Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень при ферментативном расщеплении

    Значительно сложнее картина ферментативного расщепления гликогена и крахмала под действием а-амилазы — фермента, имеющего универсальное распространение. Этот фер.мент расщепляет только 1,4-связи однако, благодаря эндо-действию, он способен обходить места разветвлений и в отличие от фосфорилазы и (i-амилазы полностью расщеплять гликоген и крахмал до низкомолекулярных соединений. Основные продукты реакции — мальтоза, мальтотриоза, глюкоза и низкомолекулярные предельные а-декстрины , образующиеся из участков молекулы исходного полисахарида, содержащих связи между цепями. При действии а-амилазы на разветвленный полисахарид четко наблюдаются две стадии ферментативной реакции. Сначала происходят быстрые разрывы гликозидных связей внутри цепей полисахарида, что приводит к быстрому уменьшению степени разветвления и накоплению высокомолекулярных линейных декстринов. Затем значительно медленнее происходит гидролиз линейных декстринов, причем скорость гидролиза замедляется по мере уменьшения молекулярного веса декстрина гидролиз мальтотриозы до мальтозы и глюкозы протекает чрезвычайно медленно. [c.618]


Рис. 58. Ферментативное расщепление целлюлозы разной степени полимеризации. Рис. 58. <a href="/info/200720">Ферментативное расщепление целлюлозы</a> <a href="/info/1554332">разной степени</a> полимеризации.
    Годовое производство лигноцеллюлозы огромно, поэтому ведется непрерывный поиск более эффективных способов ферментативного расщепления целлюлозы (и, в меньщей степени, гемицеллюлозы). Кроме того, разрабатываются [c.296]

    В ряде случаен уравнение (88) значительно упрощается и становится более удобным для анализа экспериментальных данных. Так, если ферментативному расщеплению подвергается полимер с определенной степенью полимеризации ОРи, то начальная скорость будет равна [c.113]

    Наиболее распространенными химич. методами И. степени блочности сополимера являются селективное окисление нек-рых связей соиолимера (озоном, к-тами) и последующее изучение продуктов окисления ферментативное расщепление селективный гидролиз и термич. расщепление (см. Аналитическая химия). Главные трудности на этом пути — выбор таких условий процесса, при к-рых побочные реакции сводятся к минимуму, а также И. продуктов реакций. Большие успехи достигнуты здесь при использовании метода пиролитич. газовой хроматографии. [c.402]

    Более рыхлое строение цепеобразной молекулы крахмала в большой степени повышает его химическую реакционную способность по сравнению с клетчаткой. Так, крахмал усваивается организмом человека сравнительно легко, клетчатка же почти не усваивается. Крахмал легко поддается ферментативному расщеплению (деструкции) вплоть до глюкозы. Далее путем простой механической обработки можно получить модификации крахмала, растворимые даже в холодной воде. Эти свойства практически отсутствуют у клетчатки. [c.298]

    Сефадексы широко применяются в химии полисахаридов не только для быстрой очистки от низкомолекулярных примесей, но и для фракционирования полисахаридов и продуктов их ферментативного расщепления по их массе. Особенно большую ценность во многих случаях имеют ДЭАЭ-сефадексы, соединяющие свойства молекулярных сит (разделяющих по массе) и анионитов (разделяющих по степени кислотности). [c.56]

    В предыдущей главе были рассмотрены химические реакции, приводящие к наращиванию, удлинению углеродной цепи углеводов. Естественно вслед за этим перейти к таким превращениям сахаров, которые связаны с укорочение.м, расщеплением углеродной цепи молекулы. Необходимо сразу же отметить, что молекулы сахаров могут разрушаться под влиянием самых разнообразных факторов (кислоты, щелочи, температура, радиация, окислители, ферменты и т. д.). При этом возникают смеси всевозможных веществ (углекислота, органические кислоты, оксикислоты, оксосоединения, редуктоны, спирты и т. п,), В настоящей главе мы рассмотрим такие процессы, которые позволяют постепенно, контролируемым образом переходить от высших моноз к низшим, и лишь в меньшей степени будем касаться более глубоких деструкций, а также ферментативных процессов, описанных в обширной биохимической литературе (см., например, [1, 2]). [c.27]


Рис. 57. Ферментативное расщепление цел> люлозы разной степени размола Рис. 57. <a href="/info/38752">Ферментативное расщепление</a> цел> люлозы <a href="/info/1554332">разной степени</a> размола
    Такое резкое различие в свойствах продуктов одинаковой средней степени замещения может объясняться как различным распределением метоксильных групп в макромолекулах этих препаратов, так и преимущественным расположением этих групп в препарате метилцеллюлозы, полученном метилированием диазометаном, в наиболее доступных областях структуры, вследствие чего резко замедляется начальная стадия ферментативного расщепления и диффузия влаги в целлюлозное волокно. [c.381]

    Степень полимеризации, определенная для амилопектина, составляет около 1000, однако истинная ее величина, по-видимому, выше. Наиболее вероятное расположение боковых цепей — у шестого атома углерода элементарного звена, т. е. у первичной гидроксильной группы, поэтому верхняя ветвь молекулярной цепи в формуле (48)— чисто гипотетическая. В этом можно убедиться на основании опытов по ферментативному расщеплению полисахаридов, о чем будет изложено при рассмотрении строения и свойств гликогена. [c.92]

    Не менее существенны свободные функциональные группы в биологических и биохимических процессах. Способность некоторых белков проявлять ферментативные свойства и способность всех белков подвергаться ферментативному расщеплению зависит в значительной степени от функциональных групп. Но эта специфическая особенность изучена еще сравнительно мало и почти совершенно не изучена по отношению к гидроксильным группам. Инертность гидроксила затрудняет его определение. В связи с этим до последнего времени многие исследователи ограничивались определением значения гидроксила только как одной из полярных групп в общем контексте сопоставления реакций белка. [c.326]

    Иначе говоря, величины кажущихся свободных энергий взаимодействия сайтов, которые могут быть определены с помощью измерения относительных частот расщепления связей, включают инкремент, связанный со специфичностью ферментативного катализа, а именно с влиянием степени полимеризации субстрата на скорость ферментативного гидролиза. [c.69]

    Таким образом, при изучении множественной атаки возможность повторной ферментативной деструкции субстрата тривиальным способом (в результате диссоциации комплекса фермента с образующимся продуктом и повторная ассоциация с последующей атакой) должна быть полностью исключена. Подобное проведение столь чистого эксперимента было бы возможным лишь при очень сильной зависимости скорости ферментативного гидролиза от степени полимеризации субстрата в широком диапазоне последней. Тогда после первого же расщепления олигомерного субстрата скорость гидролиза должна настолько замедлиться, что реакция фактически остановится. Не исключено, правда, что она остановится и для процесса множественной атаки. [c.79]

    Однако наибольшую информацию о построении молекулы амилопектина дают ферментативные методы исследования . Как упоминалось выше, точки разветвления являются препятствием для действия Р-амила-зы. Поэтому степень расщепления амилопектина -амилазой свидетель- ствует о размере внешних цепей . Остающийся нерасщепленным высокомолекулярный фрагмент, так называемый предельный -декстрин, может быть далее подвергнут действию фермента, гидролизующего а-1- -6-связи (R-фермент), в результате чего сохранившиеся Л-цепи превращаются в высшие олигосахариды, а остатки >1-цепей— в мальтозу и мальтотриозу, что позволяет определить относительное число Л-цепей . Наконец, значения степени разветвления, т. е. общей средней длины цепи, и длины внешней цепи позволяют вычислить средний размер внутренней цепи полисахарида. У типичных амилопектинов средняя длина цепи составляет 18—24 моносахаридных остатка, из которых на внешнюю цепь приходится 9—16, а на внутреннюю 6—8 единиц глюкозы они расщепляются Р-амилазой на 50—60%. [c.535]

    В идеальном случае ферментативный гидролиз полисахаридов следует проводить ферментами высокой степени чистоты, специфичность которых установлена по их действию на производные гликозидов и на олиго- или полисахариды с точно известной структурой. Эти условия были реализованы нри исследовании ферментативного гидролиза гликогена, амилозы, амилопектина и некоторых родственных им по структуре полисахаридов. Расщепление полисахарида специфическим ферментом может указать на присутствие в нем связи (или связей), для которой этот фермент специфичен. В случае полисахарида, содержащего не один тип связей, а более, можно провести избирательный гидролиз определенной связи, и полученный остаток проанализировать физическими, химическими или иммунологическими методами, либо для получения дополнительной структурной информации подвергнуть дальнейшей деструкции, действуя другими специфическими ферментами. [c.299]


    Реакции, приводящие к расщеплению фосфоэфирных (в особенности фосфодиэфирных) связей, занимают особое место в ряду других химических превращений нуклеиновых кислот и их компонентов. Они являются основой аналитических методов, используемых для определения состава и строения нуклеиновых кислот. Хотя в настоящее время химические методы гидролиза фосфоэфирных связей в значительной степени уступили место ферментативным, позволяющим проводить такое расщепление в более мягких условиях и более специфично, тем не менее возможности химических способов гидролиза еще далеко не исчерпаны. [c.541]

    Сопоставляя па данном этапе рассмотрения концепции Хироми и Тома, мы видим, что отнесение константы Михаэлиса к соответствующим микроскопическим параметрам в рамках обеих концепций идентично (сравните выражения 14 и 15, с одной стороны, и 43 — с другой). Однако смысл каталитической константы в обеих концепциях различается (см. выражения 17 и 44). Если по гипотезе Хироми каталитическая копстапта пропорциональна гидролитическому коэффициенту ко, который является строго характеристическим для данного фермента, и определяется исключительно соотношением констант ассоциации субстрата в продуктивном и непродуктивном фермент-субстратном комплексах (17), то по гипотезе Тома величина гидролитического коэффициента зависит от способа связывания фермента с субстратом и от степени полимеризации последнего. На наш взгляд, это придает настолько больн1ую гибкость расчетам на основании концепции Тома, в особенности с помощью машинного анализа, что может в отдельных случаях делать бессмысленными определения показателей сродства индивидуальных сайтов активного центра. фермента, поскольку все наблюдаемые кинетические эффекты могут быть объяснены в рамках вариации гидролитического коэффициента при изменении структуры олигомерного субстрата и способов его связывания с ферментом. То же можно отнести и к определению константы скорости второго порядка ферментативного расщепления субстрата (см. выражения 18 и 45). [c.65]

    Р — степень множественной атаки). Однако из данных других работ тех же авторов следует, что скорость ферментативного расщепления О5 равна или даже превосходит скорость расщепления О7 (см. табл. 10) и дополнительное количество мальтозы в систе ме (помимо продукта прямой декстрз кции О7) должно неизбежно возникать в результате последующей (и немедленной) деструкции образующейся Оз. Поправки на этот эффект (которые могут быть весьма значительными) в работе [8] не вводились. [c.83]

    Вместе с тем вся методология обработки экспериментальных данных базируется на весьма сильном допущении, что время, требуемое на единичный проскок субстрата (проокок на один мономерный остаток) вдоль активного центра в ходе множественной атаки, является характеристической величиной, постоянной для действия данного фермента, и независимой от степени полимеризации субстрата или от степени заполнения других сайтов активного центра мономерными остатками. Фактически, это предположение эквивалентно постулату Хироми о постоянстве микроскопического гидролитического коэффициента ферментативного расщепления связей субстрата независимо от степени его полимеризации и степени заиолнения активного центра, применимость которого на практике сомнительна (как в значительной степени отвергающего специфичность ферментативного катализа на молекулярном уровне). [c.88]

    Определенные пока еще нереализованные возможности существуют также в области разработки высокоселективных ингибиторов вторичных путей метаболизма здесь основой должны служить поиски целенаправленно модифицированных сложных промежуточных соединений, способных выполнять функции антиметаболитов, как, например, в случае сульфонамидных антагонистов фолиевой кислоты. Так, предварительные опыты [117] показали возможность ингибирования синтеза пеницилловой кислоты 5-за-Мещенными орселлиновыми кислотами в концентрациях, не влияющих в заметной степени на рост или общий метаболизм организмов. Оказалось, что эти ингибиторы эффективно блокируют ферментативное расщепление С-4— -5-связи орселлиновой кислоты (ср. схему 1) и приводят, таким образом, к накоплению этого промежуточного соединения при биосинтезе пеницилловой кислоты [118]. Аналогичная ситуация часто встречается в ходе изучения блокированных путей метаболизма у специфических фер-ментдефицитных мутантов. В самом широком смысле этот подход Может быть использован для селективного ингибирования биосин- за нежелательных метаболитов типа микробных токсинов (фи- отоксинов, афлатоксинов и т. д.). Представляется реальным его [c.391]

    Пектиновые вещества. Химия пектиновых веществ была рассмотрена в разделе Углеводы . Студнеобразующая способность пектина зависит от его молекулярной массы (степени поли- еризации), количества метильных групп, входящих в состав его молекулы (степень метоксилирования), и содержания свободных карбоксильных групп, замещения их металлами. В зависимости дх степени этерификации карбоксильных групп различают высо-[ 0- и йизкоэтерифицированные пектины, которые получают из исходного сырья кислой или щелочной экстракцией или ферментативным расщеплением. Пектины различной природы значительно отличаются по студнеобразующей способности. Пектины лучшего качества получают из корочки цитрусовых и яблок, более низкого — из свекловичного жома — отходы сахарного производства. Прочный студень пектин образует только в присутствии сахара и кислоты. Их соотношение может несколько меняться. В водных растворах происходит диссоциация карбоксильных групп, содержащихся в его молекуле, и она превращается в макроанион. Кислая среда препятствует диссоциации карбоксильных групп в пектине, снижает электростатическое отталкивание его молекул. Присутствие сахара уменьшает гидратацию пектина и способствует соединению его молекул друг с другом при образовании структуры студня. [c.77]

    Из мякоти оливок выделен глюкуроноксилан [211, 212], содержащий в каждом 11-м ксилозном остатке ответвление в виде 4-0-метил-а-0-глюкуроновой кислоты, присоединенное в положении С-2 к остатку ксплозы. Затем установлено, что это сырье содержит галактоглюкоманнан, который, по данным метилирования, ферментативного расщепления н кислотного гидролиза, имеет главную цеиь Gl -(1—>-4)-Man и ответвления Gal-(1—>-6), связанные с остатками маннозы и, в меньшей степени, с остатками галактозы, В продукте, полученном после отделения этого полисахарида, найден ксилоглюкан. Он представляет собой (1— -4)-глюкан, содержащий при С-6 ответвления в виде цепей из Ху1-(1- 4). [c.99]

    Можно определять активность АХЭ или ХЭ. Для определения активности АХЭ в большинстве случаев подвергают гемолизу эритроциты ХЭ определяют в сыворотке крови. При использовании цельной крови можно путем выбора специфического субстрата (ацетил-р-метилхолина для АХЭ и бутирилхолина для ХЭ) или применяя определенные концентрации субстрата достигнуть дифференцирования ферментов. Последний из указанных способов основан на уже описанном ингибировании АХЭ более высокими концентрациями субстрата. Так, при концентрации ацетилхолина 10 М определяется преимущественно АХЭ, при концентрации же 10 М — ХЭ, однако в каждом случае в определенной степени (примерно на /б) проявляет активность и другой фермент. Определение активности осуществляют либо по установлению скорости ферментативного расщепления субстрата (кинетический метод) или путем определения конечных продуктов" и не вступившего в реакцию субстрата. [c.165]

    Химическая характеристика высокомолекулярных соединений путем исследования продуктов деструкции основывается на особенностях строения полимеров. В некоторых случаях продукты распада определенного строения получаются уже при сухой перегонке, для многих полимеров деструкция протекает вплоть до образования мономеров. При облучении ультрафиолетовыми лучами и при размоле в шаровой мельнице также происходит деструкция полимеров, но большей частью только до низкомолекулярных полимеров (например, при размоле полистирола в шаровой мельнице происходит деструкция до степени полимеризации около 100). Направленная деструкция, сопровождающаяся разрывом определенных связей в макромолекуле, позволяет сделать конкретные выводы о строении полимера. Такая реакция имеет место при расщеплении озонидов каучука (см. стр. 81), а также при гидролитическом расщеплении полисахаридов (см. стр. 86, 87 и 91) и идентификации осколков макромолекул известными методами, используемыми для низкомолекулярных соединений. Исследования продуктов распада белков и нуклеиновых кислот также дали возможность сделать предварительные выводы о их строении и о строении структурных единиц (об анализе аминокислот см. стр. 97). О специфических методах ферментативного расщепления было уже упомянуто выше (см. стр. 92). Для установления строения поливинилового спирта, полученного из поливинилацетата, наряду с отсутствием янтарной кислоты в продуктах разложения (как показали Штаудингер и Штарк, см. стр. 107) решающим явился тот факт, что этот полимер не деструктируется или очень незначительно деструктируется такими реагентами, как йодная кислота, расщепляющая 1,2-гликоли (Мар-вел и Деноон). [c.182]

    Спитчен [415] успешно разделил мальтодекстрины (со степенью полимеризации до 5) на пластинках с целлюлозой за один пробег (2 ч) в системе этилацетат— уксусная кислота — пиридин— вода (7 1 5 3). Для разделения олигогалактуроновых кислот, полученных ферментативным гидролизом пектиновой кислоты, использовали продажные пластинки с целлюлозой и хроматографическую систему этилацетат — уксусная кислота — вода (4 2 3, два пробега продолжительностью 150 мин каждый) [106]. Дисахариды, полученные при ферментативном расщеплении хондроитинсульфатов А, В и С, также разделяли на ТСХ-пластинках с целлюлозой в системе бутанол-1 — уксусная [c.66]

    Каждая молекула полимерного субстрата фактически представляет собой целый спектр субстратов (реакционных центров) с различной реакционной способностью, которая, как правило, убывает в ходе ферментативной деструкции полимера. Это обусловлено, во-первых, закономерным уменьшением эффективности ферментативного гидролиза при уменьшении степени полимеризации субстрата (см. табл. 1), которая наблюдается для всех эндогид-ролаз и для большинства экзогидролаз, и, во-вторых, предпочтительным расщеплением наиболее реакциоппоспособпых и (или) доступных связей полимера (в особенности нерастворимого полимера) на начальных этапах реакции. Именно поэтому определение начальных скоростей ферментативного превращения полимера в большинстве случаев не является особенно информативным. [c.29]

    Далее, взяв в качестве исходной минимизацию 3 (см. табл. 19), проводили оптимизацию по сродству сайтов (табл. 20). Дальнейшую минимизацию в этом случае проводили по различным экспериментальным параметрам — относительным частотам расщепления связей, константе Михаэлиса, максимальной скорости ферментативной реакции, константе ассоциации К олигосахаридов высокой степени полимеризации с активным центром (при полном занятии всех сайтов), а также суммарно. При этом величина гидролитического коэффициента скорости полагалась равной или постоянной величине (ЛСа = 0) или последова-тел11Н0 1зозрастающей по мере заполнения сайтов (ДОа = сопз1). [c.71]

    В таблице 13.4 представлено несколько таких процессов. Мальц [72] сообщает о том, что предварительная денатурация соевых белков щелочью дает после ферментативного гидролиза совсем другие продукты их пенообразующая способность в два раза выше, а вкусовые качества" лучше. Результаты исследований, которые провел Фукушима [47], свидетельствуют о повышении степени гидролиза на 5—10 % после денатурации белков сои спиртом. Поэтому представляется, что предварительная денатурирующая обработка растительных белков могла бы применяться не только для повышения степени их гидролитического расщепления, но и для улучшения функциональных свойств. [c.605]

    Ферментативный гидролиз нативных белков, как правило, протекает менее полно, чем гидролиз денатурированных белков и белков с разделенными цепями в аналогичных условиях [128]. Во многих случаях в результате такого более специфического расщепления пблучаются более крупные обломки исходной молекулы. Ранее отмечалось, что после окисления ри бонуклеаза в большей степени подвержена ферментативному гидролизу. [c.178]

    Другим примером является инсулин, который не удается ренату- рировать, если его нативные дисульфидные связи были разрушены тиолами или если их структура менялась при ферментативных воздействиях [101]. Этот факт стимулировал поиски предшественни->ка, который был действительно обнаружен в форме проинсулина 442]. Проинсулин стабилен к действию фермента дисульфидизомеразы (рис. 4.3) в опытах по денатурации — ренатурации он самопроизвольно повторно свертывается [443]. Протеолитическое расщепление проинсулина in vivo приводит к инсулину, стабильность которо-го обеспечивается энтропийным вкладом его нативной системы связей "S—S (разд. 8.3). Лабильность структуры инсулина имеет, по-види- мо.му, физиологическое значение [444], поскольку скорость инактивации является фактором, контролирующим степень и продолжительность действия гормона. [c.183]

    Показано, что наилучшим способэм получения нейтральных дисахаридов из трагакантовой кислоты является ацетолиз с последующим дезацетилированием. Для выделения олигосахаридов, в состав которых входят остатки галактуроновой кислоты, был применен ферментативный гидролиз, причем оказалось, что пектиназа и гемицеллюлаза не действуют в заметной степени на трагакантовую кислоту, но легко гидролизуют расщепленные трагакантовые кислоты I и И  [c.531]

    Любопытно, что в этой системе алло-треонин является более активным субстратом, чем треонин [185, 258, 259]. По-видимому, ферментативная реакция в слабой степени обратима, однако стерическая конфигурация продукта, образующегося при обратной реакции, не установлена [261]. Для фермента, катализирующего расщепление треонина на глицин и ацетальдегид, были предложены названия глициногеназа [258] и альдолаза оксиаминокислот [262]. Механизм реакции расщепления треонина изучали Снелл и сотрудники [260, 263] они описали неферментативное обратимое расщепление треонина в присутствии пиридоксаля и солей металлов [260, 263]. Оказалось, что при ферментативной реакции коферментом является пиридоксальфосфат [238] [c.336]


Смотреть страницы где упоминается термин Степень при ферментативном расщеплении: [c.86]    [c.300]    [c.54]    [c.370]    [c.370]    [c.108]    [c.218]    [c.118]    [c.105]    [c.59]    [c.160]    [c.59]    [c.149]    [c.656]    [c.234]   
Химия целлюлозы (1972) -- [ c.197 ]




ПОИСК







© 2024 chem21.info Реклама на сайте