Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы распыления

    Изменение температуры теплоносителя возможно двумя способами 1) ири постоянном расходе теплоносителя — изменением расхода топлива 2) при постоянном расходе топлива — изменением расхода вторичного воздуха (инертного газа), подаваемого в камеру смешения. Способ выбирается в зависимости от требований тепло-потребителя. Регулятор температуры (серийный потенциометр) — с пневматическим управлением. В качестве чувствительного элемента используется термопара, а в качестве исполнительного механизма — регулирующие клапаны с пневмоприводом. При применении форсунок с паровым распылением один регулирующий клапан устанавливается на линии жидкого топлива к форсунке, а другой — на линии пара к форсунке. Оба клапана оборудуются позиционерами и управляются параллельно от одного регулятора. [c.220]


    Полимерная серу обычно получают распылением расплава комовой серы в присутствии стабилизатора в воде или сублимацией серы в токе инертного газа. Эти способы требуют значительных энергетических затрат на нагрев серы до парообразного состояния. Предлагаемый процесс основан на классической реакции окисления сероводорода при недостатке кислорода  [c.132]

    Способ распыления ионным пучком показан на рис. 10.10, а. Инертный газ, например аргон, ионизируется в холодном катодном разряде, и полученные ионы ускоряются в ионной пушке до энергии 1—30 кэВ. Ионный пучок для бомбардировки мишени можно создать либо с помощью коллимации, либо путем фокусировки с помощью обычной системы линз. Высокоэнергетические ионы бомбардируют атомы мишени и передают импульс при упругом столкновении, в результате чего лежащие вблизи поверхности мишени атомы выходят из мишени с энергиями от О до 100 эВ. Такие распыленные атомы затем осаждаются на образце и на всех поверхностях, лежащих в пределах прямой видимости с мишени. Достоинством такой схемы является то, [c.200]

    Регенерированный активный уголь поступает в следующую секцию 8 для охлаждения. Высота секции 6,1 м, диаметр 3,66 м. Охлаждение угля происходит в кипящем слое при подаче на него распыленной воды. Циркулирующий инертный газ, содержащий пары воды и пыль активного угля, очищается в батарейном циклоне с последующем удалением воды в конденсаторе. Чистый охлажденный уголь из секции 8 поступает в адсорбционную секцию. [c.281]

    В технике разработаны и используются многие способы получения тех или иных модификаций металлов, причем некоторые из этих способов нашли широкое промышленное применение. Например, порошки многих ме-та ллов с определенными свойствами получают в металлургии путем восстановления их окислов водородом с последующим размолом и просевом материала. Довольно широко распространены также электролитические способы получения металлических порошков и способы распыления жидких металлов сжатыми инертными газами [1, 2]. [c.9]

    Впервые хлорирование натурального каучука с целью получения твердого полимера было описано в 1859 г. Хлорированные каучуки — натуральный (НК) и синтетический полиизопрен (СКИ)—обычно получают путем пропускания хлора через раствор полимера в четыреххлористом углероде в течение 5—6 ч при 70—74°С до присоединения 62—68% (масс.) хлора [71, 72] с последующим осаждением полимера водным раствором щелочи, горячей водой [73] или распылением полученного раствора в выпарной зоне в токе воздуха или инертного газа при температуре не <более 75 °С [72]. [c.14]


    Ионное распыление (часто называемое катодным по электроду, подвергаемому распылению) происходит путем импульсной передачи энергии от ионов инертного газа (аргона) плазмы атомам вещества электрода с последующим радиационным разрушением. На пути пробега в веществе катода ион теряет энергию при соударении с атомами вещества. Если переданная атомам энергия превышает энергию их смещения, атомы покидают свои места в кристаллической решетке, образуя смещенные атомы. Первично смещенные атомы при достаточном запасе энергии смещают другие атомы и т. д. [c.129]

    Хемосорбция (активных газов) и блокирование (инертных газов) лежат в основе работы геттерно-ионных насосов и их многочисленных разновидностей. В них отсутствует масло и это является их важным преимуществом. Поглощающим веществом служит свежеосажденный на внутреннюю полость слой титана, тита-но-молибденового сплава или хрома, полученный при сублимационном, электронно-лучевом или ионном распылении. В последнем варианте насосы называются электроразряд-ными. Процесс откачки геттерно- [c.135]

    В качестве ионизируемого газа используют аргон, как наиболее дешевый из инертных газов. Надо учитывать, что вакуумные насосы при ионном распылении работают в атмосфере аргона, поэтому обычно не применяют геттерно-ионные и электроразрядные насосы, плохо откачивающие инертные газы. Однако в принципе возможно и другое решение откачку проводить именно электроразрядным насосом, оставляя в камере атмосферный аргон. [c.146]

    Особенности кинетики конденсации при ионном распылении. Конденсация пленок при ионном распылении происходит в сложных условиях при относительно высоком давлении инертного газа, в присутствии химически активной и ионизованной в разряде фоновой атмосферы, при наличии электростатического поля. [c.148]

    Получение порошков сплавов скелетных катализаторов. Для получения порошка сплава традиционным методом слитки сплавов подвергаются грубому измельчению иа дробилках Блэка до 5—10 мм, затем в шаровых мельницах до дисперсности —3 мм и далее, при необходимости, в специальных мельницах тонкого помола, например вибромельницах, до 5—10 мкм. В последние годы разработаны методы получения порошков с размером гранул более 10 мкм путем распыления из расплавов с охлаждением в инертном газе или жидкой среде, где в результате закалки возможна фиксация высокотемпературной фазы. Этот метод был применен, например, для получения порошка сплава Ag-Al, содержащего только ам-фазу, который не поддавался размолу. В электродах типа Юсти этот катализатор показал хорошие результаты. Получение скелетных катализаторов из пластичных сплавов на основе Ai, Са, Mg можно проводить, в ряде случаев минуя стадию получения порошка сплава, непосредственно из лент сплава, получаемых прокаткой. Как указывалось ранее, впервые это было показано для сплава Ag-Al. Метод позволил получить высокодисперсные серебряные порошки с мелкими гранулами. [c.143]

    Распылением. Нанесение жидкого проявителя струей воздуха, инертного газа или безвоздушным методом. [c.677]

    Распылением жидкий проявитель наносится струей воздуха, инертного газа или безвоздушным методом. Этот способ нанесения проявителя обеспечивает наиболее высокую равномерность слоя проявителя и, как следствие, высокую чувствительность. Недостаток распыления состоит в больших потерях проявителя (20. .. 40 %) и в загрязнении рабочих мест и окружающей среды. Для нанесения распылением используются специальные краскораспылители. [c.677]

    Некоторые металлы совсем нельзя распылять в кислороде, хотя они медленно распыляются в ат.мосфере водорода. Это объясняется тем, что поверхность катода защищена от окисления. Окисление, очень мешающее распылению, может быть даже у благородных металлов, таких, как платина и палладий, и если инертный газ в процессе распыления не применяется, покрытие загрязняется. Присутствие в камере во время распыления паров воды, бензина, масла и т. п. также приводит к получению негодных покрытий. Для удовлетворительного распыления большинства металлов скорость откачивания воздуха из камеры должна соответствовать скорости поступления [c.73]

    На рис. 8 изображена современная установка для распыления металлов в вакууме. Вертикальный, охлаждаемый водой, катод помещен в центре цилиндрической рабочей камеры, причем с этого катода металл распыляется в обе стороны. На каждом конце камеры установлены двери, на которых крепят покрываемые изделия. Двери и камера охлаждаются водой. Для откачивания применяется систе.ма из двух насосов — фор-вакуумного и диффузионного. Такая система позволяет поддерживать высокую скорость откачивания во время покрытия материалов, выделяющих газы, а также пополнять потерю инертного газа во время распыления. При объеме камеры в 60 л время откачивания равно 7 минутам. [c.75]


    Особенности образования радиоактивных аэрозолей влияют на поведение радиоактивных частиц, загрязнение объектов и эффективность дезактивации. Радиоактивные аэрозоли в атмосферном воздухе образуются в результате следующих процессов диспергирования веществ, содержащих радиоактивные продукты конденсации и десублимации паров радиоактивных веществ адсорбции радионуклидов на атмосферных аэрозольных частицах распада инертных газов с последующей их конденсацией, а также вследствие образования наведенной активности. Образование радиоактивных аэрозолей диспергированием происходит под действием взрыва, распыления жидкости или других процессов. Примерами источников образования радиоактивных аэрозолей диспергированием веществ являются работы по разгерметизации загрязненного оборудования, шлифовка облученных деталей и особенно сварочные работы. Необходимым условием конденсации паров радионуклидов является пересыщение и неравномерное их распределение в воздушной среде, а также присутствие ядер конденсации или зародышей. Одновременно с конденсацией, т. е. переходом пара в жидкость, при сильном охлаждении может происходить процесс десублимации, т. е. переход пара в твердое состояние, минуя жидкое. [c.182]

    Бомбардировку ионами инертного газа осуществляют двумя довольно различающимися способами. По одному из них ионы инертного газа, образующиеся под действием электронного пучка, направляют к образцу с помощью напряжения, приложенного к самому образцу, или посредством отдельного ускоряющего электрода. Последний вариант ускорения предпочтителен, так как он позволяет применить такой источник ионов, который обеспечивает высокую степень коллимации ионного пучка, что позволяет свести к минимуму бомбардировку подложки. Такого типа стандартные источники ионов обычно используются в системах ДМЭ и возбуждаемой электронами ОЭС. Разные конструкции источника ионов подробно описаны в научной литературе или каталогах фирм [17, 18]. Чтобы предотвратить загрязнение образца, эмиттер электронов и очищаемую поверхность не следует располагать на одной линии. Во втором способе ионы инертного газа образуются под действием тлеющего разряда (чтобы избежать применения электронного пучка). Однако использовать этот метод нецелесообразно, так как при энергии ионов ниже 1 кэВ устойчивый режим работы, по существу, получить невозможно, а нри более высокой энергии ионов наблюдается сильное нарушение структуры поверхности. Кроме того, эффективность очистки при помещении образца в тлеющий разряд сомнительна из-за возможного образования примесей в результате побочного процесса — распыления. [c.125]

    На рис. 2 приведены микрофотографии продуктов, полученных при давлениях, соответственно ниже атмосферного, при атмосферном и выше атмосферного. Полученные результаты показали, что образование сажевых частиц конденсацией углеродного пара наблюдается и в малых реакционных объемах при отсутствии интенсивного перемешивания. В этом случае количество образующейся сажи увеличивается с повышением начального давления инертного газа в реакционном объеме. Присутствие в образцах бесформенных агрегатов графитоподобного углерода, по-видимому, можно объяснить распылением материала графитовых стержней пламенем дуги. [c.191]

    Лампа с полым катодом состоит из небольшой герметически закрытой камеры, в которой находится металлический катод, имеющий форму маленькой трубки. Камера обычно откачивается, а затем наполняется инертным газом (например, аргоном) при низком давлении. Тщательной регулировкой давления добиваются того, чтобы электрический разряд возникал внутри катода. Вещество, спектр которого требуется возбудить, помещают внутрь катода либо изготавливают из него катод. Когда к электродам прикладывается напряжение, положительные ионы соударяются с поверхностью катода и вызывают его распыление. Таким образом, в электрическом разряде появляются атомы металла, некоторые из которых возбуждаются и испускают резонансное излучение. Интенсивность этого излучения можно увеличить в сотни раз, введя для дополнительного возбуждения атомов изолированные вспомогательные электроды, к которым прикладывается напряжение около 500 В. Полый катод позволяет получить очень узкие спектральные линии и поэтому очень удобен для работ, в которых требуется высокое разрешение, например в изотопном анализе. [c.94]

    Некоторые физические свойства используемых в настоящее время геттеров приведены в табл. 7. Из всех геттеров, указанных в таблице, наибольшее распространение получил титановый, который при распылении сорбирует значительные количества кислорода, азота, двуокиси и окиси углерода, водорода и паров воды. Инертные газы, а также метан и другие углеводороды сорбируются титаном слабо. В атмосфере поверхность титана быстро покрывается прочной и непроницаемой пленкой окислов, нитридов и карбидов, которые предотвращают дальнейшую реакцию газов с металлом. Высокая активность титана наряду со сравнительно высокой скоростью испарения и низкой стоимостью предопределили его широкое использование как геттера. [c.55]

    Откачка инертных газов в магниторазрядных насосах происходит в основном на катодах путем внедрения в них быстрых ионов, которые после нейтрализации удерживаются силами физической адсорбции. Непрерывно напыляемый титан замуровывает сорбированные молекулы. Распыление материала катода ведет к высвобождению части молекул газа, поэтому в основном они удерживаются лишь на периферии катода, где скорость распыления меньше скорости напыления титана. Не исключено, что часть молекул инертных газов, находящихся в возбужденном [c.61]

    Характерным для откачки инертных газов (особенно Аг) являются периодические колебания давления в области 10 — 10 Па, вызванные пульсирующими выделениями части ранее связанных молекул (аргонная нестабильность). Полагают, что это явление связано с изменением распределения плотности ионного тока по поверхности катода, побуждаемое любыми изменениями условий работы насоса, будь то колебания напряжения в сети или естественное изменение давления откачиваемого газа и его состава. При этом происходит превышение распыления над напылением титана в тех местах, где при нормальных условиях происходило накапливание геттера, и выделение ранее поглощенного в этих местах газа. [c.62]

    В настоящее время известно большое число распылителей пневматического и механического типов. В пневматических распылителях вода дробится на капли сжатым воздухом или инертным газом. Преимущество пневматического распылителя — высокая степень дисперсности воды при большом радиусе действия, что позволяет равномерно орошать поверхность горения. Основной недостаток распылителей — большой расход воздуха для распыления воды. [c.84]

    Аномальное катодное падение сопровождается сильным распылением катода, которое наблюдается и при нормальном катодном падении, но в более слабой степени. Распыление очень сильно зависит как от материала электродов, так и от рода газа, заполняющего разрядную трубку. Установлено, что в тяжелых газах распыление больше, чем в легких, у химически мало активных металлов больше, чем у химически активных. Кроме тог о, распыление возрастает с уменьшением теплоты возгонки металла. Подробное исследование этого явления показало, что оно увеличивается с увеличением силы тока и с уменьшением давления. Катодное распыление неизбежно сопровождается поглощением газа распыленными частицами, причем поглощение инертных газов происходит в значительно меньшей степени, чем поглощение газов химически активных. Г аз поглощается и распыленным металлом и самими электродами. Поглощенный газ удается частично выделить при нагревании. [c.40]

    Подобно обычному полому катоду, излучающая плазма и в этом случае образуется при пониженном давлении инертного газа (аргон высокой чистоты при давлении 1,1—1,6 кПа) за счет катодного распыления при напряжении 1—2 кВ и силе тока 0,2 А. Плоскую поверхность анализируемого образца предварительно полируют. Анод расположен от катода всего иа расстоянии 0,2 мм, благодаря чему он фокусирует разряд на поверхности пробы. Катодный слой содержит только пары пробы и атомы газа-носителя и не загрязняется материалом анода. Линии в таком разряде не испытывают самопоглощения. Поэтому одни и те же линии можно использовать для определения содерлсания элементов в широком интервале концентраций. [c.66]

    Помимо природы, вида и условий возбуждения св-ва К. (спектр и энергетич. выход свечения, длительность послесвечения) существенно зависят от технологии их получения, к-рая обычио включает прокаливание аморфной шихты, состоящей из оси. в-ва и активирующих добавок, прн т-рах 900-1200 °С. Для улучшения процесса кристаллизации в шихту иногда добавляют плавни (К.С1, LiF, a lj и др.). В процессе прокаливания происходит частичное замещение иоиов осн. в-ва ионами активирующих примесей. Для эюй же цели применяют ионную имплантацию, электролитич активацию, лазерные распыление и отжиг, др. методы, позволяющие получать К. при значительно более низкой т-ре. В ряде случаев синтез осуществляют в атмосфере инертных газов. Для формирования центров свечения заданной структуры и получения требующихся для практики св-в свечения в К. часто вводят помимо активатора соакти-ваторы и сенсибилизаторы. [c.535]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]

    Металлы платиновой группы можно наносить на титановую основу электрода в чистом виде или в виде сплавов различными методами с последующим окислением пх химическил или электрохимическим способами [10]. Предложена специальная обработка основы ионным облучением и осаждение катодным распылением в инертной среде слоя металлов платиновой группы с последующим окислением его нри нагревании в кислороде или в смеси кислорода с инертным газом [11]. [c.186]

    Подобно обычному полому катоду, излучающая плазма и в этом случае образуется при пониженном давлении инертного газа (аргон высокой чистоты при давлении 1,1-1,6 кПа) за счет катодного распыления при напряжении 1-2 кВ и силе тока до 0,2 А. Плоскую поверхность анализируемого образца предварительно полируют. Анод расположен от катода всего на расстоянии 0,2 мм, благодаря чему он фокусирует разряд на поверхности пробы. Катодный слой содержит только пары пробы и атомы газа-носителя и не зафязняется [c.380]

    Еще в первых работах А. Уолша (1959 г.) предлагалось использовать тлеющий разряд в полом катоде не только как источник резонансного излучения, но и как атомизатор. Действительно, катодное распыление обладает высокой стабильностью атомного потока, низкой степенью ионизации распыленных атомов и большими сечениями поглощения резонансных линий на центральном частоте Vq. Энергия ионов инертного газа (обычно аргона), бомбардирующих катод, позволяет с примерно одинаковой эффективностью распылять элементы с различ1шми термодинамическими характеристиками, а высокие плотность и энергия электронов в плазме разряда достаточны для разрушения любых химических соединеьшй определяемого элемента, поступивших из пробы в газовую фазу. Однако, как и в случае с графитовой кюветой Львова, несовершенство первых конструкций такого атомизатора привело к тому, что они не получили широкого распространения в аналитической практике. Новая волна интереса возникла в связи с изучением особенностей тлеющего разряда в. лампе Гримма (см. раздел 14.2.1), где реализуется аномальный тлеющий разряд постоянного тока при пониженном давлении инертного газа (0,1-3 кПа) и силе разрядного тока от 10 до 300 мА. Разряд происходит между плоским катодом (анализируемый образец) и цилиндрическим анодом, отстоящим от катода всего на 0,1-0,5 мм. Диаметр катода — не менее 20 мм. Обрабатываемая разрядом площадь определяется внутренним диаметром анода (8-10 мм). [c.843]

    Система ЖХМС-анализа более активно начала применяться с появлением интерфейса ЭРИАД (экстракция ионов из раствора при атмосферном давлении) [58]. Суть действия такого интерфейса состоит в том, что под влиянием неоднородного электрического поля высокой напряженности при атмосферном давлении инертного газа происходит распыление раствора, содержащего анализируемые молекз- лы. При этом часть молекул ионизируется, ионы формируются в пучок и подаются в анализатор ионов (см. рис. 7.5). [c.886]

    Капиллярное заполнение ( apillary Filling) Самопроизвольное заполнение полостей несплошностей пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струйно, распылением с помощью сжатого воздуха, хладона или инертного газа [c.577]

    Нанесение распылением (Appli ation by Spraying) Нанесение жидкого проявителя струей воздуха, инертного газа или безвоздушным методам [c.578]

    Для получения покрытий из ПТФХЭ используют преимущественно различные варианты газопламенного напыления [36]. Смесь порощка с воздухом или инертным газом подают из распылителя через воздушно-ацетиленовое или водородно-кисло-родное пламя на изделие, нагретое до 250—800 °С (в некоторых случаях с последующим прогревом его при 270 °С), и затем закаливают холодной водой. Во избежание разложения полимера распыление и закалку проводят с максимальной скоростью. ПТФХЭ, например марки волталеф ЗОО-УФ, можно также напылять и на холодное изделие с последующим сплавлением в печи при 265°С, при этом толщина однослойного покрытия составляет 300—500 мкм. [c.214]

    Для зажигательных I елей используются такж горючи масла. Струя горящего масла воспламеняет легкогорючие предметы. Специальные аппараты, о гнеметы, силой дав ения сжатого воздуха или инертного газа выбрасывают на большое расстояние струю горючего масла. Масло при выходе из аппарата воспламеняется от электрического тока. Для огнеметов следует выбирать горючее масло с большим удельным весом, чтобы не было распыления его при выходе из аппарата. Для горючей жидкости рекомендуется брать, например, смесь из 70% смоляного масла и 30% неочищенного бензина удельный вес такой смеси 1,044. [c.72]

    Указанные затруднения легко преодолеть при нанесении разделяемого раствора в виде полосы с помощью специального прибора [Ъ2. В нашей лаборатории для этого используют так называемый пистолет-микрошприц с отверстиями 0,1—0,25 мм. Для работы пистолета-шприца вместо сжатото воздуха выгодно использовать инертный газ, например углекислый газ или азот. Необходимо предварительно точно отрегулировать давление, чтобы его как раз хватило для распыления жидкости. При слишком высоком давлении выдувается слой сорбента. [c.22]

    При синтезе надперекиси цезия вышеуказанным способом получаются две фракции. Первую образуют частицы, которые выносятся газовым потоком и скапливаются на фильтре 9 (рис. 1). Эта фракция является наиболее чистой и представляет собою легкий, пушистый светло-желтый порошок. Вторая фракция, менее чистая, образуется за счет более крупных м тяжелых частиц, оседаюш,их на стенках реактора 7 и переходной трубки 8 (рис. 1). Это более светлый порошок с сероватым оттенком. Ввиду того что вторая фракция обязана своим происхождением главным образом спеканию более мелких частиц перекиси и надперекиси в зоне реакции, а также неполному сгоранию металла, то основным путем повышения качества продукта и увеличения выхода более чистой фракции является улучшение условий распыления металла. Это зависит не только от специфических особенностей конструкции форсунки, но и от правильного подбора скорости подачи металла через форсунку. Одновременно необходимо подобрать оптимальную скорость газового потока для возможно более быстрого удаления продукта из зоны реакции. Кроме того, с целью понижения температуры в зоне реакции необходимо установить оптимальные отношения кислорода к инертному газу и к металлу. [c.307]

    Для облегчения зажигания в такие лампы вводится обычно интертный газ (например, неон или аргон), давление которого составляет несколько миллиметров ртутного столба. В начальных стадиях работы лампы ток переносится в основном инертным газом, но по мере того, как лампа нагревается, происходит испарение ртути и ртутный спектр становится преобладающим. При рабочем режиме весь ток практически переносится парами ртути. Металлические электроды часто снабжены фарфоровым наконечником для того, чтобы избежать распыления (при изготовлении ламп полезно впаять стандартные индикаторные электроды с пометкой неоновые ). Такие лампы хорошо работают в течение длительных периодов времени без заметного износа. Для работы пригоден трансформатор на 6000 в, способный дать приблизительно 100 или 150 ма. Ток, проходящий через лампу, можно регулировать вариаком или другим автотрансформатором, включенным в первичную цепь. [c.228]


Смотреть страницы где упоминается термин Инертные газы распыления: [c.107]    [c.209]    [c.101]    [c.60]    [c.724]    [c.72]    [c.101]    [c.279]    [c.576]    [c.576]    [c.305]    [c.63]    [c.799]   
Технология тонких пленок Часть 1 (1977) -- [ c.370 , c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ

Распыление



© 2025 chem21.info Реклама на сайте