Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частица координационное

    Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (метод ВС). Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная а-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т. е. содержащими не-поделенные пары электронов, орбиталями лигандов (доноров). Максимальное возможное число с-связей определяет координационное число комплексообразователя. [c.209]


    В меньшей мере доступны для молекул воды минеральные компоненты в форме комплексных гетерополярных производных гуминовых веществ. Последние образуются при совместном проявлении ионной или ковалентной и координационной связей между поливалентными ионами-комплексообразователями и молекулами гуминовых кислот. В данном случае ионная связь реализует обменное состояние, а координационная — дополнительную связь поливалентного катиона с функциональными группами типа —ОН, —СО, —Н. В случае адсорбционных образований гуминовых соединений торфа с нерастворимыми минеральными частицами функциональные группы органической составляющей частично взаимосвязаны с активными центрами минералов, и в целом эти соединения менее гидрофильны, чем отдельные их составляющие. [c.64]

    Сопряжение стадий единой реакции. Сопряжение различных реакций. Сопряжение циклов реакций Ассоциативный через общие координационные соединения или через общие продукты диссоциации. С помощью подвижных частиц-переносчиков электронов, Н-атомов и т. д. С помощью матричных структур [c.305]

    По формуле (2.13) можно приближенно оценить взаимодействие между ионами и соответствующей сольватной оболочкой, считая, что для соседних частиц = I. В случае воды при координационном числе 6 имеем U (Г) = 122 ккал/г-ион, что вполне сравнимо с теплотой химических реакций и дает основания рассматривать гидратированные ионы как комплексы. [c.34]

    В непосредственной близости от иона располагается структурированный растворитель. Число его частиц, находящихся в этом сольватном слое, называется координационным числом сольватации. Для большинства катионов оно равно 4, 6 или 8. При записи различных уравнений (электролитической диссоциации, взаимодействий между ионами) обычно координационная сфера ионов не указывается. [c.170]

    Если свойства вещества в системе зависят и от других переменных, таких как заряд частиц, поверхностное натяжение, координационное число и другие, тогда в выражение (9.32) вводят вместо двойки общее число переменных Ь> и правило фаз Гиббса запишется в такой форме  [c.162]

    Известно, что значение Л 1 в случайно упакованной структуре шаров произвольно изменяется от 4 до 12 и в среднем равно 8 0,5[6]. Причем нижний и верхний пределы N1 соответствуют минимальной и максимальной плотностям регулярных структур О = 0,34 и 0,74 соответственно. В работе [7] описан метод визуализации агрегатов частиц, входящих в первую координационную сферу (рис. 5), что позволило различать те или иные характерные особенности структуры упаковок. В этой связи особенно показательны агрегаты с координационным числом > 8. У них отчетливо видна структура плотнейшей упаковки с разным числом точечных дефектов — вакансий, ие занятых шарами. Агрегаты удобно было рассматривать, ориентируя их наиболее заселенный гексагональный слой, содержащий до 7 частиц, в горизонтальное положение. Тогда сверху п снизу в лунках между шарами укладывалось максимум но 3 шара. Когда верхние и нижние [c.20]


    Обратимся теперь к экспериментальным данным, полученным прп засыпке свинцовой дроби d = i мм в цилиндрический сосуд диаметром 104 мм с плоским дном. Высота слоя составляла 90 мм плотность упаковки В = 0,6. В опытах отбирали агрегаты частиц с координационным числом. VI = 8 и подсчитывали для них значения чисел контактов 1. Результаты одного из опытов приведены в таблице. Распределение вероятностей Р(и,), вычисленное ио данной выборке, пмеет впд [c.22]

    Предложена следующая схема цепного механизма гидроформилирования олефинов, в котором каталитически активными частицами (аналогично радикалам в цепных реакциях) являются образующиеся в ходе реакции координационно-ненасыщенные соединения (обозначены звездочкой)  [c.255]

    При осуществлении реакции гидрокарбоксилирования гексена-1 в мягких условиях (15 °С, атмосферное давление) реакция протекает по цепному механизму при участии координационно-ненасыщенных соединений, выступающих в роли активных частиц. [c.266]

    Уже сама возможность обнаружить в реагирующей системе парамагнитные центры, например атомы и радикалы, являющиеся промежуточными продуктами сложных химических процессов, часто позволяет высказать предположение о механизме этих процессов. Знание параметров спектров, в первую очередь СТС, делает принципиально возможной идентификацию парамагнитных центров, хотя практически эта задача оказывается часто весьма сложной и трудоемкой. Тонкая структура (ТС) может наблюдаться в спектрах парамагнитных частиц со спином 5 1. Связь вида ТС с симметрией электрического поля, в котором находятся соответствующие частицы, является важным источником сведений о природе -а геометрии их окружения. Такого рода данные существенны, например, при изучении координационных соединений ионов металлов переменной валентности. [c.248]

    Для газообразного фазового состояния характерно полное отсутствие упорядоченности во взаимном расположении частиц. Жидкое (аморфное) состояние определяется ближним порядком во взаимном расположении частиц и отсутствием дальнего порядка. Кристаллическое состояние вещества характеризуется как ближним, так и дальним порядком во взаимном расположении частиц. Как отмечалось ранее, особенностью полимерных молекул является анизотропия их формы. Поэтому в кристаллических высокомолекулярных соединениях понятие дальний порядок включает в себя, как максимальную вероятность нахождения центра тяжести данной молекулы от той, от которой ведется отсчет ( координационный порядок ), так и преимуще- [c.124]

    Если при ассоциации регулярно построенных макромолекул в пачки создаются условия для правильной укладки не только полимерных цепей, но и боковых заместителей, то возникает трехмерный порядок во взаимном расположении частиц. Таким образом, необходимое и достаточное условие для кристаллизации полимера - правильная взаимная укладка как цепей макромолекул, так и боковых заместителей. Дальний порядок во взаимном расположении макромолекул обусловлен как определенным координационным порядком (т. е. правильным расположением их центров тяжести), так и ориентационным порядком (т.е. одинаковой ориентацией цепей в кристалле). [c.142]

    Нематическая фаза - жидкокристаллическая структура, центры тяжести частиц которой расположены случайным образом, в связи с чем в ней не существует дальнего координационного порядка. Оси всех частиц внутри элементарного объема одноосно-ориентированы. [c.401]

    В связи с вышесказанным представляет интерес использование понятия о координационной емкости центрального атома-комплексообразователя, под которой следует понимать число возможных его связей с лигандами. С этой точки зрения координационная емкость отождествляется с общей валентностью центрального атома комплексообразователя, которая определяется числом непарных электронов, несвязывающих или вакантных орбиталей других атомных частиц. Координационная емкость центрального атома (иона) равна сумме произведений координационной емкости лигандов на их число. [c.267]

    Ионные кристаллы. Структурными единицами кристаллов этого типа являются положительно и отрицательно заряженные ионы, между которыми происходит электростатическое взаимодействие, характеризуемое достаточно высокой энергией. Этим объясняются свойства веществ с ионными кристаллами (табл. 4.4 и 4.5). Из-за ненаправ-ленности и ненасыщенности связей и сферической формы частиц координационные числа у ионов могут быть высокими, как например в решетках Na l (рис. 4.8) и КС1. У соединений со сложными ионами, форма кристаллической решетки искажается. [c.101]


    Поскольку при одинаковых лигандах образующиеся ст-связи равноценны, то образование комплексной частицы сопровождается гибридизацией акцепторных орбиталей комплексообразователя. При координационном числе 4 чаще всего реализуется р -гибридизация, что соответствует тетраэдрической координации лигандов, или 5р -гибридизация, отвечающая плоско-квадратной координации лигандов. При координационном числе 6 осуществляется октаэдрическая координация лигандов, которая определяется 1 5р - или 5р -гибрндизацией. [c.209]

    В растворе углеводородов соли тяжелых металлов находятся в недиссоциированной форме. В отсутствие полярных молекул молекулы солей ассоциируются в мицеллы [29]. Средний размер мицелл тем больше, чем выше концентрация соли в растворе. Например, степень ассоциации стеариновокислой меди в толуоле при комнатной температуре 6,4 при ее концентрации ОД г/кг раствора и 7,1 при концентрации 0,26 г/кг. Мицеллы образуются из-за диполь-дипольного притяжения частиц, и чем выше дипольный момент соли, тем выше степень ассоциации [29]. В результате образования полярных продуктов в окисляющемся углеводороде степень ассоциации молекул соли снижается, поскольку появляются комплексы типа соль — продукт. Вместе с тем эти продукты конкурируют с ROOH как лигандом в координационной сфере металла, поэтому при накоплении продуктов окисления скорость каталитического распада ROOH на радикалы снижается. [c.193]

    Прочно связанная со слоистыми силикатами вода энергетически неоднородна. Это объясняется наличием как минимум пяти типов активных центров на их поверхности, с которыми взаимодействуют молекулы воды [91] обменные катионы гидроксильные группы кислого (510Н) и основного (АЮН, МдОН) характера координационно ненасыщенные катионы А1 +, Ре +, Mg + поверхностные атомы кислорода. Если учесть, что по своему происхождению обменные катионы, в свою очередь, разделяются на три типа (обусловленные нестехиомет-рическим изоморфизмом в тетраэдрических и октаэдрических сетках, разорванными связями на боковых гранях частиц), а поверхностные атомы кислорода различаются по величине отрицательного заряда, то становится понятным многообразие форм связи, а следовательно, и энергетическая неоднородность адсорбированной воды. [c.36]

    Геометрические модели] твердого каркаса пористой среды. Большое число катализаторов имеет корпускулярное строение, которое представляет собой совокупность частиц различной формы, связанных в пространственный каркас. Точнее всего пористые структуры такого типа описывает глобулярная модель, представляющая каркас твердого тела. Основной топологической структурной характеристикой глобулярных моделей является координационное число узлов (контактов глобулы). Этот подход был применен к моделированию каркаса пористого те.ла в [19]. Основные гипотезы модели 1) тело состоит из разноразмерных шаров с рас- [c.127]

    Адсорбция олефина на поверхностных катионах с низким координационным числом (кислородные вгкзнсии) может быть как ассоциативной (я-связанный олефин), так и диссоциативной -связанная аллильная частица) (разд. 11.2) вопрос заключается в том, каков ха- [c.163]

    Структура упаковки. Пространство между частицами в зернистом слое со случайной упаковкой имеет весьма сложную форму, которую трудно представить наглядно. Некоторое представление о форме пб-рового пространства можно составить, рассматривая простейшие способы правильной упаковки шаров одинакового размера. Возможны различные правильные структуры — от кубической упаковки с пористостью е = 0,48 и координационным числом (т. е. числом соседей каждого шара), равным 6, до плотнейшей упаковки с долей свободного объема е = 0,26 и координационным числом 12. В неупорядоченном слое сферических частиц могут встречаться отдельные области, приближающиеся к различным способам правильной упаковки, а также локальные дефекты, вызванные отсутствием какой-либо частицы на положенном месте и образованием сводов , которые оберегают участки с повышенной локальной пористостью от давления лежапщх выше частиц. Еще более сложным может быть характер упаковки слоя, состоящего из частиц неправильной формы или зерен различного размера. Вибрация зернистого слоя способствует переходу от менее плотных к более плотным структурам. [c.214]

    Комплексные соединения. В структуре комплексных соедине-лий можно различить координационную (внутреннюю) сферу, состоящую из центральной частицы — комплексообразователя (ион или атом) и окружающих его лигандов (ионы противоположного знака или молекулы). Ионы, находящиеся за пределами координационной сферы, образуют внешнюю сферу комплекса. В формулах комплексных соединений координационная сфера заключается в квадратные скобки. Примерами подобных веществ являются K4lFe( N)6l, KslHgl.,], (Ag(NH3)j] l, Ks[Zn(0H)4], [c.116]

    Однако отнюдь не всегда кристаллы обладают структурой, отвечающей максимальному координационному числу из возможных, так как соотношение радиусов является не единственным фактором, обусловливающим величину координационного числа. Так, в частности, поляризуемость ионов тоже существенно влияет на взаимодействия и на характер свкзи между частицами в кристалле. [c.131]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    В окислительно-восстановительных реакциях промежуточными активными частицами являются радикалоподобные нейтральные образования, связанные с активными центрами катализатора го-меополяр ными связями, и каталитическое воздействие связано с переходом электрона от молекулы катализатора к молекуле реагента и обратно. Эти реакции катализируются металлами и полупроводниками— окислами, сульфидами и комплексными соединениями. Активными центрами этих катализаторов являются обычно неполностью координированные атомы или катионы переходных металлов, у которых имеется незаполненная -орбиталь. Эта орбиталь образует координационные связи с молекулами, являющимися донорами пары электронов. С молекулами, имеющими незанятые орбитали, такие активные центры образуют п-связь. -Орбиталь с неспаренным электроном действует как свободная валентность в значительной степени подобно свободному радикалу. [c.134]

    Многие физические свойства зернистого слоя должны определяться более тонкими статистическими характеристиками, нежели радиальная функция распределения. К ним, в частности, относится координационное число данной структуры N1. Оно равно числу контактов зерна с окружающими его частицами слоя, составляющими первую коордипациоппую сферу, которая дает наиболее резкий первый пик функции к (г) на расстоянии г = (1 (см. рис. 4). [c.20]

    Чтобы выяснить, в какой мере предложенная модель соответствует структуре слоя, рассмотрим более детально относительное расположенне частиц первой координационной сферы в регулярных структурах и в агрегатах, извлекаемых из слоя. [c.22]

    Описан метод измерения скоростей потока в неподвижном зернистом слое с помощью пневмометрпческого насадка, нечувствительного к скосам потока и обеспечивающего локальность измерения в точке размером не более 0,5 мм. Представлены результаты исследования полей скорости в случайной плотной упакованной структуре сферических частиц размером d = 4 мм в аппарате диаметром 125 мм. С помощью статистического анализа флуктуаций скорости проведена количественная оценка радиальной функции распределения, отражающей ближний порядок в расположении частиц в слое. Экспериментально показано, что конфигурация частиц первой координационной сферы близка к структуре плотнейшей упаковки со случайно распределенными дырками в узлах решетки. Табл. 1. Нл. 6. Библиогр. 7. [c.173]

    Пористая структура ксерогелей описывается глобулярной (корпускулярной) моделью, согласно которой твердое вещество состоит из соприкасающихся или сросшихся частиц поры представляют собой пустоты между ними [69—79]. Глобулы, формирующие ксо-рогели, могут иметь ту или иную плотность упаковки, которая количественно характеризуется координационным числом, соответствующим числу касания каждой глобулы с окружающими [69, 72—74]. В смешанных структурах сочетаются оба вида пор. На рис. 22 показана идеальная глобулярная структура с координационный числом 6, построенная из шаров. Шары расположены по углам куба, а пора представляет собой полость между ними с ше- [c.70]

    Бернал и Фаулер в результате реитгеноструктурного исследования воды установили, что в ней остаются группировки молекул, сходные со структурой льда. Для большей части молекул в жидкой воде сохраняется тетраэдрическое окружение, которое они имели в структуре льда среднее координационное число молекул в жидкой воде близко к четырем. Наличие элементов кристаллической структуры у воды, а также большого дипольного момента у ее молекул обусловливает высокое значение диэлектрической проницаемости воды при 25° С она равна 79,5. Это означает, что взаимодействие между заряженными частицами в водной среде почти в 80 раз слабее, чем в вакууме. [c.81]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]

    Нематической фазой называется молекулярная структура, в которой жидкокристаллические частицы расположены случайно и не имеют дальнего координационного порядка. [c.40]


Смотреть страницы где упоминается термин Частица координационное: [c.174]    [c.19]    [c.8]    [c.239]    [c.307]    [c.204]    [c.302]    [c.174]    [c.120]    [c.600]    [c.130]    [c.74]    [c.29]    [c.51]    [c.147]    [c.630]    [c.59]   
Теоретическая неорганическая химия (1969) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение обмена частиц первой координационной сферы комплексов с молекулами раствора

Координационное число и плотность упаковки. Количество частиц в элементарной ячейке

Полные и сокращенные формулы координационных соединений (И). 4. Комплексные частицы в растворе



© 2025 chem21.info Реклама на сайте