Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Субстрат взаимодействие с ферментом, скорость

    Методы кинетическою расщепления основываются на том, что реакции энантиомеров с хиральными (оптически активными) реагентами протекают с различными скоростями отношение скоростей отражает различие в энергиях активации диастереомерных переходных состояний [16]. При взаимодействии ферментов с рацемическими субстратами реакции часто протекают с полной стереоспецифичпостью, т. е. отношение констант скоростей составляет не менее 10.  [c.291]


    Выявление кинетических закономерностей протекания ферментативных реакций составляет одну из самых актуальных проблем энзимологии. Исследование кинетики биокатализа в целом направлено на установление зависимости скорости ферментативных процессов от химической природы ферментов, а также на изучение условий взаимодействия субстратов с ферментами. Иначе говоря, кинетика биокатализа позволяет понять природу молекулярных механизмов действия различных факторов на скорость ферментативных процессов. [c.104]

    Под ферментативной кинетикой понимают закономерности изменения скорости реакции в зависимости от химической природы реагирующих веществ и условий их взаимодействия. Под условиями взаимодействия понимают влияние концентрации реагирующих веществ, температуры, давления, присутствия ингибиторов или активаторов и т. п. В настоящем разделе из всех перечисленных факторов рассматривается только влияние концентрации субстрата и фермента. [c.374]

    Кинетика первой стадии изучена весьма слабо [23, 241 это связано с методическими трудностями при измерении почти диффузионных скоростей (см., например, [25] и гл. V). Детально изучено равновесное состояние сорбции субстрата на ферменте. Найдено, что положение равновесия определяется практически лишь нековалентным взаимодействием с белком боковых химически инертных фрагментов молекулы субстрата. [c.128]

    Исходя из детального кинетического анализа деградации полимеров при определенных механизмах реакции значения констант скоростей могут достигать предела при длине субстрата, значительно превышающей протяженность активного центра. Таким образом, в зависимости от характера взаимодействия полимерного субстрата с ферментом и способа расщепления субстрата, излом на кривой зависимости log/г [c.49]

    Действительно, во многих случаях зависимость активности фермента от pH имеет колоколообразную форму. Изложенная феноменологическая теория это объясняет и приводит к удобным для расчетов формулам [15, 16]. Однако зависимость скорости реакции от pH можно истолковать и иначе. Кирквуд и Шо-мейкер рассмотрели флуктуации электрических зарядов в молекуле фермента [97, 98]. Если свободные энергии различных состояний ионизации молекулы мало отличаются друг от друга, то заряды могут перемещаться, флуктуировать. Эти флуктуации могут привести к добавочному электростатическому взаимодействию фермента с субстратом. [c.395]

    Типы ферментативного катализа. В результате образования комплекса происходит обмен электронами и протонами между ферментом и субстратом. Если фермент отдает электронную пару субстрату, т. е. если фермент является донором электронов, осуществляющим нуклеофильную атаку, которая определяет скорость ферментативной реакции, то имеет место нуклеофильный катализ. Скорость каталитической реакции определяется электронодонорной способностью нуклеофила, т. е. тех аминокислотных остатков активного центра, которые взаимодействуют с субстратом. Относительные скорости нуклеофильной атаки зависят от энергии, необходимой для доставки электронной пары к атому субстрата. В электрофильном катализе, напротив, фермент акцептирует пару электронов от субстрата. Электрофильный катализ характерен для многих ферментов, имеющих в своем составе атомы металлов. Металлы с переменной валентностью являются электрофильными катализаторами, принимающими электронную пару. [c.70]


    Конкурентным называют ингибитор, обратимо взаимодействующий с активным центром фермента. Как правило, конкурентные ингибиторы по структуре похожи на субстрат и могут вытесняться из фермент-ингибиторного комплекса избытком субстрата. Взаимодействие с конкурентным ингибитором не приводит к денатурации или инактивации фермента, поэтому при замене ингибитора на субстрат скорость ферментативной реакции не снижается (рис. 6.10). [c.76]

    В окружении различных веществ в клетке ферменты взаимодействуют не только с субстратами. При этом скорость превращения субстратов может увеличиваться (активация фермента) или снижаться (торможение, ингибирование ( рмента). Изучение влияния на активность ферментов различных веществ имеет большое практическое значение, а также очень важно для понимания механизма действия ферментов. Например, действие ряда лекарств обусловлено тем, что они являются ингибиторами ферментов. [c.77]

    Таким образом, для определения бимолекулярной константы скорости необратимого взаимодействия фермента с ингибитором необходимо в стандартных условиях определить активность фермента (скорость ферментативной реакции) в отсутствие ингибитора (оо). Далее нужно к раствору фермента (в той же концентрации) прибавить ингибитор в концентрации [I]. Величина [I] может быть выбрана на основании предварительного определения концентрации ингибитора, при которой активность фермента подавляется полностью (при завершении реакции). При измерении берется в 20—100 раз ббльшая концентрация [I]. Для определения величин необходимо через различные промежутки времени прекратить (или существенно замедлить) взаимодействие фермента с ингибитором и определить остаточную активность фермента в тех же условиях, при которых была определена Vo. Расчет констант производится по уравнению (УП1.28). Основную трудность в этом методе представляет прекращение реакции фермента с ингибитором (в особенности неконкурентным) в нужный момент времени. Наиболее простой способ — проведение реакции ингибирования при достаточно высокой концентрации реагирующих веществ с последующим сильным разбавлением раствора перед введением в систему субстрата и измерением скорости ферментативной реакции. Например, если исходная концентрации фермента (и, соответственно, ингибитора) в 30—40 раз выше, чем необходимо для последующего измерения активности фермента, то разбавление системы в 30—40 раз приведет к снижению скорости взаимодействия фермента с ингибитором в 900—1200 раз. Тогда при достаточно быстром измерении начальной скорости каталитического превращения субстрата скоростью последующего ингибирования можно пренебречь. [c.116]

    Несколько проще обстоит дело с конкурентными ингибиторами, когда прекращение взаимодействия фермента с ингибитором может быть Достигнуто внесением субстрата в необходимой концентрации и одновременным разбавлением реакционной смеси. Однако и в этом случае успех зависит от соотношения между константой скорости [c.116]

    Фермент инвертаза катализирует превращение дисахарида сахарозы в инвертированный сахар. Когда концентрация инверта-зы равна 3 10 " моль/л и концентрация сахарозы 0,01 моль/л, инвертированный сахар образуется со скоростью 2-10 моль-л с . При удвоении концентрации сахара скорость образования инвертированного сахара также удваивается. Основываясь на известных вам представлениях о модели взаимодействия фермент—субстрат, оцените, насколько велика доля фермента, связанного в комплекс. Поясните свой ответ. Добавление другого сахара инозита замедляет образование инвертированного сахара. Предложите механизм этого явления, [c.470]

    Сущность этого метода состоит в следующем. В систему, содержащую фермент и субстрат, вводят ингибитор в концентрации, существенно превышающей концентрации фермента, и измеряют кинетику ферментативной реакции по скорости превращения субстрата или образования продукта. При этом наиболее удобны методы измерения ферментативной кинетики, основанные не на отборе проб по времени и их анализе, а такие, которые позволяют непрерывное измерение скорости процесса в реагирующей системе (например, спектрофотометрические, потенциометрические и т. п. методы). При этом целесообразны такие условия эксперимента, когда реакция в отсутствие ингибитора имеет нулевой порядок. Тогда в отсутствие ингибитора ход ферментативной реакции выражается прямой (рис. 27, 1), тангенс угла наклона которой представляет скорость (и) процесса. Если в момент времени и в систему введен ингибитор, то скорость ферментативной реакции постепенно будет падать, причем для бимолекулярной реакции с избытком ингибитора это падение выражается экспоненциальной кривой (рис. 27, 2). Скорость ферментативной реакции (у / ) в присутствии ингибитора для любого момента времени (принимая и за нуль) может быть найдена как тангенс наклона касательной к кривой 2 = = tg 02. Расчет константы скорости взаимодействия фермента с ингибитором может быть проведен по уравнению  [c.117]

    Благодаря новейшим данным о стереохимических изменениях, происходящих при ферментативном катализе и регуляции активности ферментов, мы можем ответить на эти вопросы с достаточной определенностью. В том, что структура белков существенно зависит от слабых связей, действительно есть больщой смысл . Взаимодействие ферментов с субстратами и с модуляторами ферментов в большинстве случаев, если не всегда,, сопровождается изменениями в третичной и четвертичной структуре фермента. С точки зрения стереохимии эти изменения могут быть большими или незначительными для биологической, функции они абсолютно необходимы. Скорость, с которой фермент катализирует определенную химическую реакцию, вероятно, зависит от того, насколько быстро его конформация может подвергнуться обратимому изменению в результате фер-мент-субстратных взаимодействий. Надлежащая реакция фермента на присоединение регулирующего метаболита тоже зависит от способности фермента изменять свою структуру высшего порядка. В одних случаях эти изменения затрагивают третичную конформацию фермента, в других (например, в случае гликогенфосфорилазы) регуляторный эффект связан с изменением четвертичной структуры. [c.215]


    Среди функциональных групп, входящих в активный центр, нередко различают группы активного участка фермента, непосредственно принимающие участие в каталитическом акте, и группы, образующие так называемый контактный участок ( якорный участок), обеспечивающий специфическое сродство, т. е. связывание субстрата с ферментом. Такое разделение условно и неточно, так как взаимодействие в контактном участке фермент-субстратных соединений оказывает существенное влияние на направление и скорость реакций, протекающих на активном участке [c.203]

    Если к 1 > к2, то на первой стадии ферментативной реакции с течением времени устанавливается равновесие (квазиравновесный режим протекания реакции), и в выражение для скорости ферментативной реакции входит уже не константа Михаэлиса, а субстратная константа К , характеризующая взаимодействие фермента с субстратом в равновесных условиях  [c.105]

    Подавляющее большинство важнейших биологических процессов протекает с участием ферментов, химические свойства которых рассматривают в курсах по биохимии. Ферменты играют ключевую роль в клеточном метаболизме, определяя не только пути превращения веществ, но и скорости образования продуктов реакций. Физические аспекты и механизмы ферментативного катализа подробно рассмотрены в гл. XIV, здесь же будут описаны кинетические свойства ферментативных реакций, которые определяют характер динамического поведения метаболических процессов. Характер ферментативных процессов допускает феноменологическое описание их кинетики с помощью систем дифференциальных уравнений, переменными в которых выступают концентрации взаимодействующих веществ субстратов, продуктов, ферментов. При этом достаточно использовать общие биохимические представления о последовательности событий в ферментативной реакции, не вдаваясь в физические детали механизмов, т. е. учитывать, что необходимым этапом ферментативного катализа является образование фермент-субстратного комплекса (комплекс Михаэлиса), а также использовать представления о регулировании ферментативных процессов ингибиторами и активаторами. [c.61]

    Таким образом, на стадии ацилирования специфичность трипсина определяе"- -ся как гидрофобными взаимодействиями боковой цепи субстрата с ферментом, так и наличием заряда, причем последнее увеличивает скорость ацилирования в [c.179]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    При построении схемы реакций, учитывапцих влияние pH среды ва скорость цроцесса, за основу цринята схема обратимой реакции взаимодействия фермента о субстратом S, а фермент рассматрв- [c.129]

    Оценивают меру кооперативности при взаимодействии фермента с субстратом в низких концентрациях, исследуя полученную зависимость в координатах Силоновой—Курганова (с. 335) для случая, когда скорость реакции в отсутствие эффектора равна 0. Рассчитывают значение коэффициента кооперативности д по формуле  [c.356]

    Все данные, обсуждавшиеся в этом и предыдущем разделах, с очевидностью показывают, что процессы связывания и катализа взаимозависимы сложным образом. Например, утверждение, что наилучщими субстратами являются наиболее прочно связывающиеся соединения, неверно. Трисахарид очень хорошо связывается лизоцимом, производные D-аминокислот — химотрипсином, однако оба они субстратами не являются первый из них связывается не в том месте, а вторые — не в той ориентации. Более того, индуцируемое при связывании напряжение в молекуле субстрата может повышать скорость каталитической реакции, понижая в то же время эффективность связывания. Приводились данные такого рода в поддержку предположения, что каталитическая эффективность фермента, по крайней мере частично, зависит от его способности связывать субстрат в переходном состоянии более прочно, чем в основном состоянии [145]. Последнее может иметь место из-за невыгодных взаимодействий между ферментом и субстратом в основном состоянии, снимающихся, как в случае лизоцима, в переходном состоянии. Другой причиной этого явления может быть действительное хорошее положительное связывание переходного состояния. Только последняя ситуация непременно приводит к более эффективному катализу [140], хотя при правильных условиях обе приводят к одинаковому результату. [c.532]

    Особенности на кривых у( ), v I) могут возникать и в отсутствие кооперативных взаимодействий вследствие неравновесных конформационных свойств фермента. Допустим, что молекула фермента, переработавшая субстрат в продукт, выходит из реакции в активном конформационпом состоянии. Если время релаксации, т. е. время возвращения в исходное певозмущепное состояние, больше времени между встречами фермента с субстратом или того же порядка, то кинетика может имитировать кооперативную. Схема такого процесса показана на рис. 6.17. Здесь Ра — свободная от субстрата молекула фермента в исход-лой конформации, Р1 — неактивный ФСК, Р — активный ФСК, Ра — свободный фермент в активной конформации. Решая соответствующие уравнения стационарной кинетики, получаем скорость реакции [c.204]

    В число основных факторов, определяющих начальную скорость ферментативной реакции, входят концентрация фермента и субстрата, pH и температура, наличие активаторов и ингибиторов, причем концентрация субстрата является одним из наиболее важных. График зависимости между начальной скоростью и концентрацией субстрата выражается в виде ветви равнобочной гиперболы. Краеугольным камнем ферментативной кинетики является теория Михаэлиса-Ментен о механизме взаимодействия фермента и субстрата через образование про.межуточного фермент-субстратного комплекса, что является исходным моментом самых современных концепций. Теория исходила из факта, что равновесие между ферментом и субстратом достигается быстрее, чем разрушается фермент-субстратный комплекс. Однако анализ, проведенный Бригсом и Холдейном, показал, что в любой момент реакции скорости образования и распада фермент-субстратного комплекса практически равны, то есть достигается стационарное состояние, в котором концентрация промежуточного соединения постоянна. На основании этого было предложено уравнение, выполняемое для многих механизмов реакций, катализируемых ферментами, которое на- [c.203]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Обращает на себя внимание необычно высокая положительная величина А5 для миозина (аденозинтрифосфатазы). Такое изменение энтропии, согласно результатам исследования Лейдлера, Оллета и Моралеса [1], объясняется по крайней мере двумя причинами а) нейтрализацией положительного и отрицательного зарядов при взаимодействии фермента с субстратом, сопровождающейся дегидратацией ионов б) существенными конформационными изменениями третичной структуры фермента при комплексообразовании. Исследование влияния температуры на скорость отдельных стадий ферментативной реакции базируется на теории переходного состояния. Согласно этой теории, взаимодействующие молекулы при их сближении образуют переходное состояние (переходный или активированный комплекс), причем между исходным и переходным состоянием устанавливается динамическое равновесие. Вместе с тем, переходный комплекс претерпевает непрерывное превращение с образованием продуктов реакции. С этой точки зрения простейшую ферментативную реакцию Е + З ЕЗ- Е + Р следует рассматривать как многостадийную  [c.131]

    Представляется, что наблюдаемые в эксперименте данные о зависимости скорости необратимого ингибирования от концентрации субстрата (в особенности при весьма малых и больших концентрациях субстрата) могут быть объяснены, даже если не приурочивать одну из реакций с ингибитором к ацилированному ферменту. Качественно такой же результат можно получить, если исходить из того, что в ходе каталитического процесса активная поверхность фермента претерпевает гораздо больше последовательных превращений, а не три условно записанные в схеме. В частности вряд ли при столкновении субстрата с ферментом одномоментно возникают три или четыре связи, необходимые для образования комплекса Е5. Это было бы равнозначно протеканию реакции третьегоили четвертого порядков, что практически невозможно. Следовательно, нетрудно представить, что при образовании с субстратом части связей, а это особенно вероятно при малых концентрациях субстрата, сохраняется возможность взаимодействия ингибитора с оставшимися свободными функциональными группами активного центра. [c.230]

    Разделение субклеточных компонентов начинается с разрушения клеточной стенки и плазматической мембраны. Для этой цели нрименяют гомогенизаторы. Растительные ткани, погруженные в специальную среду для растирания клеток, о которой речь пойдет ниже (берутся одинаковые весовые количества ткани и среды), растирают в течение 30—120 сек при максимальном числе оборотов. В результате такой обработки большинство клеток разрушается, по крайней мере в случае тканей, не имеющих волокнистого строения, а их содержимое высвобождается. Растирание, конечно, следует производить на холоду, для того чтобы свести к минимуму ферментативные изменения в гомогенате, обусловленные взаимодействием субстратов и ферментов, которые в неповрежденной клетке не имеют контакта друг с другом. Обычно подобную обработку проводят в холодной комнате или применяют ледяные бани (температура 2—4°). Хотя гомогенизатор очень удобен для работы, его применение связано со значительными нарушениями не только клеточных стенок, но также субклеточных компонентов. Такое растирание обычно приводит, например, к разрыву ядерных мембран и разрушению ядер. В связи с этим часто возникает необходимость в более мягких методах. Один из таких методов — растирание в стеклянном гомогенизаторе с неплотно подогнанным пестиком. Обработка в таком гомогенизаторе проводится в течение одной или нескольких минут путем вращения пестика со скоростью от ста до нескольких сотен оборотов в минуту. Еще более мягкая обработка — растирание пестиком в ступке вручную. Для разрушения клеток в условиях минимального повреждения компонентов очень удобен аппарат Ро и Чипчехиа [7]. В этом аппарате ткань проходит между вращающимися навстречу друг другу роликами, причем оболочка каждой клетки испытывает возрастаю- [c.10]

    СТИ пользу в качественной оценке, во-первых, доступности иона металла для растворителя и, во-вторых, того, какую из трех возможных ролей, описанных в разд. 1, выполняет ион металла в ферментативной реакции. Как установлено Кон [21], фактор усиления (ei) протонов воды для бинарного комплекса Е — М + (еь) может быть больше, чем ei для тройного комплекса Е — М + — лиганд (тип II) (вс). И наоборот, ферменты, образующие комплексы Е — лиганд — M + (тип I), проявляют небольшое взаимодействие фермент — ион металла (либо вообще его не проявляют) и имеют величину Ес> ь 1,0, в то время как в комплексах М.2+ — Е — лиганд (тип III) лиганд может оказывать небольшое влияние на окружение иона металла и еь 8с. Хотя эти закономерности наблюдались для большинства комплексов типов I и II [21], известны исключения. Изучением скоростей релаксации протонов субстрата в присутствии Мп + — фермента для ФДП-альдолазы из дрожжей доказано существование мостиковых комплексов Е — Мп + — субстрат (разд. 9), хотя и наблюдались небольшие изменения для ei протонов воды при образовании этих комплексов (т. е. еь Вс)- Следовательно, хотя сравнение величины ei протонов воды для бинарных и тройных комплексов фермента, металла и лиганда дает простой и быстрый метод определения типа образующегося комплекса, однако эти результаты должны рассматриваться как предварительные и подтверждаться с помощью других методов, например определением г и Ajh (константы сверхто-ного взаимодействия) путем измерения скоростей релаксации магнитного ядра лиганда. Быстрый метод определения констант диссоциации комплексов дает также наблюдение за изменениями ei протонов воды при взаимодействии фермента с Мп2+ и лигандом [21]. [c.456]

    Если заряженная группа, например карбоксилат-анион, находится в гидрофобной области активного центра фермента и поэтому плохо сольва-тирована, то ее нуклеофильная реакционная способность будет увеличенной. Однако соответственно с этим возрастает также и основность такой группы, поскольку дестабилизация аниона, обусловленная плохой сольватацией, должна способствовать любому процессу, который понижает заряд на анионе. Этот эффект объясняет, по-видимому, высокие значения рК (вплоть до 7 и более) для замаскированных карбоксильных групп в ферментах и других белках [73], и, хотя данный эффект способствует увеличению нуклеофиль-ности этих групп, соотношение нуклеофильностп и основности остается практически неизменным. Следовательно, на основании этого эффекта вряд ли дшжно ожидать больших ускорений, если только нуклеофил не защищен от протонирования под действием растворителя и в то же время сохраняет свободу для атаки субстрата. Это возможно в том случае, когда присоединение субстрата к ферменту вызывает конформационное изменение, в результате которого нуклеофил становится доступным и атакует субстрат в гидрофобной среде. Это может служить еще одним примером, когда силы связывания между ферментом и субстратом используются для продвижения системы вдоль координаты реакции, что облегчает каталитический процесс нри одновременном уменьшении наблюдаемой свободной энергии связывания (более подробно этот вопрос будет рассмотрен в гл. 5 в рамках теории индуцированного напряжения). В общем случае, когда увеличение скорости обусловлено изменением природы растворителя , окружающего субстрат в активном центре фермента, причиной этому всегда должно быть специфическое взаимодействие, использующее энергию связывания фермента с субстратом. Так, скорость реакции двух противоположно заряженных реагентов будет больше в гидрофобной среде активного центра фермента (по сравнению с реакцией в воде), поскольку в неполярном окружении заряженные реагенты дестабилизированы и в тоже время дестабилизация менее зарянч енного переходного состояния будет не столь значительной [схема (46)]. [c.83]

    В последнее время появилась возможность изучать физические свойства белков такими методами, как температурный скачок, которые позволяют исследовать процессы с временами, соизмеримыми с временами каталитического превращения субстрата на ферменте, так что стало возможным непосредственно установить взаимосвязь между скоростями субстратзависи-мых конформационных изменений и скоростями самой реакции. В настоящее время имеется ун е несколько свидетельств в пользу существования изомеризации ферментов и ферментсубстратных комплексов, которые могут представлять собой конформационные изменения такого рода [49—52]. Скорость мономолекулярной изомеризации глицеральдегид-З-фосфатдегидрогеназы характеризуется константой порядка 1 с и является слишком медленной, чтобы этот процесс имел место при каждом обороте фермента по-видимому, этот процесс относится к явлениям контроля ферментативной активности. Рентгеноструктурный анализ лизоцима [28], химотрипсина [54] и карбоксипептидазы [55] дал прямое доказательство существования изменений в конформации фермента при взаимодействии с субстратами или ингибиторами. Гемоглобин, хотя и не является ферментом, но может быть поучительным примером использования всех этих методов для демонстрации конформационных изменений при взаимодействии этого белка с кислородом [56]. [c.243]

    Различные связывающие центры обычно расположены на разных субъединицах фермента, так что это взаимодействие отражает взаимодействие субъединиц. Это взаимодействие может приводить к изменениям либо в максимальной скорости, либо в связывании субстрата с ферментом, либо в том и в другом, и не всегда из кинетики реакции очевидно, какое изменение происходит. Были предложены различной сложности математические модели, объясняющие этот тип кинетического поведения [71, 72]. Однако число переменных в этих моделях так велико, что трудно или даже невозможно сделать между ними выбор из кинетики данной реакции, и механизм этих эффектов может быть более успешно понят путем изучения физических или химических свойств системы. Так, изучение физических свойств аспартаттранскарбамилазы показало, что фермент состоит из двух каталитически активных субъединиц, которые можно отделить от четырех меньших размером ингибиторных субъединиц. Ингибиторные субъединицы могут связывать молекулы ингибитора даже после того, как они отделены от каталитических субъединиц [73]. [c.250]

    Спектрофотометрические данные, полученные Диксоном и Нейратом [1], показали, что для ацетил-химотрипсина при pH 3 не наблюдается характерного адсорбционного максимума N-ацетилиыидазола при 245 ммк. Это говорит о том, что прямой нуклеофильный катализ имидазолом в разбираемой реакции мало вероятен, так как в противном случае удалось бы наблюдать спектр промежуточного соединения, соответствующего N-ацетилимидазолу. Вместе с тем высокая активность серина проявляется только в нативном ферменте. Например, ацетил-химотрипсин легко реагирует с гидроксиламином, образуя ацетилгидро-ксамовую кислоту, однако при денатурации белка 8М мочевиной ацетил-химотрипсин реагирует с гидроксиламином не быстрее, чем обычный эфир [2]. При обработке мочевиной исчезает лабильность О-ацетильной связи на стадии де-ацилирования фермента, так что скорость гидролиза ее становится сравнимой со скоростью гидролиза N, О-диацетилсеринамида [3]. Лабильность О-ацетильной связи восстанавливается при диализе, в результате которого удается удалить денатурирующий агент. Учитывая все сказанное, можно прийти к выводу, что серин в а-химотрипсине скорее играет роль вспомогательного субстрата, а высокая скорость распада промежуточного соединения обусловлена либо необычной конформацией ацил-серина в нативном ферменте, либо эффективным взаимодействием близко расположенной каталитической группы. [c.161]

    Исследование индукторов, вызывавших у Е. соН образование р-галактозидазы, показало, что некоторые р-галактозиды могут быть индукторами, не являясь субстратами фермента, тогда как другие, будучи субстратами, не являются индукторами. Это наблюдение позволило заключить, что взаимодействие фермента с индуктором не является ни необходимым, ни достаточным условием индукции этого фермента. Таким образом, было получено первое указание (хотя и не окончательное доказательство) на то, что вопреки предположению Юдкина фермент не является мишенью для индуктора в процессе индукции ферментов. Наиболее важным практическим следствием этих опытов явилось открытие, что неме-таболизируемые сернистые аналоги обычных Р-галактозидов, такие, как метил- и изопропилтиогалактозиды, являются высокоактивными индукторами (фиг. 236). Наличие таких сернистых аналогов дало возможность изучать истинную кинетику процесса индукции в условиях, когда среда не содержала в качестве источника углерода и энергии лактозу теперь опыты можно было проводить на среде с глицерином в условиях, когда скорость роста клеток не зависела от внутриклеточного содержания Р-га-лактозидазы и концентрация индуктора в среде оставалась постоянной. [c.478]

    Фермент, являясь катализатором, не может изменять термодинамического равновесия химической реакции. Но в то же время фермент сильно влияет на скорости прямой и обратной реающй процесса таким образом, что достижение состояния равновесия в присутствии фермента происходит значительно быстрее (при этом константа равновесия не изменяется). Ферменты, как и любые катализаторы, повышают скорость реакций за счет снижения энергии активации процесса. При взаимодействии субстрата с ферментом реакция протекает по новому механизму, который характеризуется более низкой энергией переходного состояния, чем процесс, протекающий в отсутствие фермента (рис. 2.2). [c.98]


Смотреть страницы где упоминается термин Субстрат взаимодействие с ферментом, скорость: [c.384]    [c.49]    [c.274]    [c.54]    [c.122]    [c.26]    [c.164]    [c.60]    [c.103]    [c.37]    [c.339]    [c.199]    [c.84]    [c.158]    [c.408]    [c.187]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость взаимодействия

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте