Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации потенциальная

    Факторы, определяющие константу скорости реакции. Энергия активации. Теория столкновений. Активированные комплексы. Поверхности потенциальной энергии, путь реакции. Теория абсолютных скоростей реакций, переходное состояние, энтальпия и энтропия активации. Реакции замещения, нуклеофильные группы, механизм 814) 1 (диссоциативный), механизм SN2 (ассоциативный). [c.350]


    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Все сказанное лишь в известной мере может быть применено к макромолекулам. Если даже не учитывать влияние межмолекулярного взаимодействия и высокой вязкости полимеров на энергию активации (потенциальный барьер) вращения, то все-таки следует заметить, что поворот частей макромолекулы вокруг той или иной связи сопровождается большими затратами энергии именно вследствие большой массы макромолекул. Поворот вокруг одной связи в макромолекуле вызывает перемещение в пространстве значительного числа соседних атомов, так что все они в той или иной мере будут влиять на величину потенциального барьера. Различные формы одной и той же цепной молекулы, отличающиеся друг от друга не порядком расположения атомов, а только степенью свернутости, достигаемой путем обратимых внутренних вращений, получили название конформаций. [c.17]

    В соответствии с теорией переходного состояния катализатор открывает новый путь реакции и снижает потенциальный энергетический барьер, который реагенты должны преодолеть, чтобы образовался целевой продукт. В главе И отмечалось, что этому уменьшению энергии соответствует такое же снижение энергии активации реакции, что, в свою очередь, приводит к увеличению ее скорости. Например, из табл. 3 (см. стр. 47) следует, что, если энергия активации реакции, протекающей при 0° С, уменьшается с 70 до 40 шл, то скорость процесса повышается примерно в 10 раз. Указанное снижение энергетического барьера показано на рис. XIV- . [c.410]

    Итак, мы ознакомились с основными положениями теории переходного состояния, с возможностями оценки на базе этой теории предэкспоненциального множителя в уравнении Аррениуса. Для вычисления энергии активации надо рассчитывать поверхность потенциальной энергии элементарного химического акта. Задача эта сложная и решается только для простейших реакций. Для отдельных типов реакций предложены приближенные методы расчета энергии активации. Широко применяются для оценки констант скоростей реакций корреляционные методы. [c.588]


    ГДР — трансмиссионный коэффициент к — постоянная Больцмана ДС — свободная энергия активации (ДО =АН —7Д5 ). Часто принимают равенство свободной энергии активации потенциальному барьеру АС Уо, предполагая Д5 =0 и х=1), тогда за- [c.41]

    ЦИС- и транс-изомеры. Они могут быть разделены, так как являются устойчивыми и имеют различные физические и химические свойства. Так, например, температура кипения транс-,дихлорэтилена 48.4°, цис-дихлорэтилена 60.1°. Существование устойчивых цис-транс-изомеров определяется тем, что энергия активации — потенциальный барьер — для реакции изомеризации очень высока. Соответственно мала скорость такой реакции. По уравнению Аррениуса, константа скорости реакции [c.86]

    В присутствии катализатора потенциальный барьер реакции (т. е. уровень, отвечающий энергетическому состоянию активного комплекса) снижается на величину теплоты адсорбции активного комплекса. Из этого следует, что энергия активации fu в присутствии катализатора, рассчитанная по уравнению Аррениуса на основании экспериментальных данных, соответствует разности энергии активации Е, в гомогенной системе и теплоты адсорбции активного комплекса. Величина Е п называется кажущейся энергией активации. [c.281]

    Очевидно, приведенная диаграмма детализирует энергетическую картину активных столкновений, о которых говорилось в главе IV. Разность между потенциальной энергией начальных продуктов и потенциальной энергией на вершине барьера и является энергией активации, т. е. той энергией, которой должны обладать молекулы исходных веществ, чтобы преодолеть потенциальный барьер и перейти в конечные продукты реакции. [c.141]

    Если сделать вертикальный разрез потенциальной поверхности вдоль пути перехода и развернуть поверхность разреза в одну плоскость, то полученная кривая, называемая профилем пути реакции (рис. 10) характеризует динамику изменения потенциальной энергии системы в ходе элементарного акта. Разность энергий между состоянием системы в седловинной точке и начальным состоянием ( энергетический барьер ) есть наименьшая энергия, которую необходимо сообщить системе А Аа + Ад, чтобы реакция осуществилась. Эта разность называется энергией активации прямой реакции Е =Еа-Е . Величины Е л, Е л называются классическими энергиями соответственно прямой и обратной реакций и представляют действительно тот барьер, который надо преодолеть, если бы частицы полностью подчинялись законам классической физики. Квантовомеханическая картина, однако, [c.70]

    Понятие энергии активации определяется существованием потенциальных энергетических барьеров, с преодолением которых связано любое химическое превращение.  [c.9]

    Как это видно из формул (1.1) и (1.2), ускорение химической реакции в принципе может быть достигнуто путем либо снижения величины Е, либо увеличения AS. Каталитическое ускорение реакций идет, видимо, большей частью по пути снижения Е. Снижение энергии активации под действием катализатора в общем случае является следствием образования иных промежуточных соединений и активированных комплексов и соответственно изменения формы поверхности потенциальной энергии, благодаря чему открывается новый путь реакции, проходящий через перевалы меньшей высоты. [c.11]

    Если электропроводность объясняется перезарядкой ионов, зонная теория полупроводников, по-видимому, в простейшем виде неприменима не происходит полного вырождения уровней валентных электронов в отдельных ионах, а сохраняется периодичность в энергетическом спектре валентных электронов кристалла. Катионы решетки находятся в потенциальной яме, так что переход электрона от катиона к катиону требует энергии активации, а длина свободного пробега электрона соответствует междуатомным расстояниям в кристаллической решетке. В таком случае энергия активации определяется не только параметрами атома, образующего катион (т. е. в конечном счете его положением в таблице Менделеева), но и межатомными расстояниями в кристалле, что указывает на значение геометрических параметров кристалла в отношении его каталитической активности. [c.29]

    ГИЯ отталкивания а я Ь — постоянные п = = 3 ч- 4 т = 9 ч- 10. Кривая 1 проходит через область с пониженной потенциальной энергией АН . Это область физической адсорбции. Кривая 2 характеризует изменение потенциальной энергии при адсорбции молекулы Аа на поверхности Р, сопровождающейся диссоциацией на атомы А и А". Кривая 2 имеет более глубокий минимум, чем кривая 1, и отвечает образованию химической связи, хемосорбции. Согласно рис. 202 хемосорбция сопровождается выделением теплоты АН . Однако возможно протекание хемосорбции с поглощением теплоты. Пересечение кривых 1 и 2 показывает переход от адсорбции молекулярной (физической) к адсорбции химической. Образующаяся при этом суммарная кривая (жирная кривая) имеет максимум, соответствующий энергии активации хемосорбции Хемосорбция может также протекать с энергией активации, близкой к нулю. Такое положение реализуется, если потенциальная кривая физической адсорбции будет, например, соответствовать кривой 3. [c.642]


    Вычисление стерических факторов реакций атомов хлора и брома с молекулой водорода на основании расчета поверхности потенциальной энергии для упрощенной модели реакции, в которой энергия активации представляет разность энергий между двумя колебательными уровнями [255], дает 202 [c.202]

    Однако отрицательная величина энергии активации в бимолекулярной рекомбинации СНз или других сложных радикалов не имеет смысла, так как емкость сложных частиц относительно распределения избыточной энергии, возникающей вследствие экзотермичности реакции рекомбинации, довольно велика и при столкновении они должны сва- литься в потенциальную яму без участия третьей частицы, т. е. образовать молекулу чисто бимолекулярным путем и притом без отдачи энергии в форме излучения. Энергия активации в реакциях рекомбинации должна быть положительной малой величиной, близкой к нулю или даже равной нулю. [c.212]

    Таким образом, при сравнении реакций данной серии с участием соединений и Му) становится очевидным, что соответствующие диаграммы потенциальной энергии отличаются только взаимным расположением кривой отталкивания и притяжения (см. рис. 19.1, кривые 1 и 3). Следовательно, различия в энергии активации реакций (18.1) объясняются различиями в относительных энергиях локализации, причем между этими величинами может быть установлена линейная связь вида [c.171]

    Помимо этого знание поверхности потенциальной энергии также позволяет проводить более простые расчеты энергий активации [c.177]

    Разность между потенциальной энергией Ру исходных веществ и потенциальной энергией активного комплекса в перевальной точке Р равна энергии активации, [c.341]

    Если конфигурация активного комплекса мало отличается от исходных молекул, что наблюдается у большинства мономолекулярных реакций, то скорость реакции в растворе близка к скорости в газовой фазе. При взаимодействии между растворителем, исходными молекулами и активным комплексом происходит искажение поверхности потенциальной энергии реакции, что может привести к изменению энергии активации и скорости реакции по сравнению с реакциями в газовой фазе. [c.351]

    Таким образом, из потенциальных диаграмм следует, что энергия активации электрохимических процессов зависит от перепапряжения для прямой реакции [c.372]

    Самые ранние попытки создания таких методов расчета энергий активации были предприняты Лондоном [110], и они приводили к чрезвычайно приближенным результатам. Последующие попытки Вилларса [111], Эйринга [112] и Эйринга и Поляни [113] улучшить точность метода с помощью исполь- чования эмпирических приемов не были плодотворными, и успех работы будет зависеть от развития техники квантовомеханических расчетов. Отоцаи [114] высказал предположение, что длина связи между атомами в молекуле, претерпевающей химическое превращение, определяется точкой перегиба на кривой потенциальной энергии для двухатомной молекулы. Вместе с дополнительными предположениями о конфигурациях комплекса (не очень отличающихся от допущений метода Эйринга) это позволяет вычислить 1нергии активации для трех- и четырехатомных систем результаты, полученные по этому методу, находятся в несколько лучшем согласии с экспериментальными данными. [c.279]

    Структура литьевых эластомеров, полученных с применением диаминов, сложна (ароматические кольца, биуретовые звенья и водородные связи). Очевидно, связи с наименьшей потенциальной энергией диссоциации и обусловят пределы деформирования полимера. Экспериментально определенная мольная энергия активации диссоциации биуретовых звеньев составляет около 192 кДж/моль, а энергия диссоциации связи С—N в отсутствие разветвления (биуретов) 338 кДж/моль. Из этого можно сделать [c.546]

    Как видно, реагирующая система, прежде чем перейти в ко-нечное состояние, должна преодолеть потенциальный барьер, равный кл. классической энергии активации. Разность между потенциальными энергиями исходных веществ и продуктов реакции— это тепловой эффект регкции —АИ. [c.141]

    На рис. XXIV, 3 изображены потенциальные кривые адсорбированных на электроде атома водорода (66) и иона гидроксония аа) в зависимости от расстояния х от поверхности электрода. В положении А энергия адсорбированного гидроксония минимальна. При движении гидроксония от точки А к В энергия его возрастает до достижения точки пересечения аа и ЬЬ, после прохождения этой точки протон получает электрон от электрода, отделяется от молекулы НгО и превращается в адсорбированный атом водорода, приближаясь к равновесному расстоянию в точке В. Величина энергии активации разряда гидроксония 1 показана на рисунке. Для реакции ионизации [c.626]

    Теория активных столкновений (Аррениус) оспована на том, что химическое взаимодействие осуществляется только при столкновении активных частиц, которые обладают достаточной энергией для преодоления потенциального барьера реакции и ориентированы в пространстве друг относительно друга. Чтобы произошла реакция, частицы в момент столкновения должны обладать некоторым минимальным избытком энергии, называемым энергией активации. [c.335]

    С помощью аналогичных потенциальных кривых для адсорбированногс на разных твердых поверхностях атома Н можно легко убедиться в том, что по мере увеличения энергии адсорбции водорода на металле перенапряжение будет уменьшаться. При увеличении энергии адсорбции потенциальная кривая адсорбированного атома снижается, что, как это следует из рисунка, приводит к снижению энергии активации разряда. [c.627]

    Уже отмечалось, что даже при Т = О К всегда имеется некоторый запас внутренней потенциальной энергии — нулевая энергия — как у исходных веществ, так и у конечных продуктов. Если они между собой равны Еш1пис1 = Ет1пков, то энергия активации от температуры не зависит, т. е. энергия активации при любой температуре равна энергии активации при Т = О К. [c.73]

    Используя теорию переходного состояния, можно рассчитать [117] значение к , В процессе атаки радикала ОН атомом О образуется активированный комплекс без нарушения правила Вигнера. Из общих соображений (поскольку это — реакция двух активных частиц) ясно, что энергия активации Ei равна нулю или, по крайней мере, невелика. Комплекс имеет очень рыхлую структуру, и оба радикала не утрачивают своей индивидуальности, а радикал ОН сохраняет угловой момент. Силы взаимодействия хорошо описываются потенциалом Леппарда — Джонса 6—12 (см. гл. 2). Центробежный потенциальный барьер включает в себя сумму потенциала Леннарда — Джонса Vij и вращательную энергию комплекса Уд, и, как обычно, достигает максимального значения на разделительной линии [c.255]

    Простейшая физическая модель реакции в растворах изложена в монографии Бенсона [1]. Эту модель, базирующуюся на представлениях Берналла, характеризуют три параметра — диаметр твердой сферы, аппроксимирующей реагирующие молекулы I — расстояние между центрами молекул, когда потенциальная энергия их взаимодействия может приближенно приравниваться к энергии взаимодействия на бесконечном удалении Пд — последнее значение энергии. При таком приближении диаграмма потенциальной энергии, представленная на рис. 2.5, имеет вид прямоугольной потенциальной ямы. При этом в качестве первого приближения принимается, что молекулы находятся в состоянии столкновения, когда потенциальная энергия их взаимодействия V кТ, а расстояние между ними I 1,7/ав1 где /дв — ближайшее расстояние между центрами реагирующих молекул. При такой модели скорость химического взаимодействия, кроме энергетического параметра Е (энергии активации), будеч определяться частотой столкновения молекул реагентов 2 и временем в, в течение которого молекулы удерживаются на расстоянии влияния силы взаимодействия, равной 1,7 ав. [c.31]

    Зародышеобразование в растворах. Предэкспоненциальный множитель в выражении для скорости образования зародышей в растворе пропорционален квадрату плотности растворенного вещества п и потоку частиц на поверхности кристаллического зародыша, площадь которого пропорциональна Ала . В случае раствора этот поток определяется скоростями диффузии и пристройки частиц к зародыщу. Пристройка частиц требует разрывов их связей с растворителем, т. е. преодоления потенциального барьера. Этот процесс изучен очень плохо. Имеющиеся данные позволяют лишь оценить энергию активации для полного процесса доставки частиц в решетку макроскопического кристалла. Так, для роста грани [c.279]

    В этом смысле наилучшим образом обстоит дело с реакциями распада молекул, для которых можно предполон<ить, что, как правило, энергия активации а совладает с теплотой реакции Q. Для реакций обмена профиль пути реакции отвечает кривой с потенциальным барьером. Поэтому определенная из термохимических данных теплота реакции Q здесь не имеет нрям010 отношения к величине энергии активации. Тем не менее, на основании теоретических соображений (66, 10] можно ожидать, что в ряду однотипных реакций [c.71]

    Энергия активации этих реакций равна соответственно 6, 10 и 13 ккал (см. [671). Рост энергии активации в ряду HjONblgСН4, по-видимому, нужно приписать увеличению экранирования центрального атома и связанному с этим повышепию потенциального барьера. [c.150]

    Очевидно, что метод столкновений, исправленный введением стерического фактора, и метод активированного комплекса должны, в конечном счете, давать одинаковые величины константы, так как они являются двумя возможными формами решения одной и той же задачи. При этом трудности, связанные с построением поверхности потенциальной энергии реа-гарующих частиц, необходимой для вычисления энергии активации, могут быть пока обойдены путем определения энергии активации интересующей нас простой реакции на основании зависимости между температурным коэффициентом констан - [c.175]

    Отрицательное значение энергии активации физически означает, что для успешного протекания реакции энергия должна не подводиться к реагирующим частицам, а отводиться от них. Действительно, в случае рекомбинации атомов Н (или каких-либо других, например, Вг) известно, что реакция идет как тримолекулярная Н + Н-ьМо Нг + М, с участием какой-либо третьей частицы, забирающей избыточную кинетическую энергию молекулы Н2 в момент ее образования й тем самым позволяющей ей стабилизоваться в потенциальной яме. Таким образом, в случае тримолекулярных реакций отрицательная энергия активации приобретает простой физический смысл отводимой энергии в форме кинетической (или излучения), мешающей стабилизоваться молекулам продукта реакции. В истории химии впервые отрицательный температурный коэффициент скорости был обнаружен именно в тримолекулярной реакции 2Ы0 + 02- -2Ы0г [261], в которой избыточную энергию в форме кинетической забирает одна из разлетающихся молекул двуокиси. [c.212]


Смотреть страницы где упоминается термин Энергия активации потенциальная: [c.181]    [c.128]    [c.87]    [c.373]    [c.93]    [c.70]    [c.71]    [c.131]    [c.137]    [c.171]    [c.209]    [c.209]    [c.18]    [c.68]    [c.178]   
Физическая и коллоидная химия (1974) -- [ c.68 ]

Основы химической кинетики (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма

Энергия активации

Энергия потенциальная



© 2025 chem21.info Реклама на сайте