонильной группой в основной цепи пептида . Такое же свойство обнаружено и для атомов железа гемсодержащих белков (рис. 10-1). [c.142]

    Теория индуцированного соответствия [108—ПО] предполагает, что подобные конформационные изменения, происходящие при связывании субстрата ферментом, могут играть важную роль в катализе. Последнее может иметь место, если конформационные изменения, индуцированные связыванием субстрата, влияют на относительную геометрию каталитических групп активного центра, подобно описанному выще случаю с карбоксипептидазой. Поскольку ясно, что каталитические группы в реагирующем фер-мент-субстратном комплексе должны находиться в оптимальных положениях, то в указанных выше случаях в нативных ферментах эти положения не оптимальны. Те же рассуждения приЛо-жимы и к геометрии связывающего центра, который в процессе связывания также должен подстраиваться для наилучшего соответствия субстрату. [c.516]

    Ранее упоминалось, что высокая эффективная концентрация внутримолекулярных групп — одна из основных причин эффективности ферментативного катализа. Таким образом, функция фермента прежде всего заключается в сближении субстрата с функциональными группами фермента путем связывания с активным центром. При этом происходит изменение энтропии системы. Отсюда следует, что различие при катализе внутримолекулярной реакции и межмолекулярной определяется энтропийным эффектом. При межмолекулярной реакции происходит соединение двух или большего числа молекул в одну, что вызывает увеличение упорядоченности и, следовательно, уменьшение энтропии. [c.210]

    Символы Е, ЕН, ЕНг и т. д. описывают состояния ионизации групп фермента, которые участвуют в ферментативной реакции. Ионизация остальных групп белковой глобулы здесь вообще не рассматривается. Будем полагать, что константы диссоциации ионогенных групп в свободном ферменте (/Са, /Св) и в фермент-субстратном комплексе (/ a. К ъ) различны [в принципе схема (6.177) может описывать и реакцию фермента, активный центр которого содержит четыре ионогенные группы, две из которых функционируют в свободной форме фермента, и две — в фермент-субстратном комплексе]. [c.259]

    Подобным образом можно анализировать температурные зависимости констант ингибирования или констант диссоциации ионогенных групп активного центра фермента. Однако при анализе зависимостей констант равновесия ферментативной реакции от температуры следует принимать во внимание, что они могут быть эффективными величинами. Так, например, константы Михаэлиса в обш,ем случае не являются истинными константами равновесия даже при наличии двухстадийного механизма ферментативной реакции [см. уравнение (6.7)]. Более того, даже если изучаемый процесс равновесный, его константа равновесия может оказаться эффективной величиной, зависящ,ей, например от pH среды [см. уравнение (6.182)]. В этом случае при корректном анализе температурной зависимости реакции необходимо учитывать теплоты ионизации ионогенных групп субстрата или активного центра фермента. [c.264]

    Если субстрат, связываясь с ферментом, не изменяет значений констант диссоциации ионогенных групп активного центра Ка= = К а. Кь=К ь на схеме 10.1), то в этом случае константа Михаэлиса ферментативной реакции не зависит от pH [c.220]

    Зависимость скорости ферментативной реакции от pH типа (10.8) может соответствовать случаю, когда ионогенные группы активного центра входят в состав сорбционного участка фермента, и не принимают участие в последующей каталитической стадии. [c.221]


    Вычислить значения рК групп активного центра свободного фермента, контролирующих скорость реакции. [c.232]

Рис. 106. Определение значения рКа ионогенной группы активного центра фермента из кривой рН-зависимости деацилирования транс-циннамоил-химотрипсина Рис. 106. <a href="/info/24269">Определение значения</a> рКа ионогенной <a href="/info/1301407">группы активного центра фермента</a> из кривой рН-зависимости деацилирования транс-циннамоил-химотрипсина
    Благодаря наличию специальных связывающих контактных функциональных групп и гидрофобных участков фермент резко увеличивает концентрацию субстрата вблизи каталитических групп и осуществляет его прецизионную ориентацию относительно реакционных групп активного центра, что обеспечивает ускорение процесса в 10 —10 раз. [c.188]

    Следует тем не менее подчеркнуть, что структура кристаллической решетки играет определенную роль, нанример, в эффекте связывания лизоцимом ионов металлов. Так, после вымачивания тетрагонального лизоцима в растворе Gd (III) в течение 20 часов степень заполнения активного центра ионами металлов составляла 24—38%, а в случае триклинного лизоцима эта величина составила 1,6—3,6% после вымачивания в течение 4 недель [33]. Это говорит о различной межмолекулярной упаковке белков в двух данных полиморфных формах кристаллического лизоцима. Тем не менее результаты исследования методами ЯМР [46] и рентгеноструктурными методами [2] в целом показали, что кон- формация лизоцима и ориентация функциональных групп его активного центра весьма близки (если не идентичны) в растворе и кристалле [46]. В цитируемой работе [46], однако, ие обсуждается, что рентгеноструктурный анализ был выполнен при низких или комнатных температурах, а изучение ЯМР — ири 54° С [46]. Иначе говоря, эти исследования выполняли по разные стороны от температуры конформационного перехода фермента (25—30° С 47—54]) и, следовательно, с различными конформациями лизоцима, которые заметно различаются по эффективности связывания фрагментов субстрата и, возможно, по конформации активного центра. Вопрос этот остается пока открытым в литературе, но требует более критического анализа при сопоставлении экспериментальных данных, полученных при различных условиях (в особенности, данных по изучению структуры фермента в растворе и кристаллическом состоянии). [c.158]

    Механизмы метаболических процессов очень напоминают механизмы реакций, проводимых в лабораторных условиях, с тем отличием, что если в лаборатории часто работают прн повышенных температурах и давлении, с безводными (часто ядовитыми) растворителями, с сильными кислотами и основаниями и с нетипичными для природы реагентами, то метаболические процессы протекают при весьма умеренных условиях в разбавленных водных растворах в интервале температур от 20 до 40 °С при pH от 6 до 8 и с участием чрезвычайно эффективных катализаторов — ферментов. Можно сказать, что каждая ступень метаболического процесса катализируется специфическим ферментом. Ферменты представляют собой вещества белковой природы их каталитическое действие оказывает влияние не на положение равновесия реакции, а на ее скорость, которая очень сильно увеличивается — часто на несколько порядков по сравнению со скоростью реакции, проводимой в лабораторных условиях. В состав некоторых ферментов входят коферменты, имеющие небелковый характер. Подвергающийся превращению субстрат сначала связывается с активным центром фермента, поблизости от которого расположен кофер-мент. При этом реагирующая группа субстрата и кофермент так сориентированы в пространстве, что реакция между ними протекает практически мгновенно. Затем прореагировавший субстрат отделяется от активного центра фермента, а измененный кофермент регенерируется под действием другого субстрата. Если в ферменте нет кофермента, то два субстрата непосредственно взаимодействуют в активном центре. [c.180]

    Мы начали эту часть, решив попытаться выяснить механизм действия ферментов как проблему механизма любой другой органической реакции. Каталитические механизмы, используемые ферментами, можно, безусловно, рассматривать в терминах взаимодействия небольшого числа функциональных групп внутри фермент-субстратного комплекса. Однако немалую трудность представляет выяснение того, какие именно группы фермента участвуют в катализе. Белок содержит множество функциональных групп, избирательно реагирующих с большинством реагентов. Для того, чтобы специфически затронуть группы активного центра, можно полагаться только на реакции с субстратами. Поэтому первым важным шагом в изучении специфической ферментативной реакции является идентификация функциональных групп, вовлеченных в каталитический механизм. [c.477]

    Особенности ферментативного катализа с точки зрения общей теории каталитических процессов заключаются в следующем. Каталитический процесс протекает в ограниченной области, называемой активным каталитическим центром фермента. Активный центр фермента содержит активные группы — доноры или акцепторы электронов (группы, содержащие пиридиновое кольцо или имидазольные кольца, хиноидные группы, комплексированные ионы металлов и др.). Необходимым условием каталитического действия ферментов является структурное соответствие активного центра и субстрата. [c.633]

    Согласно представлениям, которые сложились в гомогенном катализе, к каталитически активным радикалам бёлка относятся нуклеофильные группы (такие как имидазол гистидина, оксигруппы серина или тирозина, тиоловые группы цистеина, е-аминогруппы лизина, ионизованные карбоксилы аспарагиновой и глутаминовой кислот и др.) и электрофилы (ион имидазолия, неионизованные карбоксильные группы, ионы металлов и т. п.). В первичной структуре молекулы фермента группы активного центра обычно удалены друг от друга (см. рис. 1). Однако в третичной структуре аминокислотные остатки, принимающие участие в катализе, некоторым образом фиксированы [c.17]

    Можно лишь указать, что в ряде случаев ионизирующиеся группы активного центра, которые при действии фермента несут функциональную нагрузку, действительно имеют необычную величину рКц (табл. 12). Безусловно, большую роль здесь играют эффекты микросреды. [c.67]

    Зависимость скорости двухстадийной ферментативной реакции от pH. Рассмотрим реакцию фермента, активный центр которого содержит две ионогенные группы  [c.259]

    Из уравнения (10.13) видно, что рН-зависимость скорости ферментативной реакции, протекающей по трехстадийной схеме, в общем случае будет различной в зависимости от соотношения констант скоростей стадий ацилирования и деацилирования (йа/ з). С другой стороны, рН-зависимость константы скорости второго порядка кат/-/(т(каж), кнк И ДЛЯ двухстадийной схемы (10.1), определяется только константами диссоциации ионогенных групп активного центра свободного фермента Ка и Кь), контролирующих дальнейшее превращение фермент-субстратного комплекса. [c.223]

    В таблице 3 приведена рН-зависимость кинетических параметров гидролиза л-нитрофенилацетата, катализируемого бактериальной протеазой ЕзоШ [3]. Определить значение рК ионогенной группы активного центра свободной формы фермента. [c.227]

    В таблице 17 приведена рН-зависимость гидролиза амида К-ацетил-Ь-фенилаланил-1-тирозина, катализируемого пепсином [12]. Определить значения рК групп активного центра свободной формы фермента, принимающих участие в реакции. [c.234]

    Профиль рН-зависимости кинетических параметров гидролиза М-ацетил-Ь-фенилаланил-Ь-триптофана, катализируемого пепсином, имеет колоколообразную форму, причем левая ветвь рН-зависимости обусловлена протонированием карбоксильной группы активного центра фермента, а правая —депротонированием карбоксильной группы субстрата [12]. На основании данных табл. 21 [c.236]

    Реакция гидролиза К-трифторацетил-Ь-фенилаланина, катализируемая пепсином, происходит только в том случае, если карбоксильная группа активного центра фермента является протонированной, а карбоксильная группа субстрата — депротонирован-ной [14]. Исходя из данных рН-зависимости ферментативной реакции (табл. 22), вычислить значения рК ионогенных групп субстрата и фермента, принимающих участие в реакции. [c.237]

    При изучении влияния pH и температуры на максимальную скорость превращения 0-глюкоэо-6-фосфата в 0-фруктозо-6-фосфат под действием глюкозофосфатизомеразы [2] были найдены значения рК ионогенной группы активного центра фермента, равные 9,35+0,06 и 8,71+0,11 при температурах 30 и 40° С соответственно. Оценить значение теплоты ионизации найденной ионогенной группы и вычислить ошибку экспериментально определенной величины АЯион- [c.252]

    Рентгеноструктурный анализ низкого разрешения (6 А) показал, что трехвалентный гадолиний связывается в активном центре лизоцима между участками D и Е и блокирует обе каталитические группы фермента — карбоксильные группы остатков Asp 52 и Glu 35 [2]. Улучшение разрешения (до 2,5 А) показало, что в активном центре лизоцима имеются два участка связывания Gd (П1), которые отстоят друг от друга на 3,6 А [33] и находятся в непосредственной близости от каждой из указанных карбоксильных групп, причем с одной молекулой фермента связывается только один катион металла (связанный с одной из двух карбоксильных гру[ш или быстро обменивающийся между ними) [33]. Это согласуется с данными по лизоциму в растворе, где стехиометрия связывания фермента с Gd (П1) равна 1 1 [33, 46]. Тот факт, что Gd (HI) ингибирует активность лизоцима в растворе, также согласуется с данными рентгеноструктурного анализа [33]. Наконец, то, что локализация Gd (III), связанного в активном центре лизоцима, почти одинакова для тетрагонального и три-клиниого фермента [33], свидетельствует о сходстве третичной структуры белков в этих двух полиморфных состояниях, несмот- [c.157]

    Изучение рН-зависимости кинетических параметров гидролиза бактериальных клеток под действием лизоцима проведено в работе [64], и осрювные результаты показаны в табл. 40 и ма рис. 21. Влияние pH на кинетику бактериолитического действия лизоцима описывается схемой, где константы диссоциации двух иоиогениых групп активного центра фермента определяются значениями рКа = о,0-, рКь = 9,2. [c.198]

    У простых ферментов активные центры образуются за счет своеобразного расположения аминокислотных остатков в структуре белковой молекулы. К таким аминокислотным остаткам следует отнести 5Н-группы цистеина ОН-группы серина — МН-группы кольца имидазола в гистидине, а также некоторое значение придается карбоксильным группам аспарагиновой и глутаминовой аминокислот, индольной группе триптофана и др. Хотя вопрос о природе и механизме действия активных центров представляет большой интерес, но, к сожалению, наши сведения об этом являются пока ограниченными. Выяснено, что количество активных центров в ферментах, как правило, очень ограничено так, например, большинство ферментов имеют от 1 (трипсин, химотрипсин, карбокси-полипептидаза и др.) до 3—4 (уреаза) активных центров, и только отдельные ферменты содержат их в больших количествах (от 20 до 100 содержится в холинэстеразе и др.). [c.106]

    ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ, обусловлен действием ферментов. Играет исключительно важную роль в обмене в-в в живых организмах. Характеризуется чрезвычайно высокой активностью и специфичностью (селективностью), гл. причины к-рых 1) сорбция субстрата на ферменте и образование активного комплекса (комплекса Михаэлиса) в результате гидрофобных, полярных и ионных взаимодействий. В этом комплексе происходит сближение и ориентация реагирующих групп фермента и субстрата. В результате р-ция м. б. ускорена в 10 и более раз 2) полифункцион. характер хим. взаимод. между ферментом и сорбиров. субстратом, при к-ром молекула субстрата подвергается атаке сразу неск. каталитич. группами активного центра фермента. Полифункцион. катализ может привести к ускорению р-ции в 10 и более раз 3) отличие характеристик среды [c.617]

    В отличие от классической органической химии, где фигурирует понятие реакционного центра (или активного центра) молекулы, в химии природных соединений по отношению к реакциям, управляемым энзимами, а ш vivo таковыми являются практически все, бопее подходящим является термин активный сайт , так как всегда несколько атомов и функциональных групп формируют ту область ( сайт ) фермента, где происходит реакция. По этой же причине, здесь более употребительным будет и термин сайт переходного состояния реакции вместо классического переходное состояние" реакции. [c.355]

    Различают две группы К. Относящиеся к первой группе К. -частвуют в р-циях, в к-рых превращ. субстрата катализируется одним ферментом. При этом К. может регенерироваться после каждого каталитич. акта в составе фермента, катализирующего превращ. субстрата, или как косубстрат. В последнем случае регенерация К. осуществляется др. ферментом в сопряженной р-ции (в таких р-циях противопоставление К. и субстрата носит условный характер). К. второй гр ппы участвуют в активации и переносе молекул субстрата (или их частей) от одного фермента к другому. В этом случае первоначально субстрат реагирует с К. в активном центре фер.мента с образованием достаточно устойчивого соед., к-рое может в неизменном виде переноситься в клетке к др. ферменту, в активном центре к-рого осуществляются каталитич. превращ. субстрата и одноврем. регенерация К. [c.488]

    Методы белкового синтеза развиты в настоящее время в такой степени, что ферменты, молекулы которых имеют небольшие размеры, могут быть синтезированы в лабораторных условиях. Это дает возможность создавать новые модифицированные ферменты и критически анализировать роль различных групп активного центра. Так, например, установлено, что построенный из 70 аминокислотных остатков синтетический пептид, аналогичный рибонуклеазе 5, но несущий ряд делеций и, совершенно не содержащий дисульфидных связей, все же сохраняет заметную каталитинескую активность [61]. [c.121]

    Механизм по схеме (22) расширен на схеме (23) [45]. Известно, что основание Шиффа (22) легко восстанавливается гид-ридными донорами. Подходящим агентом, который можно использовать в водном растворе, является борогидрид натрия. Поэтому можно было надеяться зафиксировать интермедиат (22), восстанавливая его в стабильный вторичный амин при проведении реакции в присутствии NaBH4. Эксперимент проводили с использованием С-меченного ацетоацетата, и фермент инактивировался, как и предполагалось для случая, если ЫНг-группа активного центра превращается во вторичный амин (ЫаВН4 не инактивирует фермент в отсутствие субстрата). Неактивный белок, выделенный из реакционной смеси, содержит, как и предполагалось, один эквивалент С на молекулу. Затем белок был подвергнут деградации обычными методами и изучен его аминокислотный состав (эти методы обсуждаются в части 23). Аминокислотный анализ показал в сравнении с нативным ферментом исчезновение одного остатка лизина и появление новой аминокислоты. Последняя была иден- [c.480]

    Этот фермент [46] катализирует гидролиз пептидных амидных связей, особенно включающих такие аминокислотные остатки, как фенилаланин и триптофан, т. е. содержащих ароматические боковые группировки. Эта особенность химотрипсина связана с тем, что он содержит центр связывания, специфичный к таким группировкам (см. разд. 24.1.3.3). Фермент обладает довольно широкой специфичностью и может также катализировать гидролиз амидных и сложноэфирных связей многих более простых соединений, включая производные /У-толуол-и-сульфонилфенилаланина (Л -тозилфе-нилаланина). Реакция схематично представлена структурой (26) ароматический остаток связывается таким образом, что карбонильная группа амида располагается вблизи каталитической группы (или групп) активного центра. [c.482]

    Объяснение начального всплеска состоит в том, что реакция включает ацилирование фермента схема 26 . Ацилирование блокирует нуклеофильную группу активного центра, поэтому фермент остается неактивным, пока образовавшийся ацилфермент (30) не гидролизуется. Если вторая стадия реакции является скоростьолре-деляющей, первоначальная атака сложного эфира свободным ферментом может привести к быстрому замещению АгО , но последующая стадия протекает с меньшей скоростью. Этот механизм постулирует, что концентрация м-ни.трофеноксида, образовавшегося в начальном всплеске реакции, будет равна концентрации [c.483]


Смотреть страницы где упоминается термин Ферменты, активный центр групп активного центра: [c.32]    [c.32]    [c.120]    [c.109]    [c.227]    [c.232]    [c.236]    [c.200]    [c.202]    [c.713]    [c.188]    [c.502]   
Биохимия растений (1968) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активность фермента

Активные ферментов

Активные центры ферменто

Активный центр



© 2025 chem21.info Реклама на сайте