Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное давление адсорбционных нок поверхности

    Адсорбция на жидких поверхностях. Явление адсорбции имеет особое значение для физической химии поверхностей и дисперсных систем. С точки зрения молекулярной теории, которая исследует детальную структуру адсорбционного слоя, это явление представляется чрезвычайно сложным. Классическое, хотя и несколько устаревшее изложение этого вопроса имеется в уже цитированной монографии Хюккеля [5]. Особенно наглядные представления о строении адсорбционного слоя были получены в результате исследований жидких поверхностей, так как в этом случае отпадает один из факторов, существенно усложняющих адсорбцию в случае твердых поверхностей,— их специфическая структура и неоднородность. Кроме того, в случае жидкостей можно непосредственно измерять поверхностное натяжение (для растворов) или двумерное поверхностное давление (для нерастворимых монослоев), которые являются ценнейшими термодинамическими характеристиками состояния адсорбционного слоя. По этой причине в дальнейшем мы будем заниматься только адсорбцией на жидких поверхностях. [c.106]


    Если с одной стороны барьера находится чистый растворитель, а с другой — растворитель, покрытый адсорбционным слоем, то силы, действующие на барьер со стороны этих двух поверхностей, оказываются разными. Рассмотрение, аналогичное проведенному при описании опыта Дюпре в 1 гл. I, показывает, что в сторону чистой поверхности на единицу длины барьера действует сила сго, а в обратном направлении, вдоль поверхности, покрытой адсорбционным слоем, — меньшая по величине сила ст(Г). В итоге (см. рис. II—5) на единицу длины барьера действует сила, направленная в сторону чистой поверхности и равная разности поверхностных натяжений поверхности чистой и покрытой адсорбционным слоем. Эту силу сто—ст(Г) можно рассматривать как двухмерное давление адсорбционного слоя я  [c.52]

    Геометрическими параметрами адсорбционной системы являются объем газа V и площадь поверхности твердого тела А. Соответствующие силы — это давление в объеме газа р = ( /дУ)т, л, ц и поверхностное давление адсорбированного вещества л = (д /дА)т, у,11-Поэтому для газа, взаимодействующего с поверхностью твердого тела, из уравнений (VI, ) и (VI,2) следует, что [c.209]

    Примененный нами термохимический метод определения удельной поверхности адсорбентов позволяет распространить абсолютный метод Гаркинса и Джуры и на мезопористые адсорбенты. Однако теперь, кроме полной поверхностной энергии жидкости Е , нужно дополнительно иметь эмпирическую зависимость поверхностной энергии адсорбционного слоя от относительного давления h пара этой жидкости — Е — f h) в ограниченной области h, обычно 0,05 0,35. Для воды на окисных поверхностях, например, Е при комнатной температуре хорошо передается линейной зависимостью Efi = (0,16 -н 0,13 h) Дж/м . [c.142]

    В ионизированных адсорбционных слоях поверхностное давление Лй оказывается больше в результате ионизации монослоя, влияние которой может быть выражено величиной свободной энергии образования единицы поверхности S,F двойного электрического слоя (но Гельмгольцу). Для систем, включающих только одновалентные электролиты, имеем [c.218]

    Очевидно, деформируемость и эластичность пленок поверхностно-активных веществ отражает их способность образовывать сплошной, а не прерывистый адсорбционный слой на поверхности полиэтилена. Вероятность проникания жидкости в микродефекты образца возрастает с увеличением плотности адсорбционного слоя, а поверхностное давление в микродефекте связано с энергией адсорбции пленки. Индекс активности не учитывает влияние [c.134]


    Если удельная поверхность адсорбента s известна, то путем графического интегрирования изотермы адсорбции, представленной в координатах а—Ых или —х, может быть вычислено поверхностное давление тг для различных значений х. Таким образом может быть найдена зависимость тг от ю, т. е. экспериментальный вид уравнения состояния адсорбционной фазы. [c.734]

    Оказывается, что если на основании адсорбционных измерений на твердых адсорбентах вычислить по методу Бангама значения поверхностного давления и построить соответствующие кривые я—ю, то в целом ряде случаев эти кривые по своей форме напоминают кривые тт—(О для монослоев на воде. В качестве иллюстрации на рис. 182 приведена кривая тг—со, полученная из изотермы адсорбции /г-бутана на алюмосили-катном катализаторе с удельной поверхностью 118 ж /г. [c.738]

    Адсорбция активных агентов на внутренних поверхностях микротрещин является, вероятно, результатом локального уменьшения когезионных сил. В адсорбционном слое действует поверхностное давление, раздвигающее трещину, которая и распространяется в направлении наименьшего сопротивления Она должна, по-видимому, идти или. между сферолитами, или через межкристаллитное вещество, содержащееся с сферолите . Обе эти возможности подтверждаются наблюдаемыми в пленках направлениями распространения трещин - . [c.350]

    Изменение поверхностного натяжения разбавленных растворов полимеров в низкомолекулярных растворителях по сравнению с поверхностным натяжением чистого растворителя равно поверхностному давлению, как и для растворов ПАВ число петель из молекулярных цепей, находящихся в растворе, в этом случае минимально. Если же концентрация макромолекул в поверхностном слое значительна или недостаточно адсорбционных центров на поверхности (например, на твердой). [c.195]

    Завершение формирования ассоциатов в адсорбционном слое означает, что дальнейшее повышение концентрации молекул (или ионов) на поверхности должно привести к резкому усилению взаимного отталкивания ассоциатов и, следовательно, вызвать рост поверхностного давления в слое. [c.52]

    Если исследуется адсорбция на поверхности жидкого адсорбента, и поверхностное натяжение также находится из опыта, то обе части уравнений (XIV. 31) — (XIV. 34) определяются из опыта независимо, что позволяет при достаточной точности измерений произвести проверку адсорбционной теоремы Гиббса применительно к образованию адсорбционных пленок. Для твердых адсорбентов во многих случаях изменением натяжения поверхностной части адсорбента при изменении состава адсорбционной пленки можно пренебречь. Тогда рассчитанное изменение поверхностного натяжения может быть отождествлено с изменением натяжения или поверхностного давления самой адсорбционной пленки. [c.308]

    Для поверхностной сорбции (адсорбции) в порах переходного типа можно ограничиться выводами потенциальной теории, согласно которой адсорбированное вещество представляет конденсированную жидкую фазу, обладающую свойствами объемной жидкой фазы. Поверхность адсорбированной пленки соответствует одному значению адсорбционного потенциала Ч , численно равного работе адсорбционных сил по перемещению единицы количества вещества из газовой объемной фазы с давлением Р к поверхности адсорбированной пленки, давление над которой принимается равным давлению насыщенного пара Ру при температуре Т. Таким образом, действие сил поля с потенциалом эквивалентно дополнительному давлению, приложенному к адсорбированной пленке АР = Ру Т)—Р. [c.47]

    Термодинавическое описание адсорбционных систем. Реальная система с поверхностью раздела и система сравнения. Адсорбция как избыточная величина. Уравнения Гиббса для поверхности. Выражение химического потенциала адсорбированного вещества через адсорбцию константа Генри для адсорбционного равновесия, ее определение хроматографическим методом. Изотерма адсорбции, коэффициент активности адсорбированного вещества, поверхностное давление. [c.126]

    В случае легкоподвижной границы раздела дисперсной фааы и дисперсионной среды (пены и эмульсии) условие равенства нулю скорости течения жидкости на поверхности раздела, определяющее применимость уравнения Рейнольдса, кожет на выполняться, и утоньшение пленки будет происходить с большей скоростью. Однако в пенных и эмульсионных пленках, стабилизированных адсорбционными слоями ПАВ, условия вытекания жидкости приближаются к условиям вытекания из зазора между твердыми поверхностями даже и тогда, когда молекулы ПАВ не образуют сплошной твердообразной пленки. Это связано с тем, что при значениях адсорбции ПАВ меньших предельной Гта движение поверхности жидкости приводит к переносу части молекул ПАВ адсорбционного слоя из центральных участков пленки на периферийные участки, пр1илегающие к каналам Гиббса — Плато. В результате значение адсорбции в центре пленки уменьшается, а на периферии увеличивается, что обусловливает возникновение градпента поверхностного натяжения (градиента двухмерного давления) вдоль поверхности пленки, т. е. проявляется упомянутый выше эффект Марангони — Гиббса. Этот градиент поверхностного натяжения может в значительной степени уравновешивать стремление гра.ничных слоев жидкой пленки к вытвйанию п-ри этом поверхность приобретает как бы твердообразные свойства и устанавливается режим течения, описываемый уравнением Рейнольдса (IX—24). [c.256]


    Основной задачей теории адсорбции из смесей является вычисление адсорбционных равновесий компонептов смеси по данным адсорбции индивидуальных веществ без выполнения специальных, часто очень сложных экспериментов. Представляет интерес работа Радке и Прауснитца [5, в которой рассмотрен метод вычисления изотерм многокомпонентной адсорбции по данным индивидуальной адсорбции из разбавленных водных растворов. В ней использовано понятие о двумерном поверхностном давлении как разности между поверхностным натяжением поверхности раздела чистый растворитель — твердое тело и поверхностным натяжением раствор — твердое тело при той же температуре я = сгчист. р-тель—сгр.р тв. тело. Радке и Прауснитц считают, что для идеального поверхностного раствора активность при постоянной температуре и поверхностном давлении я пропорциональна молярной доле г. [c.101]

    Обработка экспериментальных данных на основе различных моделей ДЭС производится обычно с помощью ЭВМ. Она позволяет, как правило, добиться удовлетворительного описания адсорбционных или электрокинетических данных по отдельности [72, 77, 78], а также данных по двумерному поверхностному давлению на межфазной границе вода—воздух [79] или по взаимодействию заряженных поверхностей через прослойку электролита [80]. Однако к результатам такой обработки следует подходить с достаточной осторожностью. Так, численные расчеты, спецрально проведенные для различных моделей двойного слоя — моделей Гуи, Штерна, Грэма и Гельмгольца, показали [81], что хорошее описание ограниченного числа экспериментальных данных (относившихся в этом случае к титрованию окислов) может быть получено не единственным образом, т. е. с разными наборами параметров (имеющих в каждом случае физически разумную величину) для различных моделей ДЭС. [c.23]

    Рассмотрим сначала наиболее простой случай развития межфазной прочности водных растворов яичного альбумина и а-ка-зеина на границе с воздухом (рис. 25 и 26). Известно, что в водных растворах молекулы яичного альбумина и а-казеина находятся в виде глобул. При адсорбции белка вследствие избытка свободной энергии на границе раздела фаз происходят конформационные изменения макромолекул, которые выражаются в некотором развертывании молекул под влиянием тех сил, которые действуют на молекулу у поверхности раздела фаз. Скорость образования адсорбционного слоя есть функция концентрации — чем больше концентрация в объеме, тем скорее образуется адсорбционный слой, так как при этом выше вероятность выхода молекул белка на поверхность. Со временем поверхностный слой заполняется макромолекулами белков и переходит в конденсированное состояние, вследствие чего создается большое поверхностное давление или, что строже,— барьер для новых приходящих молекул. Существование такого барьера было доказано в работе Александера и Макрихти [126]. [c.198]

    Механизм образования межфазных адсорбционных слоев глобулярных белков обсуждался и ранее в ряде работ. Так, Александер и Чогел [127] считают, что в нроцессе адсорбции, протекающей на границе раздела фаз, вначале образуется монослой из белка с гидрофобными участками молекул, обращенными к маслу, и гидрофильными,— к воде. Следующие молекулы, которые подходят к поверхности раздела благодаря давлению адсорбционного слоя, имеют тенденцию вытеснять с поверхности менее поверхностно-активные сегменты молекул, связанные в монослое силами когезии, вследствие чего сегменты молекул адсорбционного слоя образуют свободные петли или складки. Это приводит к тому, что увеличивается число полярных областей молекул белка на границе раздела фаз. Поверхность слоя, обращенного к воде, становится более гидрофильной, что должно приводить к образованию толстых структурированных слоев. [c.202]

    Описанные результаты влияния магнитной обработки на адсорбцию гексадецилсульфата натрия на границе раздела жидкость — газ хорошо согласуются с данными, характеризующими изменение дисперсности пузырьков воздуха и их гидратированности [12, с. 139]. Это подтверждается следующими опытами. В раствор гексадецилсульфата натрия (4-10 моль/л) через капилляр диаметром 0,2 мм под давлением 6,7 кПа вводили пузырьки воздуха, которые в ходе опыта фотографировали и подсчитывали их число (погрешность измерений около 5%). Измеряли также количество воды, присоединенной к пузырькам и увлекаемой ими через слой неполярной жидкости (нормального октана). Погрешность измерений также не превышала 5%. Результаты опытов, приведенные на рис. 14, показывают, что при магнитной обработке значительно изменяется как размер пузырьков, так и количество увлеченной ими воды. Эти характеристики изменяются также и при магнитной обработке дистиллированной воды (возможно это обусловлено неконтролируемым количеством примесей ПАВ). Изменение степени адсорбции ПАВ на поверхности омагниченного дистиллята сопровождается также изменением свойств мономолекулярных адсорбционных слоев, Прямые измерения, выполненные Габриелли и Фикалби, показали, что мономолекулярный слой пальмитиновой кислоты на поверхности омагниченного дистиллята имеет значительно меньшее поверхностное давление, чем на поверхности дистиллята неомагниченно-го [58]. [c.53]

    Грегг [46] предложил метод, весьма схожий по теории с методом Гаркинса и Юра, основанный на изучении свойств адсорбционных пленок и, в частности, зависимости произведения их поверхностного давления л ) на величину площадки (шо), занимаемой молекулой Б конденсированном слое, от значения л 5, где 5 — удельная поверхность. Оба эти произведения могут быть определены из изотерм адсорбции с помощью уравнения адсорбции Гиббса [c.108]

    В последнее время для определения удельной поверхности разработано несколько методов, основанных на изучении изотерм адсорбции паров. Сюда относится метод Брунауера, Эмметта и Теллера, основанный на теории многослойной адсорбции, развитой этими авторами30.31,32 методы Грегга з и автора, основанные на исследовании свойств адсорбционных пленок, и относительный метод Юра и ГаркинсаЗ ДЭ основанный на допущении линейной зависимости поверхностного давления конденсированной пленки от величины молярной площадки, занимаемой адсорбируемым веществом в этой пленке. [c.179]

    В развитии наших взглядов на природу адсорбционных слоев нерастворимых веществ на поверхности воды весьма большую роль сыграли хорошо известные работы-Лэнгмюра, Адама и Джессопа, а также работы, выполненные в последнее время в лаборатории Гаркинса. Применение горизонтальных поверхностных весов Лэнгмюра — Адама и вертикальных весов Гаркинса и Андерсона к изучению поверхностных слоев высокомолекулярных органических веществ на воде позволило накопить большой экспериментальный материал в этой области и установить ряд общих закономерностей. Этот метод из чения мономолекулярных слоев на воде дает возможность путем прямых измерений установить связь между величиной поверхностного давления слоя тт и размером площадки о), приходящех хся на одну молекулу в поверхностном слое. Получаемые [c.731]

    Адсорбционные слои могут повышать устойчивость жидких плепок и пен и вызывать гашение капиллярных волн вследствие возникновения местных разностей поверхностного натяжения или поверхностного давления. К П. я. относятся и электрич. явления в поверхностных слоях, связанные с распределением в них электрич. зарядов, и возникновение скачков потенциала в поверхностях раздела фаз. Эти П. я. в значительной степени связаны с адсорбцией ионов и дипольных молекул. К ним относятся электрока-пиллярные и электрокинетич. явления и ряд электродных процессов. Они изучаются электрохимией П. я. [c.52]

    В разд. 4.2.1 уже говорилось, что адсорбенты, применяемые в ЖХВД, отличаются от адсорбентов, предназначенных для обычной хроматографии, структурой, а также размером и формой частиц. Адсорбенты для ЖХВД можно разделить на две большие группы поверхностно-пористые и полностью пористые. Поверхностно-пористые адсорбенты получают следующим образом на твердые, непористые, сферические ядра наносят пористый слой собственно адсорбента толщиной 1—2 мкм (см. разд. 4.2.1 и рис. 4.1,6). Благодаря такому строению все типы этих адсорбентов-носителей — шарики с регулируемой поверхностной пористостью, шарики, покрытые пористыми слоями, шарики, покрытые пленкой,— достаточно прочны и не разрушаются при высоких давлениях, применяемых при хроматографическом разделении. Хотя глубина адсорбционного слоя у таких адсорбентов значительно уменьшена, в адсорбентах типа корасил (табл. 4.7) имеется довольно много очень маленьких пор, что значительно расширяет адсорбционную зону, а производительность колонки сильно зависит от скорости течения. Ввиду относительно малой величины адсорбционной поверхности (1— 15 м /г) в такие колонки нельзя вводить пробы большого объема, так как перегрузка колонки приводит к снижению ее разделительной способности. Средняя емкость колонки — порядка 0,1 мг пробы на 1 г адсорбента. Малая емкость является недостатком, если используются малочувствительные детекторы, например рефрактометр. Однако сильнополярные вещества, вероятно, лучше разделяются на адсорбентах этого типа, потому что их легче можно элюировать. Кроме того, колонки с такими адсорбентами легче приготовить, подвижная фаза легче проникает в эти адсорбенты, в результате повыщается средняя скорость течения (но одновременно снижается высота, эквивалентная теоретической тарелке, ВЭТТ). На этих адсорбентах можно как и на адсорбентах других типов, закреплять жидкие фазы и использовать их также для жидко-жидкостной хроматографии. В табл. 4.7 дан список некоторых адсорбентов вместе с их характеристиками. [c.177]

    Явление расплющивания белков на других межфазных поверхностях вода/воздух, вода/масло и т. п. давно известно. Для изучения состояния пленки обычно используется метод измерения поверхностного давления. В работах [ 10—12] и многих других более ранних таким методом было найдено,, что при низких поверхностных давлениях, когда белка меньше 0,07мкг1см , независимо от структуры и молекулярного веса происходит полное расплющивание и развертывание глобулярного белка до толщины одной полипептидной цепи, т. е. около 7—10 A. Такая пленка обладает особыми свойствами, и, в частности, белки в ней необратимо денатурированы и обладают значительно пониженной растворимостью. При больших поверхностных давлениях в адсорбционном слое преобладают глобулярные молекулы, сохраняющие нативную структуру и ферментативную активность. Толщина такой пленки сравнима с линейными размерами молекулы. В области промежуточных давлений пленки состоят из смеси глобулярных и развернутых молекул. [c.232]

    Эти характеристики изменяются также и при магнитной обработке дистиллированной воды (возможно это обусловлено неконтролируемым количеством примесей ПАВ). Изменение степени адсорбции ПАВ на поверхности омагниченного дистиллята сопровождается также изменением свойств мономолекулярных адсорбционных слоев. Прямые измерения, выполненные Габриелли и Фикалби, показали, что моно-молекулярный слой пальмитиновой кислоты на поверхности омагниченного дистиллята имеет значительно меньшее поверхностное давление, чем на поверхности неомагниченного дистиллята [66]. [c.58]

    Хотя адсорбционные слои больщинства растворимых поверхностноактивных веществ относятся к газообразному типу, для них известны также и конденсированные пленки. Так, монослои докозилсульфата натрия на растворе 0,04 М фосфатного буфера при pH = 7,2, а также на растворе 0,01 н. НС1 при относительно низких поверхностных давлениях и при площади в 26 на молекулу становятся твердо-конденсированными [6]. Адсорбционные слои или поверхностные пленки растворимых поверхностноактивных веществ при некоторых условиях могут быть исследованы с помощью поверхностных весов, видоизмененных специально для этой цели [7 . При помощи такой методики было обнаружено, что образование на поверхности растворов пленок особого строения зависит от концентрации и степени сжатия [8], а также установлено, что длинноцепочечные галоидные соли четвертичного аммония и высшие гомологи жирных кислот в водных щелочных растворах [9] образуют слои газообразного типа. [c.278]

    Для образования иленок высокой прочности с целью предотвращения чрезмерного износа инструмента во многие жидкости (именуемые в дальнейшем смазочно-режущие ) вводят присадки высокого давления (ВД) и противосварочные. Эти присадки вследствие поверхностной активности и отсутствия сплошного контакта между стружкой и инструментом проникают к образующейся ювенильной поверхности срезаемого металла. С одной стороны, они могут размягчать его тончайший поверхностный слой (адсорбционно пластифицировать металл), а с другой стороны, химически взаимодействовать с поверхностью металла с образованием пленок новых химических соединений с низким сопротивлением сдвигу, проявляющих свойства твердых смазок. [c.10]

    Зависимости (3.65)—(3.67) предполагают, что скорость диффузии существенно меньше, чем скорость растворения и выделения газа поверхностями пленки и что адсорбционные слои ПАВ не оказывают влняння на перенос 1аза. Однако извес I о, что мономолекулярные пленки нз некоторых нерастворимых ПАВ (например, цетилового спирта) заметно уменьшают скорость испарения водной подложки [46]. При больших поверхностных давлениях скорость испарения может уменьшаться в 5—10 раз. Существенное влияние структуры липидных бислоев на проницаемость газов, а также воды и электролитов обнаружено при изучении свойств везикул (лнпосом) и плоских черных углеводородных пленок в водной среде [319]. Сведения о влиянии адсорбционных слоев ПАВ на скорость адсорбции и десорбции газа в пенных системах менее определенны [153]. [c.142]

    Поверхностно-активные молекулы, попадая в микротрещины поверхностей трения и достигая мест, где ширина зазора равна размеру одной-двух молекул, стремятся своим давлением расклинить трещину (рис. 33). Это явление известно под названием адсорбцион-но-расклинивающего эффекта, что также впервые было обнаружено и изучено акад. П. А. Ребиндером. Подсчитано, что давление на стенки трещины может достигать до 1000 кПсм . Адсорбционно-рас-клинивающее действие поверхностно-активных молекул также приводит к облегчению пластических деформаций в поверхностном слое и к понижению прочности металла. При трении металлов это приводит к лучшей приработке деталей и снижению величины силы трения. Однако адсорбционно-расклинивающее действие может приводить к увеличению износа трущихся пар за счет облегчения процессов диспергирования поверхностных объемов металла. [c.61]

    Ионно-электростатическая компонента расклинивающего давления, согласно [42, 45], зависит, главным образом, от потенциалов поверхностей, ограничивающих пленку. Поскольку изученные нами ПАВ являлись неионогенными и при их добавлении ионная сила дисперсионных сред оставалась постоянной, а концентрации ионов в отсутствие Na l при pH = 6- 7 были достаточно низки, в первом приближении можно полагать равенство электрокинетических и штерновских потенциалов. Следовательно, обнаруживаемое в опыте повышение -потенциала при увеличении содержания ПАВ в интервале от 1-10 до 1-10 —1-10 моль/дм (рис. 12.5) обусловлено вытеснением из слоя Штерна сильно гидратированных ионов водорода. По мере заполнения адсорбционного слоя ПАВ, возможно, происходит уменьшение поверхностной концентрации гидроксил-ионов, что вызывает снижение -потенциала при концентрации ПАВ 10 —10 3 моль/дм  [c.210]


Смотреть страницы где упоминается термин Поверхностное давление адсорбционных нок поверхности: [c.439]    [c.185]    [c.307]    [c.101]    [c.101]    [c.112]    [c.97]    [c.352]    [c.97]    [c.222]    [c.453]    [c.208]   
Физика и химия поверхностей (1947) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Давление поверхности

Давление поверхностное



© 2025 chem21.info Реклама на сайте